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Abstract

The sensitivity analysis approach to incremental learning
presented in [4] is extended in this paper. The approach
in [4] selects at each subset selection interval only one
new informative pattern from the candidate training set,
and adds the selected pattern to the current training subset.
This approach is extended with an unsupervised clustering
of the candidate training set. The most informative pattern
is then selected from each of the clusters. Experimental re-
sults are given to show that the clustering approach to in-
cremental learning performs substantially better than the
original approach in [4].

1 Introduction

Active learning algorithms for training multilayer feedfor-
ward neural networks allow the neural network (NN) to se-
lect itself the most informative patterns from a candidate
set of training patterns. The NN uses its own knowledge
about the problem to determine which patterns will have
maximum gain in reducing the approximation error of that
network.

Cohn, Atlas and Ladner define active learning as any
form of learning in which the learning algorithm has some
control over which part of the input space it receives in-
formation [2]. From this definition, two main approaches
to active learning can be defined, namely selective learning
[3, 5, 7, 8] and incremental learning. Selective learning se-
lects a completely new training subset from the candidate
training set at each subset selection interval, based on some
measure of pattern informativeness. Each original candi-
date pattern is eligible for selection at each subset selection
interval, regardless of whether the pattern has been selected
at a previous subset selection interval. Incremental learn-
ing follows a similar approach, but with the exception that
selected patterns are removed from the candidate training
set, and added to the actual training set for the duration of
training. The training set therefor grows during training,

while the candidate training set shrinks.
This paper concentrates on incremental learning, and

proposes an adaptation of an existing incremental learning
algorithm to first cluster the candidate training set. The
most informative pattern of each cluster is then selected
and removed at each subset selection interval. The sen-
sitivity analysis incremental learning algorithm (SAILA),
introduced in [4] is used for this purpose.

Several incremental learning algorithms have been de-
veloped, differing mainly in the measure of pattern infor-
mativeness. Most current incremental learning techniques
have their roots in information theory, adapting Fedorov’s
optimal experiment design for NN learning [1, 6, 9, 10, 12].
The different information theoretic incremental learningal-
gorithms are very similar, and differ only in whether they
consider only bias, only variance, or both bias and vari-
ance terms to quantify pattern informativeness. Zhang [13]
and Röbel [11] define informativeness as a function of the
prediction error associated with a pattern: the larger the
prediction error, the more informative the pattern. Zhang
illustrated that information gain is maximized when a pat-
tern is selected whose addition to the training subset leads
to the greatest decrease in MSE. A different measure of pat-
tern informativeness is defined by Engelbrecht and Cloete
[3, 4, 5], where the sensitivity of the output units of the net-
work with respect to perturbations of a pattern is used as
selection criterion.

The remainder of this paper is organized as follows:
Section 2 provides an overview of the sensitivity analysis
incremental learning algorithm introduced in [4]. The new
algorithm, cluster-SAILA (CSAILA) is presented in sec-
tion 3. A comparison of CSAILA and SAILA is given in
section 4.



2 Sensitivity Analysis Incremental
Learning

The sensitivity analysis incremental learning algorithm de-
fines pattern informativeness as the sensitivity of the NN
output to perturbations in the input values of that pattern
[4]. That is,

Φ(p) = jj~S(p)
o jj∞ = max

k=1;���;KfjS(p)
o;k jg (1)

whereΦ(p) is the informativeness of patternp, ~S(p)
o is the

output sensitivity vector for patternp, andS(p)
o;k refers to the

sensitivity of a single output unitok to changes in the input
vector~z; K is the total number of output units. The output
sensitivity vector is defined as~S(p)

o = jjS(p)
oz jj2 (2)

whereS(p)
oz is the output-input layer sensitivity matrix. Each

elementS(p)
oz;ki of the sensitivity matrix is defined as (assum-

ing differentiable activation functions)

S(p)
oz;ki = ∂ok

∂z(p)
i

(3)

Each elementk of ~S(p)
o is then computed as

S(p)
o;k =s I

∑
i=1

(S(p)
oz;ki)2 (4)

At each subset selection interval, SAILA selects only the
most informative patternp, i.e.

p = fp 2 DCjΦ(p) = max
q=1;���;PC

fΦ(q)gg (5)

whereDC is the current candidate training set andPC is the
number of patterns remaining inDC. The patternp is then
removed fromDC and added to the current training subset
DT . Training continues on the training subsetDT until any
one of the following subset selection criteria becomes true,
upon which a new informative pattern is selected:� The maximum number of training epochs on the cur-

rent training subset has been exceeded.� A sufficient decrease in training error has been
achieved.� The average decrease in error per epoch is too small.� Overfitting of the current training subset has been de-
tected.

