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Abstract—In the real world, many applications are non-
stationary optimization problems. This requires that optimiza-
tion algorithms need to not only find the global optimal solution
but also track the trajectory of the changing global best solution
in a dynamic environment. To achieve this, this paper proposes
a clustering particle swarm optimizer (CPSO) for dynamic
optimization problems. The algorithm employs hierarchical
clustering method to track multiple peaks based on a nearest
neighbor search strategy. A fast local search method is also
proposed to find the near optimal solutions in a local promising
region in the search space. Six test problems generated from a
generalized dynamic benchmark generator (GDBG) are used to
test the performance of the proposed algorithm. The numerical
experimental results show the efficiency of the proposed algo-
rithm for locating and tracking multiple optima in dynamic
environments.

I. INTRODUCTION

Most research in evolutionary computation focuses on

static optimization problems. However, many real-world

problems are dynamic optimization problems (DOPs), where

changes occur over time. This requires optimization algo-

rithms to not only find the optimal solution in a short time

but also track the optimal solution in a dynamic environment.

Hence, optimization methods that are capable of continu-

ously adapting the solution to a changing environment are

needed. Particle swarm optimization (PSO) is a versatile

population-based stochastic optimization technique. Similar

to other evolutionary algorithms (EAs) in many respects,

PSO has been shown to perform well for many static

problems [17], and several PSO based algorithms have been

recently proposed to address DOPs [3], [15], [21].

It is difficult for the standard PSO to optimize DOPs. The

difficulties lie in two aspects: one is the outdated memory due

to the changing environment and the other is the diversity loss

due to convergence. Of these two difficulties, the diversity

loss is by far more serious [3]. It has been demonstrated

that the time taken for a partially converged swarm to re-

diversify, find the shifted peak, and then re-converge is quite

deleterious to the performance of PSO [1].

In standard PSO, the diversity loss is due to the attraction

of global best particle which attracts all the particles quickly

converging on local optima. However, the aim of dynamic

optimization is not only to track global optima but also

to find local optima. In order to detect local optima as

many as possible, it is important that how to guide particles

searching in different promising regions. The promising

local optima are those local optima that any one of them
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probably becomes the global best in next new environment,

so local best-fit particles are needed to guide the search in

local regions of the search space. However, the question is

how to determine which particles would be suitable as the

neighborhood best and how to assign particles in different

neighborhood to move toward different local region.

This paper proposes a clustering PSO (CPSO) that can

adaptively detect local regions and assign particles in differ-

ent neighborhoods. In CPSO, there are two search strategies:

global search and local search. For global search, the aim is

to cover promising local optima as many as possible. To

achieve it, we change the learning mechanism in standard

PSO that each particle learns information from its own

history best position and the history best position of its

nearest neighbor other than the global best one. This strategy

enables particles to detect the local search region around

themselves and assign them in different neighborhoods. By

using clustering method, the whole swarm can be adaptively

divided into a number of sub-swarms which cover different

local regions. The clustering method we used is single

linkage hierarchical clustering method. In order to accelerate

local search, a new learning strategy for the global best

particle is introduced in CPSO.

The rest of the paper is organized as follows: Section II

introduces the particle swarm optimization and some research

of multi-swarm techniques in dynamic environments. The

CPSO is present in section III. Section IV presents the

experimental study and discussions. Finally, conclusions are

given in section V.

II. RELEVANT WORK

A. Particle Swarm Optimization

Particle Swarm Optimization (PSO) was first introduced

by Kennedy and Eberhart in [9], [10]. PSO is motivated from

the social behavior of organisms, such as bird flocking and

fish schooling. In PSO, a swarm of particles “fly” through

the search space. Each particle follows the previous best

position found by its neighbor particles and the previous

best position found by itself. In the past decade, PSO has

been actively studied and applied for many academic and real

world problems with promising results due to its property of

fast convergence [18].

