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Abstract Structural health monitoring is a process
for identifying damage in civil infrastructures using
sensing system It has been increasingly employed due to
advances in sensing technologies and data analytic using
machine learning. A common problem within this
scenario is that lirnited data of real structural faults are
available. There fore, unsupervised and novelty detection
machine learning methods must be employed. This work
presents a cluster ing based approach to group
substructures or joints with similar behaviour on bridge
and then detect abnormal or damaged ones, as part of
efforts in applying structural health monitoring to the
Sydney Hatbour Bridge, one of iconic structures in
Australia. The approach is a combi nation of feature
extraction, a nearest neighbor based out lier removal,
followed by a clustering approach over both vibration
events and joints representatives. Vibration sig nals
caused by passing vehicles from different joints are then
classified and damaged joints can be detected and
located. The validity of the approach was demonstrated
using real data collected from the Sydney Harbour Bridge.
The clustering results showed correlations among similarly
located joints in different bridge rones. Moreover, it also
helped to detect a damaged joint and a joint with a faulty
instrumented sensor, and thus demonstrated the feasibility
of the proposed clustering based approach to complement
existing damage detection strategies.
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1 Introduction

Ageing and damage in transport infrastructures, such as
roads, bridges and tunnels, are becorning a big issue
nowadays. In order to improve safety and reduce costs
derived from ageing and damage, early identification of
damage in a structure is important to avoid further risks,
both in life-safety and economic losses. Structural Health
Monitoring (SHM) based approaches have been increas
ingly used during recent years to address this problem [13,
30).

With regard to bridges, and despite the advances in
abstract analysis and controlled testing, failures have the
most conspicuous influence on their design, construction
and management. Many failures are mainly caused by
inappropriate design and poor maintenance (corrosion,
scour, etc.) [8]. As established by Sibly and Walker [29),
each innovative bridge form is developed by trial and error
method until its lirnits are surpassed and spectacular failure
occurs. Only then does theory catch up with the practice
and fully explains the structural behaviour of the



infrastructure. Two popular examples are Tacoma Bridge,
in 1940, due to a poor design [18], and Silver Bridge, in
1967, due to the use of bad material [22]. The more
complex dynamic behaviour of these structures resulted in
greater lapses in the designer’s knowledge, and hence,
many failures under wind loads, as well as those caused by
rushing crowds.

For this reason maintenance should be considered as a
fundamental pillar to face ageing and damage effects in
bridges [15]. Maintenance strategies are essentially based
on nonintrusive sensing, monitoring and analysis tech-
niques to provide flexible decision support, normally in the
form of inspection recommendations (when, where and
why to act). To this concern, data-driven or machine
learning based analysis [35] and model-driven or finite
element analysis [19] are most commonly used to generate
data models (from an data analytical perspective) and
physical models (from a numerical or mechanical per-
spective) that aim to represent the structure. Generated
models are then used to identify damage in the structures
[34].

This work is an effort to apply SHM to the Sydney
Harbour Bridge by a data-driven machine leaming
approach. It presents a clustering based technique to group
bridge joints with similar behaviour and then detect
abnormal or damaged ones. Vibration events caused by
passing vehicles are acquired by accelerometers located in
several joints of the structure. Since there are not clear
evidences of anomalies, data are analysed in an unsuper-
vised fashion. A combination of feature extraction and
outlier removal is performed, and then similar events and
joints are grouped by the clustering technique. This will
allow isolating possible damaged joints on the bridge.

2 Related work

Statistical pattern recognition has been widely used to
identify damage in the structure. As can be seen in [12, 21,
37], group classification, regression analysis, neural net-
works and density estimation were popular methods.
Nevertheless, in most of the cases success was restricted to
simulations, laboratory studies and well-controlled exper-
iments, such as in the Z24 Bridge [23]. Thus, limited
evidences of real structural faults are available and in most
of the cases the effectiveness of the approaches still
remains to be validated for operational civil structures.

