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ABSTRACT Deep learning has been applied in physical-layer communications systems in recent years and

has demonstrated fascinating results that were comparable or even better than human expert systems. In this

paper, a novel convolutional neural networks (CNNs)-based autoencoder communication system is proposed,

which can work intelligently with arbitrary block length, can support different throughput and can operate

under AWGN and Rayleigh fading channels as well as deviations from AWGN environments. The proposed

generalized communication system is comprised of carefully designed convolutional neural layers and,

hence, inherits CNN’s breakthrough characteristics, such as generalization, feature learning, classification,

and fast training convergence. On the other hand, the end-to-end architecture jointly performs the tasks of

encoding/decoding and modulation/demodulation. Finally, we provide the numerous simulation results of

the learned system in order to illustrate its generalization capability under various system conditions.

INDEX TERMS Convolutional neural network, end-to-end learning, autoencoder, communication systems.

I. INTRODUCTION

A. MOTIVATION

The fundamental problem of communication is that of finding

a representation of amessage, which is resilient to the channel

impairments, so that it can be recovered perfectly at the other

end. In order to meet this challenge, transmitter and receiver

are divided into subtasks, such as, source coding, channel

coding, modulation and equalization. This design method [1]

has the advantage that each component can be optimized

separately, leading to the reliable modular communication

system as of today.

Deep Learning (DL) is one of the latest trends in the field

of machine learning and artificial intelligence. DL methods

have already brought revolutionary advances in computer

vision and natural language processing [2]. In the area of

communications, DL has been used in modulation [3], chan-

nel estimation [4]–[6], signal detection [7], [8], modulation

recognition [9], [10], and channel decoding [11]. DL can also

be applied to non-orthogonal multiple access schemes [12],

which are essential for 5G wireless communication systems.

Especially, DL based communication systems [13] are capa-

ble optimizing all the components of transceivers jointly
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using the concepts of autoencoders. In the pioneer work

of [13], the communication system design was treated as an

end-to-end reconstruction optimization task that sought to

jointly optimize transmitter and receiver components, so that

encoding and decoding were facilitated by learned weights

of neural networks, rather than specially designed expert

codes. In [14], convolutional neural layers [15] were used as

the building blocks of the autoencoder-based communication

systems, which has no restriction on the length of the input

bit sequence. However, the performance of [14] suffered

from an error floor in the high SNR regime. Furthermore,

the Convolutional Neural Networks (CNNs) in [14] were

designed from a machine learning perspective, which lacked

of communication engineering insights, hence the network’s

generalization ability was limited.

Motivated by the desire of deep integration of the expertise

of communications and the breakthrough abilities of CNNs,

in this paper, we propose a novel CNN based autoencoder

communication system, which can generalize to arbitrary

block length, various throughput, different channel usage

and environments. The proposed architecture can be trained

easily and converge quickly at a specific SNR point, while

working properly on the whole SNR range. The vision is that

communication algorithms will be represented by learned

weights of neural networks optimized using end-to-end
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loss functions. The resultant intelligent communication sys-

tems shall work optimally under any communication require-

ments, i.e., cellular systems and underwater communications.

B. PREVIOUS WORK

Broadly speaking, there are two approaches to apply DL in

the physical layer of communication systems. Namely, to use

DL to replace a certain block of communication systems,

or to treat the communication system design as an end-to-end

autoencoder. In the former path, most notably, in [16]–[18],

Recurrent Neural Network (RNNs) were employed at the

receiver to decode channel-coded information bits, such as,

convolutional codes, Turbo codes, and Polar codes. RNNs’

ability to extract information from long sequence [17], [18]

proved that neural networks can master the intricate structure

of human designed codes with limited training data, while

tolerating channel turbulence.

On the other hand, the concept of interpreting a commu-

nication system as an autoencoder was originated in [19].