3 Cluster-SAILA

The cluster sensitivity analysis incremental learning algo-
rithm (CSAILA) is an extension of SAILA overviewed in
the previous section. SAILA is extended to first cluster the
patterns in the candidate training set. After the clustering
process, training starts during which SAILA is applied to
each of the clusters to find and remove the most informa-
tive pattern of each cluster. If the candidate training set is
divided intoC clusters,C informative patterns are selected
and added to the training subset. Each selected pattern is
removed from the corresponding cluster. When only one
cluster is used, CSAILA and SAILA are equivalent.

The success of CSAILA lies in the number of clusters
used. The cluster algorithm implemented for CSAILA dy-
namically grows the number of clusters based on the vari-
ance in Euclidean distance of all the patterns grouped in a
cluster, from the cluster center. If the variance in Euclidean
distance exceeds a user specified threshold,θ, a new cluster
is added. The complete cluster algorithm is given below:

1. Initialization:

(a) Find the minimumzmin
i and maximumzmax

i val-
ues of each input attributezi over the candidate
training setDC.

(b) Initialize the cluster thresholdθ and the initial
number of clustersC.

(c) Initialize theC cluster reference vectors~ρ1; � � � ;~ρC. Each reference vector is initialized
randomly such that each elementρc;i of refer-
ence vector~ρc falls within the minimum and
maximum values of the corresponding input at-
tributes. That is,

ρc;i �U(zmin
i ;zmax

i ) (6)

2. For each patternp 2 DC

(a) Calculate the Euclidean distance

ε(p)
c =s I

∑
i=1

(z(p)
i �ρc;i)2 (7)

to each cluster reference vector~ρc.

(b) Find the closest clusterρc = minc=1;���;Cfε(p)
c g

and add patternp to clusterρc

(c) Adjust the reference vector~ρc of clusterρc:

ρc;i(t) = ρc;i(t �1)+η(z(p)
i �ρc;i(t �1)) (8)

for all i = i; � � � ; I, with η is the learning rate.

3. Test for convergence



(a) Calculate the varianceσ2
εc

in Euclidean distance
of eachp 2 ρc for each cluster.

(b) If σ2
εc
� θ for all c = 1; � � � ;C, the clustering al-

gorithm terminates.

(c) If σ2
εc
> θ for one of the clusters, then add an ad-

ditional cluster with a randomly generated refer-
ence vector, and goto step 2.

After execution of the clustering algorithm, the incre-
mental learning algorithm uses the SAILA approach to se-
lect at each subset selection interval the most informative
pattern from each cluster.

4 Experimental Results

This section compares the performance of SAILA and
CSAILA on two function approximation problems and two
time series. Comparisons of SAILA with standard fixed set
learning are given in [4]. The functions, defined below, are
summarized in table 1 together with the NN architecture
and parameters used.� Function F1:

F1 : f (z) = sin(2πz)e�z +ζ (9)

wherez 2U(�1;1), andζ � N(0;0:1). Output values
were scaled to the range[0;1℄.� Function F2:

F2 : f (z1;z2) = 1
2
(z2

1+ z2
2) (10)

where z1;z2 � U(�1;1), and all outputs are in the
range[0;1℄.� Time series TS1 (the Henon-map):

TS1 : ot = zt

zt = 1+0:3zt�2�1:4z2
t�1 (11)

wherez1;z2 � U(�1;1). The output valuesot were
scaled such thatot 2 [0;1℄.� Time series TS2:

T S2 : ot = zt

zt = 0:3zt�6�0:6zt�4+0:5zt�1+0:3z2
t�6�0:2z2

t�4+ζt (12)

where zt � U(�1;1) for t = 1; � � � ;10, and ζt �
N(0;0:05) is zero-mean noise sampled from a nor-
mal distribution. All output values were scaled to the
range[0;1℄.

This section compares the performance of CSAILA with
that of SAILA with reference to generalization, conver-
gence and complexity. For this purpose, 50 simulations
have been executed for each problem. One simulation con-
sists of a SAILA and CSAILA run, using the same data
sets, initial weights and training parameters.

The training error and generalization performance of the
training algorithms are compared in table 2. The second
and third columns respectively shows the average training
error ET and average generalization errorEG over the 50
simulations (these errors are reported as the MSE over the
respective data sets), together with a 95% confidence inter-
val. Both SAILA and CSAILA consistently showed better
performance than FSL. Furthermore, CSAILA performed
better than SAILA for functions F1 and F2 (with substan-
tial improvements for the latter two functions). For TS1,
CSAILA and SAILA achieved the same training accuracy,
but a much better generalization was achieved by CSAILA.
For TS2, FSL and CSAILA had approximately the same
training error, but FSL substantially overfitted with a bad
generalization. SAILA performed the best for TS2. How-
ever, even though CSAILA reached a higher training error
than SAILA, a generalization performance comparable to
that of SAILA has been reached.