In an effort of overcoming this limitation and addressing
the novelty detection challenge, many authors have pro-
posed clustering and unsupervised learning approaches for
damage detection in SHM [16]. When there is no data
available from damaged states, one way to proceed is to
estimate the density of feature vectors, assuming the

structure is in good condition, and then quantify the con-
sistency of new feature vectors with relation to the esti-
mated density. K-means, Gaussian Mixture Models
(GMM), Support Vector Clustering (SVC) and Self-Orga-
nizing Maps (SOM) algorithms are representative exam-
ples of clustering-based approaches for statistical modeling
and feature classification in SHM [28]. Yu et al. [39] used a
fuzzy c-means (FCM) clustering approach for structural
damage detection. Several feature extraction techniques
were applied in their study such as data projection algo-
rithms, principal component analysis (PCA) and kernel
principal component analysis (KPCA). Toivola et al. [31]
used different dimensionality reduction methods such as
Curvilinear Component Analysis, PCA and Random Pro-
jection to reduce high-dimensional vibration measurements
in conjunction with nearest neighbor algorithm for novelty
detection. In [7] a hierarchical parameter clustering tech-
nique was used to group acceleration data from a cable-
stayed bridge, based on the similarity of parameters
involved in the process. Other clustering approaches for
SHM focused on grouping information coming from sensor
networks distributed throughout the structure. Yin et al.
[38] proposed a clustering-based multi-hop routing proto-
col to group similar nodes in each span of the bridge. Nie
et al. [26] also studied the use of cluster-based data
aggregation architectures for SHM to transform the raw
data into useful information.

Several signal processing and feature extraction tech-
niques have been applied to extract features which are
sensitive to changes in the structure. Some of these tech-
niques can be found in [5, 6, 11]. The most popular tech-
niques for signal processing are wavelet transform (WT)
and Fourier transform (FT), as discussed by Newland et al.
[25]. Alternatively, time series analysis is commonly
applied in order to extract damage sensitive features from
SHM data. Time series models are used to fit to the
vibration data and then damage indicators are obtained by
comparing new data against the learnt models. Gul et al.
[17] employed time series modelling in conjunction with
Mahalanobis distance to identify structural changes on
different case studies.

3 Proposed approach

This section describes the proposed clustering approach for
SHM of bridges. The proposed algorithm is based on an
unsupervised classification of vibration events and joints.
The main steps of the methodology can be seen in Fig. 1,
which has been applied for the presented work on the
Sydney Harbour Bridge.

The vibration responses of the structure excited by
passing vehicles, also named as events, are measured from
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Fig. 1 Flowchart of the proposed clustering based approach for SHM

hundreds of joints within the structure using tri-axial
accelerometers. The measured time history of vibration
responses, corresponding to each event, is stored for further
analysis. For every event, raw acceleration data are trans-
formed into a unique feature in time domain which is
explained in detail in Sect. 3.1. Outliers are then removed
based on density estimation of bridge joints and the energy
of the signals, allowing reducing dimension of the data, as
can be seen in Sect. 3.2. Having removed the outliers, the
remaining events are then transformed into the frequency
domain using fast Fourier transform (see Sect. 3.3).
Finally, clustering techniques are employed to train models
from available data that are able to characterize normal
structural behaviour. Joints with similar behaviour are
grouped and damage joints are detected. This last phase is
described in Sect. 3.4.

3.1 Data preprocessing for feature extraction

An event is defined as a time period in which a vehicle is
driving across an instrumented joint. Vibrations caused by
passing vehicles are recorded by tri-axial accelerometers
positioned at the joints located in different parts of the
structure. For every event sample, accelerometer data in the
three axis, (x, y, z), are transformed in a unique feature,
Vi = |A;j| — |A,|, where A; is the instantaneous acceleration
at ith sample and A, is the rest vector or the average of the
three readings (x, y, z) in the first 100 samples. They are
collected before the event is triggered for ensuring that all
the events have a similar wave form. Events that are trig-
gered within the first 100 samples are filtered out (these
events are mainly caused by vehicles that were driving
close to each other). Data standardisation is then applied to
every V as,

_V-uv)

= (1)

where V =V;,...,V, are extracted features from an
acceleration event.