Ever since PSO was first introduced, several major ver-

sions of the PSO algorithms have been developed [18]. Each

particle is represented by a position and a velocity, which

are updated as follows:

V ′d

i = ωV d
i + η1r1(pbestdi −Xd

i )+η2r2(gbestd−Xd
i ) (1)

X ′d
i = Xd

i + V ′d
i , (2)
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where X ′d
i and Xd

i represent the current and previous posi-

tion of d−th dimension of particle i respectively, V ′

i and Vi

are the current and previous velocity of particle i respectively,

pbesti and gbest are the best position found by particle

i so far and the best position found by the whole swarm

so far respectively, ω ∈ (0, 1) is an inertia weight, which

determines how much the previous velocity is preserved, η1

and η2 are the acceleration constants, and r1 and r2 are

random numbers generated in the interval [0.0, 1.0].
From the theoretical analysis of the trajectory of a PSO

particle [8], the trajectory of a particle �Xi converges to

a weighted mean of �Pi and �Pg. Whenever the particle

converges, it will “fly” to the individual best position and the

global best position. According to the update equation, the

individual best position of the particle will gradually move

closer to the global best position. Therefore, all the particles

will converge onto the global best particle’s position.

There are two main models of the PSO algorithms, called

gbest (global best) and lbest (local best), which differs in

the way of defining the neighborhood of each particle. In

the gbest model, the neighborhood of a particle consists of

the particles in the whole swarm, which share information

between each other. On the contrary, in the lbest model,

the neighborhood of a particle is defined by several fixed

particles. The two models give different optimization perfor-

mances on different problems. Kennedy and Eberhart [12]

and Poli et al. [18] pointed out that the gbest model has

a faster convergence speed with a higher chance of getting

stuck in local optima than lbest. On the contrary, the lbest
model is less vulnerable to the attraction of local optima but

with a slower convergence speed than the gbest model.

B. Multiple Swarms

Many researchers have considered multi-populations as a

means of enhancing the diversity of EAs to address DOPs.

Branke et al. proposed a self organizing scouts (SOS) [5]

algorithm that has been shown to give excellent results

on the many peaks benchmark. Parrott and Li developed

a speciation based PSO (SPSO) [16], which dynamically

adjusts the number and size of swarms by constructing an

ordered list of particles, ranked according to their fitness,

with spatially close particles joining a particular species.

The atomic swarm approach has been adapted to track

multiple optima simultaneously with multiple swarms in

dynamic environments by Blackwell and Branke [2], [3]. In

their approach, a charged swarm is used for maintaining the

diversity of the swarm, and an exclusion principle ensures

that no more than one swarms surround a single peak. This

strategy is very efficient for the moving peaks benchmark

(MPB) function [4].

Kennedy [11] proposed a PSO that uses a k-means cluster-

ing algorithm to identify the centers of different clusters of

particles in the population, and then use these cluster centers

to substitute the personal bests or neighborhood bests. Brits

et al. [6] proposed a nbest PSO algorithm which defines

the “neighborhood” of a particle as its closest particles in

the population. The neighborhood best for each particle

is defined as the average of the positions of its closest

particles. In [7], a niching PSO (NichePSO) was proposed by

incorporating a cognitive only PSO model and the guaranteed

convergence PSO (GCPSO) [19] algorithm.

III. CLUSTERING PARTICLE SWARM OPTIMIZATION

The traditional method of using the multi-population

method to track optima for multi-modal functions is to divide

the whole search space into local subspaces which might

be covered by one or a small number of local optima, then

separately search on these subspaces. However, the difficulty

is how to guide particles to move toward different promising

sub-regions and how to define the area of each sub-region

as well as how many sub-populations are needed. The first

question requires that an algorithm should have a good global

search capability to explore promising sub-regions. For the

second question, if the area of sub-region is too small, there

is a potential problem that the small isolated sub-populations

may converge on a local optimum. In this case, the diversity

will lose and the algorithm can hardly make any progress.

