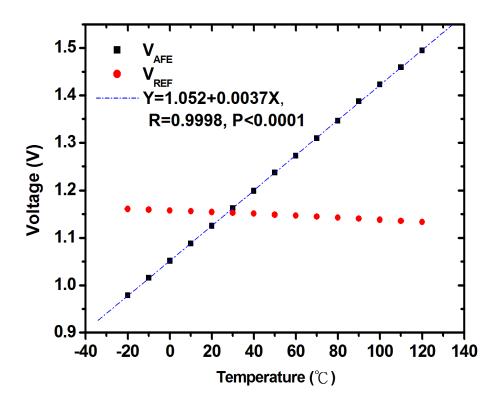
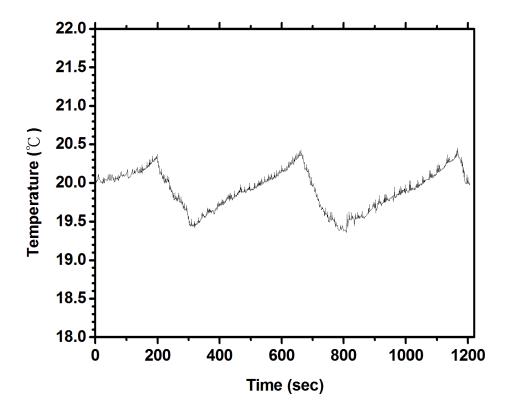
## A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology

Che-Wei Huang<sup>a</sup>, Yu-Jie Huang<sup>a</sup>, Pei-Wen Yen<sup>b</sup>, Hann-Huei Tsai<sup>c</sup>, Hsin-Hao Liao<sup>c</sup>, Ying-Zong Juang<sup>c</sup>, Shey-Shi Lu<sup>a</sup>, and Chih-Ting Lin<sup>a,b,d\*</sup>

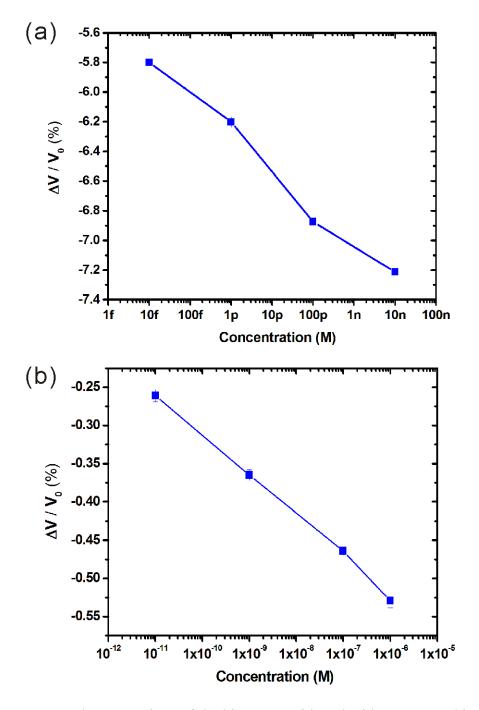
<sup>a</sup>Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan


<sup>b</sup>Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan

<sup>c</sup> National Chip Implementation Center, National Applied Research laboratories, Hsinchu 30075, Taiwan


<sup>d</sup> Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan. Fax: +886 2 2368 1679; Tel: +886

2 3366 9603; E-mail: timlin@cc.ee.ntu.edu.tw


## **Supplementary Figures**



**Figure S1.** A temperature calibration curve of the on-chip temperature sensor in the developed bio-SSoC.  $V_{AFE}$  represents the readout voltage of the temperature sensor after amplified by AFE.  $V_{REF}$  represents the referenced bias voltage on the chip. While temperature varies from -20°C to 120°C, the  $V_{REF}$  changes within 0.02 V. This also shows the temperature stability of the designed circuits.



**Figure S2.** An experimental measurement of the on-chip temperature sensor for 20 minutes. This result was measured during a HBV DNA detection was operated. In other words, the temperature varied within  $1^{\circ}$ C in HBV DNA detection experiments.



**Figure S3.** The comparison of the bio-SSoC with and without post-etching process. (a) The experimental data of the bio-SSoC with post-etching process. (b) the experimental data of the bio-SsoC without post-etching process. It is clear that the LOD of post-etched SSoC (10fM) is lower than that of no-etched SSoC (10pM). In addition, the sensitivity of post-etched SSoC (0.23% per decay) is also better than that of no-etched SSoC (0.051% per decay).