3.2 k-Nearest neighbors for outliers removal

k-Nearest Neighbors (kNN) searches for the k closest
neighbors in the feature space. It can be mainly used for
classification [10] and regression [2], predicting the label or
the value of a new data sample as the majority of labels or
values among its k closest neighbors.

kNN-based approach proposed within this study per-
forms an iterative process that allows removing outliers
and noisy signals incrementally, until the convergence
criteria is met. QOutliers are joints signals that are far from
their joint representative, calculated as the mean of all joint
events. This also allows resampling the number of events
for every joint in order to balance the whole data set.
K Dimensional-Trees (KD-Trees) are used for optimising
the (k) nearest neighbors searching process [24].

For every event, X = (xi,...,X,), the sum of the energy
in time domain is calculated as,

EX)=) k% 2)
i=1

Then, for each iteration, the k closest neighbors to the mean
of the energy of the joint signals, gy, are taken. The
distance of the k closest signals, d(E(X}), tigin),
Jj=1,...,k, for every joint is calculated. X; is marked as
outlier and is removed from current joint if the condition is
met,

d(E(X;), fioim) > (D) + 2 o(D), 3)

where p(D) = (1/k) * xy d(E(X;), Hjoine) is the mean of
the distance of every event energy to the joint mean and
o(D) is the standard deviation of such distances.

This process is repeated until any of the previously
established stopping criteria is met. Namely, a maximum
number of iterations and a distance threshold, calculated
during the first iteration as,

threshold = (D) + (0.5 * (D). 4)



If the maximum distance obtained from the k nearest points
to the mean of the joint at any iteration is below this
threshold, the process is stopped.

3.3 Fourier transform for vibration signals
processing

Fourier transform is a signal processing technique that
decomposes a time domain signal into the series of fre-
quencies (amplitudes and frequencies). It was first dis-
cussed by Joseph Fourier [14], and since then it has been
further developed, becoming a robust frequency domain
method in modal analysis [9]. The basic idea of spectral
analysis is to represent the original vibration signal as a
new sequence, which determines the importance of each
frequency component in the dynamics of the signal. This is
achieved by using the discrete version of the Fourier
transform as,

X() =3 x()e )

where f denotes the frequency at which X(f) is evaluated.
Within proposed approach, Fast Fourier Transform
(FFT) is employed. The frequency spectrum of each

vibration signal in the time domain, X = x,.. ., Xy, is thus
computed as,
J=n
Afy) = ijwg_”(f’_”, (6)
j=1

where f, represents frequency, |A(f;)| is signal amplitude in
frequency domain, x; is one of the n time domain sampling
points of the vibration signal and m, = e

This signal analysis technique provides a powerful
spectral based diagnostic method in stationary conditions,
when there is no transient signals involved.

3.4 K-means clustering for behaviour
characterization

K-means clustering algorithm performs a partition of data
space into K clusters. Each cluster is represented by an
object, named centroid or the mean point, whose initial
value can be randomly set or estimated by applying some
kind of heuristic. In an iterative process, each element is
assigned to the partition with the least distance between it
and the centroid of the partition. Once all elements have
been assigned into clusters, cluster centroids are recalcu-
lated using the information of the elements that belong to
each partition. The process converges to a solution with a
linear complexity O(n), which is not always a global
optimum. The success of K-means method is strongly

determined by the choice of the K value, the distance
metric employed and the initial centroids values [36].

Once the FFT is applied over remaining events after the
outlier removal process, Euclidean metric is computed in
order to determine the distance between events [1]. It is
calculated as follows,

n
dist(X,¥) = X - ¥|| = /> _(x—w), (7)
i=1
where X = (x1,...,x,) and Y = (y,..
signals after applying FFT.