The authors demonstrated that it was possible to jointly

optimize transmitter and receiver components under a single

neural network framework. The simple yet powerful autoen-

coder system [19] evolved further in [13] with the help

of radio transformer networks [20] as a means to combine

expert domain knowledge in a DL model. Reference [24]

demonstrated that the end-to-end neural network schemes

can be implemented on a hardware system. Moreover, [21]

extended the original autoencoder system to Multiple Input

Multiple Output (MIMO) communication systems and trans-

mission throughput can be improved as shown in [22].

Furthermore, authors in [23] proposed a deep learning-

enabled millimeter wave massive MIMO framework for

effective hybrid precoding. Besides autoencoder system’s

appealing concept. However, training such a system over

actual wireless channels becomes problematic, when the

actual channel’s gradients are missing. In order to tackle

this issue, authors in [25] proposed an algorithm to iterate

between supervised training of the receiver and Reinforce-

ment Learning (RL) based training of the transmitter. Also,

a number of adversarial approaches for channel response

approximation and information encoding were presented

in [26]–[28]. These adversarial schemes considered the actual

channel as a black-box and used the structure of Generative

Adversarial Networks (GANs) [29] to capture the analytic

representation.

C. CONTRIBUTIONS

Inspired by autoencoder system’s promising representation

and classification capabilities, in this paper, we propose

a novel CNN-based Autoencoder (CNN-AE) communi-

cation system, which builds on top of CNN’s architec-

ture, while integrating communication engineering expertise.

More specifically, the contributions are summarized as

follows.

1) The carefully designed CNN layers allow the learned

network to have generalization capability while

FIGURE 1. Illustration of a simple communications system.

achieving optimal Block Error Rate (BLER) perfor-

mance, i.e., Pr(
⌢
s 6= s), namely support any input bit

length, work with flexible data rate, suitable for AWGN

and Rayleigh as well as non-AWGN channels.

2) The proposed end-to-end learning system can be

trained at a specific Eb/N0, while working across the

whole range. Also, the proposed CNN-AE system can

converge quickly with a small number of epochs.

3) We also propose a differential coding version of the

CNN-based autoencoder system, where no Channel

State Information (CSI) at the receiver is required.

4) The CNN architecture is designed from a communica-

tion engineering perspective, hence theoretical expla-

nation of the network structure and the resultant

simulation results become possible.

The rests of the paper are organized as follows: Section II

introduces the system architecture and settings, while

Section III shows the proposed system’s performance under

AWGN and flat Rayleigh fading channels. Next, the pro-

posed network’s adaptivity is further examined in Section IV.

Finally, conclusions are drawn in Section V.

II. END-TO-END LEARNING OF COMMUNICATION

SYSTEMS

A. SYSTEM ARCHITECTURE

A simple communications system consisting of a transmitter,

a channel and a receiver, as shown in Fig.1 [19].

The transmitter selects a symbol s, containing k information

bits, to communicate to the receiver over a channel. More

explicitly, the transmitter’s job is to apply a transformation to

the symbol s so that the generated transmitted signal x ∈ C
n

of Fig. 1 occupies n channel time slots. The transmit vector

x ∈ C
n is subjected to power constraints, e.g.,‖x‖2 ≤ n.

At the receiver side, a noisy and possibly distorted version

y ∈ C
n of x can be observed. Hence, the task of the receiver is

to produce the estimate
⌢
s of the original symbol s as closely

as possible. Therefore, the code rate of the system is R =

k/n(bits/channel use).

Based on the architecture of Fig 1, we propose a

CNN-based autoencoder learning system, as shown in Fig. 2,

where the transmitter and the receiver are comprised of CNN

layers, which are jointly optimized.

More specifically, the transmitter of Fig.2 consists of three

1-Dimensional Convolutional (Conv1D) layers followed by

a power normalization layer that ensures that power con-

straints on the transmitted signal X are met. Although more

Conv1D layers could potentially increase the representation

and classification power of the neural network, deep net-

works also lead to gradient exploding and more parameters
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FIGURE 2. Represent a self-learning communication system as an
autoencoder. The trainable layers are written in red, non-trainable layers
are written in black.