The improvements in performance by CSAILA are at-
tributed to the larger set of informative patterns selected
for training. The most informative patterns as used by
CSAILA, span a wider area of input space compared to
that of SAILA.

The convergence characteristics of CSAILA and SAILA
are compared in figure 1, which plots the percentage of
simulations that did not reach specific generalization er-
rors. For all the problems studied in this paper, CSAILA
and SAILA exhibited consistently better convergence char-
acteristics than FSL. For all the functions, except for TS2,
CSAILA had more converged simulations than SAILA.
It is for low generalization levels of less than 0.004 that
CSAILA improved on SAILA for TS2.

The complexity of CSAILA and SAILA is directly re-
lated to the number of patterns selected from the candidate
training set. The less patterns selected, the less weight up-
dates need to be made. Even with the little added complex-
ity of the sensitivity analysis pattern selection approach(all
information used by the selection approach is already avail-
able from the training equations), substantial reductionsin
training set sizes resulted in large reductions in computa-
tional complexity. Table 3 summarizes for selected epochs
the percentage of the original candidate set that was used by
CSAILA and SAILA for training, in comparison with the
original size of the candidate training set (as given in the
last column). Table 3 shows that both CSAILA and SAILA
used substantially less patterns, therefor less pattern pre-
sentations. The second last column lists the percentage re-



Table 1: Summary of test functions and network parameters

Problem F1 F2 TS1 TS2
Training/Test/Validation 600/200/200 600/200/200 600/200/200 180/60/60
Set Sizes
Learning Rate 0.1 0.1 0.05 0.05
Momentum 0.9 0.9 0.9 0.9
Maximum Epochs 2000 2000 4000 1000
Architecture 1-10-1 2-5-1 2-5-1 10-10-1
Cluster Variance Threshold 0.01 0.05 0.01 0.01
Initial Clusters 3 3 3 3

Table 2: Error performance measures

Problem ET EG Ebest
G

F1: SAILA 0:013�0:019 0:012�0:015 0.001
CSAILA 0:0053�0:0065 0:0062�0:0043 0.0012

F2: SAILA 0:0034�0:01 0:0014�0:002 0.00036
CSAILA 0:00073�0:0004 0:00073�0:0004 0.00038

TS1: SAILA 0:00061�0:0002 0:00076�0:0004 0.00019
CSAILA 0:00068�0:0002 0:00053�0:0002 0.00026

TS2: SAILA 0:0047�0:009 0:0045�0:012 0.00026
CSAILA 0:0087�0:011 0:005�0:0079 0.00029

Table 3: Summary of training set sizes and total number of pattern presentations

DT After Epoch % Reduction in
Problem 50 200 600 1000 2000 Pattern Presentations PC

F1: SAILA 1.1% 2.5% 7.5% 12.8% 23.8% 83.8% 600
CSAILA 2.0% 8.5% 16.0% 21.0% 66.5% 58.7%

F2: SAILA 1.6% 5.0% 19.3% 34.5% 71.0% 53.3% 600
CSAILA 6.7% 10.8% 21.2% 27.7% 70.8% 53.9%

TS1: SAILA 1.3% 7.3% 26.7% 45.0% 85.5% 57.3% 600
CSAILA 7.0% 7.0% 16.7% 39.9% 69.0% 53.5%

TS2: SAILA 5.0% 16.1% 22.5% 97.2% - 49.5% 180
CSAILA 7.8% 25.0% 56.7% 80.0% - 41.2%



duction in the total number of pattern presentations (i.e. the
total number of backward propagations to update weights)
at the end of training, with reference to the total number
of pattern presentations if training would have been on all
patterns in the candidate training set. Both CSAILA and
SAILA resulted in large reductions in the total number of
pattern presentations. With the exception of function F1,
the two incremental learning algorithms had approximately
the same reductions. For F1, SAILA used much less pat-
terns than CSAILA, but with the disadvantage of having a
worse generalization performance (refer to table 2).

5 Conclusions

This paper presented an extension to the sensitivity analy-
sis approach to incremental learning introduced in [4]. In-
stead of just selecting the most informative pattern from the
candidate training set, the candidate set is clustered before
training, and the most informative pattern is selected from
each one of the clusters. In doing so, the neural network
uses more information about the most informative regions
of input space at each subset selection interval. The clus-
tering approach to incremental learning (CSAILA) consis-
tently showed better convergence results than the original
incremental learning algorithm (SAILA). CSAILA also re-
sulted in better generalization performance than SAILA.

Further research is necessary to investigate the influence
of the number of clusters on performance. The more clus-
ters there are, the more patterns are selected per subset se-
lection interval, but the more the increase in computational
complexity. Also, too many clusters approximate the per-
formance of standard fixed set learning (i.e. training on all
the patterns), while too few patterns approximate the per-
formance of SAILA.
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Figure 1: Percentage simulations that did not converge to generalization levels
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