K-means clustering for damage detection allows
detecting anomalies like damage which are usually isolated
in small clusters. They can be removed and further anal-
ysed. Therefore, remaining data set can be used for training
accurate normality models. Classification of new events is
then performed by computing their distances to previously
learnt cluster centroids that represent behaviour of interest.

.,¥n) are vibration

4 Experimental results
4.1 Field test measurement

The Sydney Harbour Bridge was opened in 1932. It is a steel
through arch bridge operated by Roads and Maritime Services
(RMS) the road authority of the state of New South Wales,
Australia. The bridge carries lanes of 8-road traffic and two
railway lines. Traffic lane 7 is a dedicated bus and taxi lane on
the eastern side of the bridge. Lane 7 consists of an asphalt
road surface on a concrete deck supported by concrete and
steel jack arches as in Fig. 2. There are approximately 800
jack arches overa total distance of 1.2 km. The jack arches are
difficult to access and are inspected visually every two years
according to standard inspection practices. Figure 2 illustrates
one single jack arch in the structure.

Acceleration data from each jack arch are collected
using three tri-axial accelerometers, labeled sensors 1, 2
and 3 where, respectively, are mounted to the joint in left,
middle and right positions as shown in Fig. 3. The sensi-
tivity of the accelerometers have been set to =2 g but the
they are capable of measuring acceleration response up to
+8 g. Each tri-axial accelerometer measures acceleration
responses in the direction of passing traffic (x), in the
direction of gravity (z) and in the direction of (y). In this
study, only measured responses in (z) direction of sensor 2
is utilized since (z) direction accounts for most of the
acceleration of the middle sensor 2. Acceleration data are
collected after the vehicles, usually buses, drive over the
deck where the sensors are located. A pre-set threshold is
used to trigger the recording in each sensor, which corre-
sponds to an event.



Fig. 2 Illustration of a the bus lane on the Sydney Harbour Bridge and b one of the concrete jack arches underneath the bus lane
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Fig. 4 The Sydney Harbour Bridge schema

6-Joint case In the first case study, 6 joints from North
pylon and North main span were monitored during the first
week of August 2012, namely Joints 1 to 6 as shown in
Fig. 3. It is known that a crack was present in the 4th joint
at that time. Vibration signals were sampled at a frequency
of 375 Hz and during 1.6 s, resulting in 600 samples per
event. Frequency range was set from 0 to 187.5 Hz.

71-Joint case In a separate case study, 71 joints were
monitored from the first week of October 2014. Monitored
joints belong to the following bridge zones: span 6, span 7,
span 8, North pylon and North main span (see Fig. 4 for
locations of these monitored areas). It is known that the
sensor mounted on Joint 135, located in the second bay of
span 7, was faulty at that time. Vibration signals were
sampled at a frequency of 250 Hz during 2 s, resulting in
500 samples per event. Frequency range is set from 0 to
125 Hz.

Figures 5 and 6 show plots of typical vectors V =
|A| — |A,| obtained from raw acceleration data of consid-
ered data sets. Corresponding FFT signals are also
provided.
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For both case studies, Frequency Domain Decomposi-
tion technique (FDD) [3] was implemented to investigate
the natural frequencies of the jack arches. For an arbitrary
joint within 71-joint data, FDD technique was applied on
10 randomly selected event data and the results for the first
normalized singular value was presented in Fig. 7a (for
each event a different line pattern was used). As shown in
the figure, within the frequency range of 16 to 18 Hz, a
significant mode can be extracted. Interestingly, a variation
is observed between natural frequencies obtained from
different events, which may be caused by different envi-
ronmental and traffic conditions. The same behaviour was
observed from all the other joints.

FDD technique was also applied on the damaged joint in
the 6-joint case. Compared to the healthy state (after
repair), there is a considerable reduction in the dominant
mode. Figure 7b compares the first normalized singular
values for the damaged joint before and after repair
obtained from 30 randomly selected events. In Fig. 7b, the
results for healthy state and damaged state are, respec-
tively, shown by black line and grey line.
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Fig. 6 71 Joint case: an example of vibration signal (above) and its corresponding FFT (below)

4.2 Event-based clustering

Event-based clustering is performed to group similar
vibration signals, and thus capturing the structural beha-
viour. Clusters formed are shown as graphs containing the
pattern (centroid or mean values) and the variance of
grouped events for each frequency. Clusters distribution is

also provided as the percentage of events belonging to each
joint that are grouped in a cluster.