However, if a sub-region is too large, there will be more

than one peaks within the sub-region of a sub-swarm. It is

very hard to know what shape a sub-region is, so particles

within the neighborhood should calculate the sub-area by

themselves. For the third problem, if too many sub-swarms

distribute in the fitness landscape, it may waste the limited

computation resources. On the contrast, if there are too small

number of sub-swarms, the algorithm can not efficiently track

local optima.

To overcome the above problems when using the multi-

population method, CPSO employs a global search method

to detect promising sub-regions and a hierarchical clustering

method to generate a proper number of sub-swarms.

A. Global Search Strategy

The population topology can greatly affect PSO’s perfor-

mance. Most PSO algorithms use a fixed population topology

that particles learn information from some fixed neighbors.

One fixed topology may be not suitable for all situations, so

a dynamic topology is needed. The neighborhood size of a

particle is another factor that can affect PSO’s performance.

In CPSO, the neighborhood of each particle has only

one particle that is the closest to it. Learning from the

nearest neighbor enables a particle to explore the region of

local optima around itself. Particles that are nearby a local

optimum will get closer and closer to that region because

the pbest is replaced only when a better position is found.

Gradually, they will generate a local cluster around that local

optimum. Particles in one local cluster are not influenced

by those far away (other local clusters) even they have a

very good fitness. This strategy can help swarm find more

local optima rather than one optimum that can be usually

achieved by the standard PSO, especially for multi-modal

problems. The velocity update equation for the global search

is as follows:

V d
i = ωV d

i +η1r
d
i (pbestdi−Xd

i )+η2·rd
i ·(pbestdi nearest−Xd

i )
(3)
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where pbesti nearest is the pbest of the closest particle to

particle i.
Though the neighborhood of a particle has only one parti-

cle, this can help PSO find as many promising local regions

as possible. If the neighborhood size is greater than one,

there may be more than one peaks within the neighborhood.

However, all the particles within the neighborhood only learn

from the best one and hence, finally they will cover only one

peak. So, the tracking information of other peaks is lost. On

the other hand, though the neighbor of a particle is the nearest

particle to itself, it is not fixed during the search process. The

neighbor may change over generation to generation.

B. Hierarchical Clustering Method

Some researchers have used the k-mean clustering method

to generate sub-swarms, the problem of the k-mean method

is that we do not know the optimum value of k for the current

population. Too large or too small k will cause the problem

of an improper number of sub-swarms, discussed above. In

CPSO, the single-linkage hierarchical clustering method is

used to solve this problem.

Before carrying out the clustering operation, the global

search method runs for several generations. When the whole

population are well distributed in different sub-regions, the

clustering operation is carried out. Two clustering methods

are proposed in CPSO: rough clustering and refining clus-

tering. For both clustering methods, we define the distance

d(i, j) between two particles i and j in the n-dimension

space as the Euclidean distance as follows:

d(i, j) =

√
√
√
√

n∑

d=1

(xd
i − xd

j )
2 (4)

The radius for each sub-swarm (cluster) is defined as follows:

r =
m∑

i=1

d(i, center)/m (5)

where center is the center position of the sub-swarm, m is

the population size of the sub-swarm. The distance of two

clusters is the distance of two closest particles of the two

clusters.

The goal of the rough clustering method is to generate tem-

porary sub-swarms. Each temporary sub-swarm may cover

several peaks, so further refining clustering is needed to

get more accurate sub-swarms so that each of them covers

no more than one peaks. The differences between rough

clustering and refining clustering are the stop and merging

criteria.

For the rough clustering method, two cluster lists are used

to save the clustering results of two successive generations

respectively. If two clusters from the two cluster lists respec-

tively are the same (i.e., they have the same particles), then

a temporary sub-swarm that is composed of these particles

is generated.

For rough clustering, if the following condition is true,

then stop the rough clustering operation.

• Stop clutering if the number of particles of all clusters

is greater than 1.

Once temporary sub-swarms are produced during the

rough clustering method, they are allowed for evolution

for num ref generations using the global search method.