TABLE 1. Autoencoder structure of fig. 2 (note: each Conv1D layer is
followed by a batch normalization layer before activation).

to train. In our work, three layers were found to be adequate to

achieve the best possible BLER performance without losing

any learning ability.

Furthermore, the Conv1D layers allow the transmitter to

process a sequence of symbols S, rather than one symbol at

a time as that of Fig. 1. Hence, a total number of k × L bits

can be handled simultaneously, where k is the number of bits

per symbol and L is the number of symbols (block length).

Furthermore, each symbol of input sequence S is converted

to a one-hot vector, which means the proposed system is

aiming for minimizing BLER. The detailed parameters of

the proposed CNN-based learning system are summarized

in Table 1.

From the channel coding perspective, the Conv1D layers

at the transmitter of Fig.2 facilitate linear/non-linear block

encoding of the input symbol sequence, where convolu-

tional operations enable linear coding and Exponential Linear

Unit (ELU) activation functions of Table 1 enable potential

non-linear coding. Frommodulation perspective, the Conv1D

layers at the transmitter of Fig.2 transform the one-hot input

symbol sequence to a new signal representation X= f (S),

which occupies n channel use. In other words, signal constel-

lation points are designed in 2n-dimensional space. The idea

is similar to Sphere Packing modulation [30], but the Conv1D

layers can jointly optimize for higher 2n-dimensional space.

In the eyes of deep learning, each Conv1D layer has d =

256 filters as shown in Table 1, which allows mapping each

one-hot vector from 2k -dimensional space to 256-dimension

space and search for the most suitable representation of the

input symbol under a given communication channel so that

the receiver can reconstruct the information. Note that each

transmission makes use of n channel slots. Consider each

time slot has I/Q channels, the Power Normalization layer of

Fig.2 are required to compress 256-dimension representation

of the symbols to 2n-dimensional space signal of X.

The channel layer of Fig.2 can be described as the con-

ditional probability density function p(Y|X) . Furthermore,

an additive Gaussian white noise with a fixed variance σ1 =

(2REb/N0)
−1 is added to the signals. For flat Rayleigh fad-

ing channels, X need to convolve with the channel impulse

responses before arriving at the receiver.

The task of the receiver of Fig.2 is to classify each of the

received signal Y out of 2k possibilities based on the learned

symbol characteristics. At the receiver side, the Conv1D lay-

ers of Fig.2 firstly decompress the received signal Y back to

256-dimension space in order to extract adequate information

for classification. Hence, the following Conv1D layers are

capable of capture the intricate signal representations. Finally,

the signal is mapped to a one-hot vector length of 2k for

soft decision using soft-max activation of Table 1. The whole

learning and transformation process are denoted using g(Y)

in Fig.2. Note that perfect CSI is assumed at the receiver, and

is fed into the receiver network together with the received

signal Y.

B. SYSTEM PARAMETERS

The training and validation datasets are generated randomly

using i.i.d. binary bit sequences, where 0 and 1 are submitted

to uniform distribution. The proposed autoencoder system of

Fig.2 was trained using 12800 data messages, where each

message contains a block length of L symbols and each

symbol has k information bits. The network was tested using

64000 data messages, while batch size was set to 64.

Because Conv1D layers have the merit of weight sharing,

the proposed system of Fig.2 can be trained at any input

symbol sequence length (L). In other words, the very same

convolution operations are performed on every input symbol,

regardless howmany symbols are fed to the network at a time.

For the purpose of illustration, L was set to 100 for the rest of

the paper.

CNN’s generalization ability allows us to train the

CNN-based system at a fixed Eb/N0, while testing at a wide

range of SNRs. More explicitly, the CNN-based receiver of

Fig.2 needs to witness sufficient statistics samples around the

decision boundary to learn the signal representation under

the influence of channel impairments. If Eb/N0 is set at a

relatively small value, the receiver might learn nothing but the

noise. On the other hand, if the training Eb/N0 is relatively

high, the receiver’s CNNs can only learn the perfect signal

representation, and any channel induced corruption would

lead to false classification. Again, a proper training Eb/N0

value must facilitate the CNNs to have enough training sam-

ples in the vicinity of the decision boundary.