4.2.1 6-Joints case

In this experiment, comprising Joints 1, 2 and 3 in North
main span and Joints 4, 5 and 6 in North pylon, the main
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Fig. 8 6-Joint case: cluster 0 showed a normal behaviour (centroid and standard deviation of cluster events above and joints distribution below)

motivation was to characterize normality from joints
events. When there is no previous knowledge about the
presence of any kind of abnormal behaviour, the goal is to
try to isolate outliers from high-density regions, containing
the majority of the data. In this case, notably, with K = 2
normal events of all joints were grouped in a big cluster,
containing a total of 23,849 events, whereas 4662 events
related to the damage, mostly located in joint 4, were
isolated in a small cluster. Clusters formed can be seen in
Figs. 8 and 9. Events belonging to the same joint are
equally coloured.

4.2.2 71-Joint case

This section shows results achieved when clustering events
from 71 joints. A quick test was first conducted only
considering 5 joints located in the second bay of span 7. As
in previous case K-means was executed with K =2 in
order to find a small cluster defining abnormal behaviour in
the data.

As it can be seen in Figs. 10 and 11, several events from
Joint 135 were located in a small cluster (together with a
few events of Joint 131, located in the same bay and span),
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Fig. 10 Analysis of 5 joints located in the second bay of span 7: cluster 0 showed a normal behaviour



ampihice [Pl 4~ LI

— contraid of clustard
sl of 198 events

1 EoS An

rerornengs alf moenks per nick

en nn mn 0
trocensy ()

B 200

P 3 &

& & &

& >

& &

Fig. 11 Analysis of 5 joints located in the second bay of span 7: cluster 1 with events from a faulty sensor

showing an abnormal pattern characterized by centroid
values. The other cluster grouped the majority of the
events, representing a normal behaviour.

In the next experiment, all 71 joints were clustered. The
goal was to group similar joints located in similar relative
positions along the bridge. K-means clustering was exe-
cuted with K =5 since 5 different bridge areas were
involved:

Span 6: 6 bays, including 33 joints.
Span 7: 5 bays, including 21 joints.
Span 8: 4 bays, including 12 joints.
Span North pylon: 2 bays, including 7 joints.
Span North main span: only 1 joint.

Figure 12 shows the clustering result in one cluster. Joints
belonging to the same bay were equally colored. It can be
seen that no useful information can be acquired given the
fact that events from one joint can appear in several clus-
ters. Therefore, it is sometime not straightforward to group
events from the same joint together using event-based
clustering.

4.3 Joint-based clustering
To overcome the weakness of the event-based clustering

mentioned above, joint-based clustering was utilized. In
joint-based clustering, a map of pairwise distances among

representatives of all joints was generated. A joint repre-
sentative is calculated as the mean values of all events of
each joint, after outlier removal phase. As in the case of
event-based clustering, the distance metric used was
Euclidean distance.

4.3.1 6-Joint case

For the experiment related to the analysis of 6 joints, it can
be appreciated that the distance between the representative
of joint 4 and the others is significantly high (see Fig. 13).
The more red the colour the higher the dissimilarity
between joints representatives. Therefore, the damage
behaviour in this joint is detected.