Then, the refining clustering operation is carried out on these

temporary sub-swarms to obtain the final sub-swarms. For

refining clustering, there are three cases for merging two

clusters:

Case 1: The number of particles of the two clusters are

both greater than 1. In this case, merge them only

if the half distance of the two clusters is less than

the radius of the cluster with a larger radius.

Case 2:The number of particles of one of the two clusters

is equal to 1, the other is greater than 1. In this

case, merge them only if the half distance of them

is less than the radius of the cluster with particles

greater than 1.

Case 3: The number of particles of the two clusters are

both equal to 1. If there are no other clusters with

more than 1 particles, merge these two clusters.

Otherwise, merge the two clusters only if c times

the distance between them is less than the radius of

the cluster whose radius is the largest in all clusters.

Here, the constant c is a random number between

[1.5, 2.0].

If the three cases above are not satisfied, then stop clustering.

C. Local Search Strategy

In original PSO, the gbest is updated only when particles

find a much better position than the gbest, once it is

updated, the information of all dimensions of the gbest is

replaced with the better one. This updating mechanism has a

disadvantage that promising information of some dimensions

of one particle couldn’t be kept due to bad information in

other dimensions that cause its low fitness. This problem is

called ”Two step forward, one step back” in [20].If a particle

gets better, information of some dimension probably becomes

more promising. Other particles should learn some useful

information from the improved one even the particle’s fitness

is very low. In CPSO, the gbest learns the useful informa-

tion from those dimensions of a particle that is improved,

once promising information is extract from those improved

dimensions of that particle, the information of corresponding

dimensions of the gbest is updated. The updating happens

only when particles are improved, which in the following

method:

The learning method is time comsuming, we can not make

all particles using this strategy, so we choose the gbest as the

learner for each sub-swarm. Experimental study shows that

this strategy makes the convergence speed very fast, which

is favorable for dynamic environment.

In local search method, the standard PSO is used with

a linear decreasing inertia weight, the framework of local

search is described as:
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Algorithm 1 GbestUpdate(particle p, fes)

1: for each dimension d of gbest do

2: �Xt gbest := �Xgbest

3: Xt gbest[d] := Xp[d]
4: if t gbest is better than gbest then

5: Xgbest[d] := Xt gbest[d]
6: end if

7: fes++

8: end for

Algorithm 2 LocalSearch(fes)

1: for each particle i do

2: Update the velocity and position according to Eqs. (1)

and (2)

3: fes++;

4: if particle i is better than it’s pbest then

5: Update pbesti
6: Perform GbestUpdate(i,fes) for gbest
7: if particle i is better than gbest then

8: Update gbest
9: end if

10: end if

11: end for

D. Framework of Clustering PSO

CPSO starts from an initial swarm named cradle swarm.

The global search method is operated on the cradle swarm

for num rgh generations. Then, the rough clustering method

is carry out to produce temporary sub-swarms till the cradle

swarm is empty. For each temporary sub-swarm, we still

use the global search method for num ref generations.

When the number of generations of a temporary sub-swarm

is greater than num ref , the refining clustering operation

is carried out to produce final sub-swarms till all temporary

sub-swarms finish the refining clustering operation, then local

search method is performed on all final temp sub-swarms.

Traditionally, overlapping search between two sub-swarms

can be checked by comparing the distance of the best

particles of the two sub-swarms, if the distance is less than

their search radius, then combine or remove one of them. The

above checking mechanism assumes that each sub-swarm

just cover one peak. However, it is not true for real PSOs.

If any one of those sub-swarms in that single local region

covers more than one peaks, those swarms are within their

search area shouldn’t combine together or remove some of

them. In CPSO, if two sub-swarms are within each other

search area, a overlapping ratio is calculated, the ratio is the

percentages of particles of one sub-swarm which are within

another sub-swarm’s search radius. The two sub-swarms are

combined only both overlapping ratio are greater than a

constant value of 0.7.

In dynamic optimization, the best solutions found in the

current environment may be useful in the next environment.