The CNN’s generalization ability also blessed the proposed

system to achieve optimal encoding and decoding in terms
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of BLER, when communicating under AWGN, Rayleigh

and non-standard channels. This kind of adaptivity can be

achieved because the CNNs at the transmitter are capable

of learning suitable representation of the symbols for each

channel setting, and the CNNs at the receiver can learn to

discrimination the received signals accordingly.

Moreover, the loss function is defined as the Binary Cross

Entropy (BCE) between the input symbol sequence and the

output symbol sequence of Fig. 2, both of which are converted

to one-hot vectors. The Adam optimized was used to train

the end-to-end system, where the learning rate was set to

be 0.001 and decayed by a factor of 10 when saturated.

50 epochs were used for training, since the proposed scheme

can converge quickly, with the help of batch normalization

layers after each Conv1D layer in Fig. 2.

For all the Conv1D layers in Table 1, the kernel size is set

to 1 and stride is 1. This implies that each input symbol is

handled individually, since the symbols arememoryless. Note

that although each input sequence has 2k×L possibilities, the

proposed CNN-based model was trained using merely 12800

messages. That means, the network can generalize to decode

unseen codewords.

III. SYSTEM PERFORMANCE

In this section, numerous simulation results were provided

in order to demonstrate the proposed CNN-based Autoen-

coder (CNN-AE) system’s generalization capacity for block

length, training Eb/N0, code rate, channel use, when com-

municating over AWGN and flat Rayleigh fading channels.

The system model of Fig. 2 was employed and all the neural

network parameters were given in Table 1 and Section II.B,

unless otherwise specified. Besides, our source codes were

implemented in Keras and is available on GitHub upon

publication.1

A. GENERALIZATION WITH BLOCK LENGTH AND

TRAINING E b/N0

Firstly, we trained the CNN-AE system of Fig.2 using a short

block length (L = 10) and tested the BLER over different

block length (L = 10, 100) using the same trained network

parameters.

Fig. 3 explicitly demonstrate that when testing over L =

10, 100 block length, the CNN-AE scheme achieves identical

BLER performance, thanks to the weight sharing character-

istics of the Conv1D layers. Therefore, the proposed system

can be generalized to work with any block length L.

Furthermore, the CNN-AE system was trained at a single

Eb/N0, while testing over the whole Eb/N0 range. As shown

in Fig.3 that when trained at Eb/N0 = 9dB, the proposed

CNN-AE scheme achieves the best BLER performance, com-

pared with trained at 3 or 20dB. Again, that is because

the CNN layers of the receiver must observe enough train-

ing samples near the decision boundary in order to learn

1Source codes available in: https://github.com/ZhangKaiyao/Deepcom/
tree/master

FIGURE 3. BLER performance of the CNN-AE system of Fig.2 under AWGN
channels, when trained at Eb/N0 =3,9,20dB with L =10, while testing at
L =10,100.

FIGURE 4. BLER performance of the CNN-AE system of Fig.2 having
different rates R =1,2,4,6 (bits/channel use), when compared with
corresponding BPSK, QPSK, 16QAM, 64QAM modulations under AWGN
channels.

intricate signal structure under the influence of channel

impairments.

B. GENERALIZATION WITH DIFFERENT CODE RATES

UNDER AWGN AND RAYLEIGH CHANNELS

In this section, the proposed CNN-AE system is generalized

to work with various rates under both AWGN and Rayleigh

fading channels. In order to compare with classic modulation

schemes i.e. BPSK, QAM, etc., which are used as bench-

marks, CNN-AE’s channel use was set to n = 1 and different

code rates were achieved by changing the number of bits in a

symbol (k).