4.3.2 71-Joint case

Since only spans 6 and 7 had sufficient instrumented joints
covering most of the span, we only calculate the map of
pairwise distances for these two spans. Missing joints in
spans 6 and 7 are:

e Inspan 6: 1 joint in bay 4; 3 joints in bay 5 and 2 joints
in bay 6.

e Inspan 7: 1 joint in bay 1; 1 joint in bay 2; 2 joints in
bay 3; 2 joints in bay 4; all joints in bay 5 and 2 joints in
bay 6.
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Fig. 12 71-Joint case: events from one joint can appear in several clusters

Fig. 13 6-Joint case: damage in
joint 4 was captured
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Fig. 14 71-Joint cases, span 6: h

joints at middle of a bay/span
behave similarly and are
different from joints at the two
ends
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Resulting maps of pairwise distances for spans 6 and 7 can
be seen in Figs. 14 and 15. The black lines within the map
in each figure delimit regions that correspond to different
bays of the span. Each small cell with a color shows a
pairwise distance between two corresponding joints in the
span. The higher the distance, the less similarity between
two related joints.

Overall, the similarities between joints located in dif-
ferent bridge parts are found out. In span 6, it is shown that
joints at middle of a bay/span behave similarly and are
different from joints at the two ends. It may suggest an
indication of a bridge global behaviour in a span. In span 7,
although a global view is not available due to the missing
joints, Joint 135 located in bay 2 of span 7 had consider-
ably large distances to other joints. It is known that the
sensor in Joint 135 was faulty at the time the data were
collected. Joint 131 was also behaving differently com-
pared to the others, which implies a possible problem that
should be checked.

4.3.3 Cross correlation
In this section the performance of the proposed approach

was compared with the one obtained from applying cross-
correlation instead of Euclidean distance to measure the
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similarity between signals. The correlation coefficient of
two signals measures the level of similarity or linear
dependence [33]. Comparing two sequences X and Y, the
Pearson product-moment correlation is defined as:

cov(X,Y)
Py == — =

(8)
Ox0y

where cov(X, Y) is the covariance of (X, Y), ox and oy are

the standard deviations of X and Y, respectively.

The correlation between two signals is thus the covari-
ance divided by the product of the standard deviations of
both signals. Resulting coefficient will vary between — 1, if
there is a total negative correlation, 0, when there is no
correlation, and 1 for the case of total correlation. It can be
expressed as a dot product between the normalized signals.
For damage detection, it has been widely used to compare
frequency domain signals in combination with Hilbert
transform [32].

In our approach, instead of Euclidean distance, cross
correlation can be used as a similarity measure between
signals. Results obtained in the case of joint-based clus-
tering can be seen in Figs. 16, 17 and 18.

Conceming 6-joint experiment, the results of Euclidean
distance and cross-correlation were similar. However, dif-
ferences between healthy joints and the damaged one were



Fig. 15 71-Joint case, span 7:
faulty sensor at Joint 135 was
detected
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Fig. 17 71-Joint case, span 6: >
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map of pairwise distances using
cross correlation
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less pronounced. Whereas in the case of 71-joint experi-
ment the cross-correlation detected the faulty sensor in
Joint 135 but showed a correlation coefficient with the
other joints over 0.5, which indicated they can be consid-
ered moderately correlated. Cross-correlation also esti-
mated worse the location dependency among joints, as it
can be appreciated in Fig. 17. Joints in all bays of span 6
showed a correlation over 0.8. It therefore seems that cross
correlation coefficient is less sensitive to small changes in
joint behaviour than Euclidean distance. It must be also
noticed that due to the computational cost of covariance
computation when dealing with high-dimensional signals,
it is an inappropriate distance estimator in its basic form

[4].
4.4 Effect of kNN-based outlier removal

kNN-based outlier removal process was executed with a
different value of k for each experiment. This is due to the
fact that the number of available events per joint in each
case varied significantly. kK must be specified according to
the least amount of joint events that are being analysed.
This allows keeping a balance between joints cardinality,
avoiding any of them to dominate the clustering process. In

6-joint case, k was set to 5000. Regarding the 71-joint case,
k was set to 500, since less events per joint were available.
At every iteration and for each joint, k is the number of
closest events (in terms of a distance metric) to the mean of
the energy of all joint events. In case the number of events
in joint i, |events;| <k, k is set to the number of events in
joint i. The maximum number of iterations was set to 10.