In CPSO, a converge list conver lst is used to record the

best particles found in the current environment. If the radius

of one sub-swarm is less than a small value σ = 0.0001, the

sub-swarm is regarded to be converged on a local optimum.

If a sub-swarm converges, the gbest of it is added into

conver lst. Once an environment change is detected, the

particles are added into the new cradle swarm.

The following is the framework of CPSO:

Algorithm 3 The CPSO Algorithm

1: Create two empty cluster lists cur clst and pre clst to

store clusters of cradle swarm for current generation and

previous generation.

2: Create one empty converge list conver lst to record the

best particles of converged sub-swarms

3: Set fitness evaluation counter fes := 0
4: Generate an initial cradle swarm

5: while fes < Total Fes do

6: Perform cradle.global search(fes)
7: if cradle.popsize > 1 and cradle.generations >

num rgh then

8: pre clst := cur clst
9: cur clst := Rough clustering(cradle)

10: end if

11: if same clusters exist in cur clst and pre clst then

12: Produce temporary sub-swarms corresponding to

those clusters and remove involved particles from

the cradle swarm

13: Evolve temporary sub-swarms using the global

search method

14: end if

15: if the number of temporary sub-swarms > 1 then

16: for Each temporary sub-swarm[i] do

17: if sub-swarm[i].generations > num ref then

18: Perform Refining clustering( sub-swarm[i])
19: Remove temporary sub-swarm[i]
20: end if

21: end for

22: end if

23: for Each final sub-swarm i do

24: Perform sub-swarm[i].local search(fes)
25: end for

26: if there is overlapping among sub-swarms then

27: Merge the overlapped sub-swarms

28: end if

29: Check convergence of sub-swarms, add the best parti-

cles of converged swarms into conver lst and remove

them

30: if an environment change is detected then

31: Save the best particles of all sub-swarms into

conver lst, and remove all sub-swarms

32: Generate a new cradle swarm, then add the particles

of conver lst into the cradle swarm and empty

conver lst
33: end if

34: end while
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IV. EXPERIMENTAL STUDY

A. Test problems

The performance of CPSO is tested on six problems gen-

erated by the benchmark GDBG proposed by Li et al.[13],

[14]. There are seven change types of the system control

parameters in the GDBG system. They are small step change,

large step change, random change, chaotic change, recurrent

change, recurrent change with noise and dimensional change.

The framework of the seven change types are described as

follows:

Framework of DynamicChanges:

switch(change type)

case small step:

Δφ = α · ‖φ‖ · r · φseverity (6-1)

case large step:

Δφ = ‖φ‖·(α ·sign(r)+(αmax −α) ·r) ·φseverity

(6-2)

case random:

Δφ = N(0, 1) · φseverity (6-3)

case chaotic:

φ(t+1) = A·(φ(t)−φmin)·(1−(φ(t)−φmin)/‖φ‖)
(6-4)

case recurrent:

φ(t+1) = φmin +‖φ‖(sin(
2π

P
t+ϕ)+1)/2 (6-5)

case recurrent with noisy:

φ(t + 1) = φmin + ‖φ‖(sin(2π
P

t + ϕ) + 1)/2+
N(0, 1) · noisyseverity

(6-6)

case dimensional change:

D(t + 1) = D(t) + sign · ΔD (6-7)

where ‖φ‖ is the change range of φ, φseverity is a con-

stant number that indicates change severity of φ, φmin is

the minimum value of φ, noisyseverity ∈ (0, 1) is noisy

severity in recurrent with noisy change. α ∈ (0, 1) and

αmax ∈ (0, 1) are constant values, which are set to 0.04 and

0.1 in the GDBG system. A logistics function is used in the

chaotic change type, where A is a positive constant between

(1.0, 4.0), if φ is a vector, the initial values of the items in

φ should be different within ‖φ‖ in chaotic change. P is the

period of recurrent change and recurrent change with noise, ϕ
is the initial phase, r is a random number in (−1, 1), sign(x)
returns 1 when x is greater than 0, returns −1 when x is

less than 0, otherwise, returns 0. N(0, 1) denotes a normally

distributed one dimensional random number with mean zero

and standard deviation one. ΔD is a predefined constant,

which is defaulted to 1. If D(t) = Max D, sign = −1; if

D(t) = Min D, sign = 1. Max D and Min D are the

maximum and minimum number of dimensions.