Fig. 4 plots the CNN-AE’s BLER performance having

different rates R = 1,2,4,6 (bits/ channel use), when

transmitting over AWGN channels. On one hand, the

representation power of CNNs, which is facilitated by the

256 filters in Table 1 and deep network architecture, can

learn suitable symbol transformations even for high data

rates. On the other hand, the achieved BLER performance

can match that of the corresponding conventional BPSK,
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FIGURE 5. BLER performance of the CNN-AE system of Fig.2 having
different rates R =1,2,4,6 (bits/channel use), when compared with
corresponding BPSK, QPSK, 16QAM, 64QAM modulations under flat
Rayleigh fading channels.

QPSK, 16QAM and 64QAM schemes, which are the optimal

solutions under AWGN channels.

Fig. 5 demonstrates the BLER performance of the

CNN-AE system of Fig. 2 having different rates R = 1,2,4,6

(bits/ channel use), when transmitting over flat Rayleigh

channels. Note that perfect CSI is assumed at the receiver,

which is fed into the Conv1D layers together with the received

signal Y as a concatenated vector. Observe in Fig.5 that the

receiver learns to equalize the fading effects before decoding,

and the resultant BLERs are identical to the BPSK, QPSK,

16QAM and 64QAM counterparts, as expected.

C. GENERALIZATION WITH CHANNEL USE

If multiple time slots (n>1) are available at the channel for

each symbol transmission, the proposed CNN-AE system

can exploit the additional time domain resources, owing

to the representation power of the Conv1D layers at the

transmitter.

From modulation perspective, the design of constellation

points is carried out in 2n-dimensional space, which

potentially could maximize the minimum Euclidean dis-

tance between constellation points, compared with the

2-dimensional I/Q space having n = 1. From channel coding

point of view, the Conv1D layers learn appropriate block

encoding across 2n-dimensional space that could increase the

minimum hamming distance between codewords. Therefore,

it is reasonable to expect that better BLER can be achieved

with the increase of channel use n.

Fig. 6 and Fig. 7 compare the BLER performance of the

CNN-AE system under both AWGN and flat Rayleigh fading

channels, when having different channel use n. As expected,

for a given k value, the increase of n = 1 to n = 2

results in substantial performance gain. Again, this cod-

ing gain was achievable, because the CNN architecture

allowed us to search constellation points in 2n-dimensional

space.

FIGURE 6. BLER performance of the CNN-AE system of Fig.2 under AWGN
channels, when having different channel use n.

FIGURE 7. BLER performance of the CNN-AE system of Fig.2 under flat
rayleigh fading channels, when having different channel use n.

D. DIFFERENTIAL CNN-BASED AUTOENCODER SCHEME

The CNN-AE system of Fig. 2 requires the perfect CSI to

assist the receiver to combat the effect of fading. The burden

of channel estimation could be potentially quite significant,

especially for massive MIMO systems. In order to eliminate

the need of CSI at the receiver, we further propose a Differen-

tial CNN-based Autoencoder (DCNN-AE) system, as shown

in Fig. 8.

Similar to the idea of conventional DPSK schemes, the

signals are differentially encoded before subjected to power

normalization, as seen in Fig. 8. At the receiver, the received

signal Y is firstly differentially decoded before fed into the

neural networks. The differential encoding/decoding pro-

cesses are implemented as non-trainable layers in Fig. 8,

which support complex number operations.

Fig. 9 illustrates the BLER performance of the DCNN-AE

system of Fig. 8, when transmitting over Rayleigh block

fading channels. The theoretical D-BPSK scheme’s BLER

is used as the bench-marker. When k = 1, the proposed
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FIGURE 8. System diagram of Differential CNN-based Autoencoder
(DCNN-AE) system, which eliminates the need of channel estimation.

FIGURE 9. BLER performance of the differential CNN-AE (DCNN-AE)
system of Fig.8 under rayleigh block fading channels.

autoencoder system’s BLER performance can match to that

of the D-BPSK system. When k = 2, a 3dB performance gap

is recorded in Fig. 9, as expected.