Results obtained in terms of the number of events fil-
tered for each experiment are summarized in Table 1.
Additionally, the standard deviation of signals filtered and
signals selected for training are shown in Figs. 19 and 20.
The results show that filtered events had larger standard
deviation compared to events used for training.

4.5 Online learning and computational time

For online damage detection, previously generated models
from historical data can be used. When new excitation
events are obtained, feature extraction and signal process-
ing steps are applied as explained above. Then, in the case
of event-based classification, distances to behaviour mod-
els are computed and similarities are established. Events
far from the normality can be further studied for any

Table 1 Results obtained by
kNN outlier removal process

6-Joint case 36,947 events 71-Joint case 45,818 events

Number of events for training
Number of filtered events

28,511
8436

27,407
18,411
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Fig. 19 6-Joint experiment. Standard deviation of the training events (above) and the filtered events (below) after performing the kNN-based

outlier removal step
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Fig. 20 71-Joint experiment: standard deviation of the training events (above) and the filtered events (below) after performing the kNN-based

outlier removal step

Table 2 Computational time (in seconds) for the proposed approaches

Event-based clustering

Joint-based clustering

6 Joints 36,947 events

71 Joints 45,818 events

6 Joints 36,947 events 71 Joints 45,818 events

Feature extraction 3545 17.18

kNN 11.1 (k = 5000) 10.59 (k = 500)
FFT 12.55 0.53

K-means 10.6 (K =2) 5561 (K =5)
Total time 69.7 8391

Instant warning 0.002 0.002

29.79 20.88

9.17 (k = 5000) 10.47 (k = 500)
12.57 3.18

0.12 (pairwise map) 0.63 (pairwise map)
51.65 35.16

0.001 0.001

abnormal behaviour such as cracking and sensor failure.
Instant warning can be also performed by defining mem-
bership rules based on patterns of event-based models.
Regarding joint-based classification, joint-based models
are updated so that any change in the behaviour of the
structure over time can be determined. Therefore, the
overall status of the structure can be estimated and any
deviation from the normality can be detected.
Experiments were conducted in Python 2.7.6 64bits on
Ubuntu-Linux, on a CORE i5 desktop PC with 4 GB of
RAM memory. We used scikit-learn and scipy packages,
available at http:/scikit-learn.org/stable/ [20, 27], respec-
tively. Using mentioned software and hardware processing
specifications, computational time for conducted experi-
ments is presented in Table 2. This includes the required
time for feature extraction, signal processing, distance
calculation and the total time (in seconds). Having

constructed the clustering models, a random signal was
investigated to calculate the required computational time
for online damage detection. The result of this exercise is
tabulated in the last row of Table 2. According to the
obtained results, it can be seen that the required compu-
tational time for online waming is considerably short
which demonstrates the fact that combination of off-line
learning and online testing using the proposed approach
can be applied for real-time damage identification.

5 Conclusions

This work presents a clustering based approach to group
joints with similar behaviour on bridge and then detect
abnormal or damaged joints. Two case studies involving
vibration data monitored from the Sydney Harbour Bridge



were implemented to demonstrate the validity of proposed
approach. On the basis of an iterative kNN-based outlier
and noisy signal removal and a Fourier transform of
resulting joint events, the K-means based clustering of both
joint events and joint representatives were performed. The
clustering results indicated similarity between joints loca-
ted in different bridge locations and areas and helped to
group those with similar behaviour. In addition, a damaged
joint and a joint with a faulty sensor were also captured as a
result of clustering, demonstrating the robustness of the
approach when detecting a structural damage or a sensor
problem. It is thus proved the validity of this approach for
complementing existing damage detection techniques.

The proposed approach can also be easily deployed to
provide a real-time health score of the structure. Once the
behaviour models that best represent the structure are leamt
from historical data, they can be used to check new events
using distances to normality models obtained, namely
clusters centroids and joints representatives. Thus, any
potential damage in the structure can be detected. In order
to improve the clustering result, further experiments can be
conducted focusing on vehicle tracking to reduce variance
among different events.
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