The six test problems defined in [14] are: F1 Rotation

peak function, F2 Composition of Sphere’s function,F3

Composition of Rastrigin’s function, F4 Composition of

Griewank’s function, F5 Composition of Ackley’s function

and F6 Hybrid Composition function.The parameters of the

six problems are set as the same as in [14].

B. Performance Evaluation

There are total 49 test cases for the six test problems, for

each test case, the average best, average mean, average worst

values and STD are recorded, which are defined as in [14]:

Avg best =
∑runs

i=1 Minnum change
j=1 Elast

i,j (t)/runs

Avg mean =
∑runs

i=1

∑num change

j=1 Elast
i,j (t)/

(runs ∗ num change)

Avg worst =
∑runs

i=1 Maxnum change
j=1 Elast

i,j (t)/runs

STD =

√
P

runs
i=1

Pnum change

j=1
(Elast

i,j
(t)−Avg mean)2

runs∗num change−1

where Elast(t) = |f(xbest(t)) − f(x∗(t))| and x∗(t) is the

global optimum at time t.
For the total 49 test cases, the overall performance of

CPSO is calculated according to the method proposed in [14].

C. Parameters Setting

In the paper, the performance of CPSO is compared with

the standard PSO (SPSO) and a simple genetic algorithm

(SGA). Both SPSO and SGA use the restart with elitism

scheme. That is, when an environment change is detected,

the population is re-initialized and the best individual in the

previous generation is replaced into the restarted population.

For each test case, all the three algorithms were run 20 times.

In CPSO, the population size is set to 20 ∗ n, where n is

the number of dimensions. For problem F1, num rgh and

num ref are set to 5 and 3 respectively. For F2-F6, they

are set to 7 and 4. The acceleration constants η1 and η2 are

both set to 1.7, the inertia weight ω linearly decreases from

0.6 in the first generation to 0.3 in the last generation for

sub-swarm[i] as follows:

ω = ωmax − (ωmax − ωmin)sub swarm[i].iters

sub swarm[i].iters + left iters
(7)

where left iters = (Total Fes − fes)/c particles,

c particles is the current number of total particles in all

sub-swarms and cradle swarm. ωmax = 0.6, ωmin = 0.3.

For SPSO, the acceleration constants η1 and η2 are both

set to 1.49618 and the inertia weight ω = 0.729844.

The population size of SPSO and SGA are both 100. The

crossover and mutation probabilities are set to 0.8 and 0.02

respectively in SGA.

D. Results and Discussions

Table I-Table VII present the results of the average best,

average mean, average worst values and the standard variance

(STD) of each test case of CPSO, SGA, and SPSO. Ta-

ble IV-D shows the performance of CPSO, SGA, and SPSO

on each test case.
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TABLE I
ERROR VALUES ACHIEVED FOR PROBLEMS F1 ON 10 PEAKS

Errors T1 T2 T3 T4 T5 T6 T7

CPSO Avg best 1.054e-7 5.214e-8 4.306e-8 9.721e-7 2.561e-7 4.325e-6 5.036e-9
Avg worst 1.244 27.12 28.15 3.239 21.72 26.55 35.52
Avg mean 0.03514 2.718 4.131 0.09444 1.869 1.056 4.54
STD 0.4262 6.523 8.994 0.7855 4.491 4.805 9.119

SGA Avg best 4.01e-5 4.295e-5 5.543e-5 0.0001799 0.0001004 0.0002894 6.234e-6
Avg worst 43.2 52.08 45.47 75.39 40.23 80.31 42.76
Avg mean 5.609 10.08 13.13 21.22 7.899 29.25 12.45
STD 9.349 13.22 13.87 21.88 9.406 25.68 14.6

SPSO Avg best 0 0 0 0 0 0 0
Avg worst 31 48.23 43.28 72.77 35.77 78.92 46.77
Avg mean 5.669 10.24 11.73 21.89 6.731 32.01 12.8
STD 7.729 12.62 13.59 20.15 8.75 25.63 14.04

TABLE II
ERROR VALUES ACHIEVED FOR PROBLEMS F1 ON 50 PEAKS

Errors T1 T2 T3 T4 T5 T6 T7

CPSO Avg best 2.447e-6 2.061e-7 9.888e-7 4.353e-6 2.121e-6 9.033e-5 4.169e-6
Avg worst 4.922 22.08 25.65 1.974 9.606 22.08 27.9
Avg mean 0.2624 3.279 6.319 0.125 0.8481 1.482 6.646
STD 0.9362 5.303 7.442 0.3859 1.779 4.393 7.94

SGA Avg best 0.000143 0.0001435 0.0002528 0.0004217 0.0005458 0.001029 0.0001081
Avg worst 40.16 44.75 47.84 70.65 28.03 78.24 44.34
Avg mean 7.614 11.3 15.24 17.93 5.293 34.93 15.68
STD 9.754 11.26 13.04 19.04 6.186 26.54 12.42

SPSO Avg best 0 0 0.0001245 0 0.000989 7.791e-013 0
Avg worst 33.32 46.08 45.33 69.84 28.23 78.32 44.03
Avg mean 7.95 12.29 14.89 20.96 5.426 36.27 15.94
STD 8.162 11.55 12.5 19.02 6.348 26.24 12.02

TABLE III
ERROR VALUES ACHIEVED FOR PROBLEMS F2

Errors T1 T2 T3 T4 T5 T6 T7

CPSO Avg best 9.377e-05 7.423e-05 4.651e-05 1.121e-05 7.792e-05 0.0001087 2.978e-07
Avg worst 19.26 144.1 158.3 10.18 320.7 26.08 30.44
Avg mean 1.247 10.1 10.27 0.5664 25.14 1.987 3.651
STD 4.178 35.06 33.45 2.137 64.25 5.217 6.927

SGA Avg best 0.001909 0.003022 0.005739 0.002071 0.009138 0.003432 0.002784
Avg worst 150.5 565.5 543.6 124.8 511 289.4 460.5
Avg mean 33.05 182.9 128.5 32.85 191.7 43.25 40.59
STD 53.75 218.9 188.7 35.12 200.6 69.84 86.74

SPSO Avg best 1.016e-013 0 4.334e-014 7.523e-014 0 0 0
Avg worst 272.3 561 539.4 279.3 515.6 541.6 469.9
Avg mean 45.79 186.9 135.8 53.57 186.5 73.34 61.13
STD 59.34 212.7 185.4 60.58 198.1 99.96 99.49

From the results, it can be seen that CPSO performs much

better than the other two algorithms on most test cases over

all change types except on F3. For F3, the results of CPSO

are worse than that of SGA except with the small change

type. SGA may benifit from its better diversity than CPSO.

The interesting thing is that the average best result of SGA

on F3 with recurrent change is better than CPSO, but the

SGA’s score obtained in this case is much less than CPSO.

This shows that CPSO converges faster than SGA due to its

local search method.

By observing the results, it can be seen that the challenge

of different change types is quite different. The small step

change is the easiest for algorithms on most test cases. The

large step and chaotic change bring in the biggest challenge

on most test cases. The dimensional change is also difficult

to optimize for algorithms.

The results show that different problems have a different

difficulty for algorithms. Because of F1’s smooth fitness

landscape, F1 is the simplest one to optimize. The compo-

sition problems are difficult for algorithms to get the global

optima. F3 is the most difficult one among all the test

problems.

V. CONCLUSIONS

The paper proposes a clustering particle swarm optimiza-

tion (CPSO) algorithm for dynamic optimization problems.

CPSO employs a hierarchical clustering method to track

multiple peaks based on a nearest neighbor global search

strategy. A new learning mechanism of the global best

particle is introduced to find the near optimal solutions in
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TABLE IV
ERROR VALUES ACHIEVED FOR PROBLEMS F3

Errors T1 T2 T3 T4 T5 T6 T7

CPSO Avg best 0.003947 126.2 42.89 7.909e-005 228.5 4.356 0.9334
Avg worst 711.2 1008 966.1 1204 974.2 1424 1011
Avg mean 137.5 855.1 765.9 430.6 859.7 753 653.7
STD 221.6 161 235.8 432.2 121.5 361.7 334

SGA Avg best 0.009432 0.3146 2.045 0.5873 36.15 0.075 0.01136
Avg worst 786.1 1036 991.7 1286 970.5 1380 1006
Avg mean 158.1 638.7 573.9 419.5 741.9 491.7 499.5
STD 264.5 399.6 399.8 444.2 278.8 464.3 399.8

SPSO Avg best 1.427 211.4 20.9 3.82 13.59 3.782 2.481
Avg worst 864.1 1068 1024 1396 990.2 1509 1071
Avg mean 553.6 900.8 827.1 709 829.1 803.5 715.4
STD 298.1 148.8 212.6 385.8 186.7 375 334.9

TABLE V
ERROR VALUES ACHIEVED FOR PROBLEMS F4

Errors T1 T2 T3 T4 T5 T6 T7

CPSO Avg best 6.36e-005 0.0001868 0.000103 9.346e-006 0.000407 8.616e-005 3.31e-006
Avg worst 29.38 459.8 389.4 14.62 481 63.06 93.32
Avg mean 2.677 37.15 36.67 0.7926 67.17 4.881 7.792
STD 7.055 99.43 97.18 2.775 130.3 15.39 19.21

SGA Avg best 0.002697 0.003439 0.007537 0.001855 0.04842 0.003322 0.007408
Avg worst 296.5 643.3 624.3 376.2 590.9 595.3 616.9
Avg mean 45.92 272.9 230.1 52.76 335.5 57.38 93.45
STD 80.15 270.7 251.2 96.98 223.7 116.6 173.7

SPSO Avg best 0 0 0 0.3056 0 0 0
Avg worst 376.3 656.1 612.9 460.3 576.1 684.4 601.1
Avg mean 55.05 289.7 223.6 73.85 285 98.15 92.21
STD 92.64 263 245.1 104.8 228.1 148.4 150.4

TABLE VI
ERROR VALUES ACHIEVED FOR PROBLEMS F5

Errors T1 T2 T3 T4 T5 T6 T7

CPSO Avg best 0.0001584 0.0003224 0.0003337 4.85e-006 0.0001377 0.0002077 2.052e-006
Avg worst 25.41 31.76 27.77 26.66 63.2 42.54 103.2
Avg mean 1.855 2.879 3.403 1.095 7.986 4.053 6.527
STD 5.181 6.787 6.448 4.865 13.81 8.371 22.8

SGA Avg best 0.006832 0.007609 0.00571 0.003871 0.008463 0.005129 0.005733
Avg worst 80.54 82.92 75.17 89.64 64.14 89.61 78
Avg mean 27.99 29.57 25.4 33.96 24.42 31.77 23.19
STD 24.23 25.31 21.92 30.98 19.39 30.97 20.76

SGA Avg best 5.857e-007 0 0 0 0 0 0
Avg worst 554.7 500.4 360.5 740 94.04 945 869.7
Avg mean 62.22 58.85 44.51 91.95 29.03 116.9 73.06
STD 104 99.23 67.86 149.7 22.24 193.1 152.7

a local promising region. Six test problems are used to test

the performance of the proposed algorithm. The numerical

experimental results show CPSO’s good performance on

these test problems.

Though the clustering method is effective to generate sub-

swarms, it is still difficult to get the accurate sub-swarms,

particularly for the situation that only one particle covers a

single peak. More work should be done to solve this problem.
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