IV. ADAPTIVITY AND TRAINING CONVERGENCE

A. ADAPTIVITY ON NON-GAUSSIAN CHANNEL

For AWGN and Rayleigh fading channels, where the optimal

solutions are known, Fig. 4 and Fig. 5 have already demon-

strated that the learned scheme can match to that of the con-

ventional schemes. In this section, we demonstrate that even

if the channel does not obey a clean mathematical analysis,

the proposed scheme can still find the optimal solution via

end-to-end learning.

More explicitly, consider a scenario, where the transmitted

signal is always corrupted by AWGN, in addition, with a

small probability, a further high variance noise is added. The

channel model is described as follows: y = x + z + w,

where z ∼ N (0, σ 2
1 ) is the background AWGN noise and

w ∼ N (0, σ 2
2 ) denotes the bursty noise with probability ρ,

and σ 2
2 ≫ σ 2

1 . This channel model accurately captures how

bursty radar signals interfere with LTE signals [31].

Under the aforesaid channel model with σ2 =1.0 and

ρ =0.05, Fig. 10 plots the BLER performance of the k = 4

CNN-AE system of Fig. 2, when having different channel

use n. Observe in Fig. 10 that the conventional 16QAM

modulation record the worst BLER performance and an error

FIGURE 10. BLER performance of the k=4 CNN-AE system of Fig.2 under
bursty noise channel (with standard deviation σ2 =1 and probability
ρ =0.05), when having different channel use n.

FIGURE 11. Training loss and validation loss of the CNN-AE system of
Fig. 2 under AWGN channels withk=4, which was trained using
150 epochs.

floor existed because information symbols are permanently

lost whenever bursty noise occurred. On the other hand,

the CNN-AE system with n =1 achieves slightly lower error

floor, owing to the end-to-end optimization of the system.

Furthermore, significant performance gain can be achieved

in Fig. 10, if the channel use is increased to n =2, 3. That is

because the transmitted signal is designed in 2n-dimensional

space, whereas the bursty noise is limited to a single time slot

when occurred. Hence, information symbol recovery remains

possible under bursty channels.

B. TRAINING CONVERGENCE

The proposed end-to-end learning system also has the ben-

efit of fast training convergence, which is exemplified

in Fig. 11 and Fig. 12.

Fig. 11 and Fig. 12 show the training loss and validation

loss of the CNN-AE system as a function of training epochs
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FIGURE 12. Training loss and validation loss of the CNN-AE system of
Fig. 2 under Rayleigh fading channel with k = 4, which was trained using
250 epochs.

for AWGN and flat Rayleigh fading channels, respectively.

Both loss functions converge rapidly within several epochs.

Note that the proposed system was insensitive to the initial-

ization parameters of the neural networks.

V. CONCLUSION

In this treatise, a CNN-based autoencoder communication

system is proposed, which infuses communication domain

expertise into neural networks. CNN layers are employed in

order to learn the representations needed for transmission and

detection through raw data. More explicitly, merely power

constraints, time constraints (number of channel use) and the

channel model are imposed on the neural layers. Then, super-

vised learning with sufficient data drives the CNN-based

model to converge on the exact network parameters that are

suitable for pre-defined communication requirements.

This generalized learning framework allow us to commu-

nicate intelligently under various conditions. Furthermore,

under AWGNandflat Rayleigh fading channels, the proposed

CNN-AE system can match the performance of existing opti-

mal human engineered solutions, regardless block length,

Eb/N0, code rates, channel use. In other words, the CNN-AE

scheme serves as a unified system for communications.When

transmitting over non-standard bursty channels, the proposed

network is able to out-perform existing schemes, since the

learned representations of the signal adapts to the environ-

ment through constellation optimization in high dimensional

space. Moreover, a differential CNN-AE scheme is proposed

in order to eliminate the need of channel estimation. Finally,

we demonstrate that the CNN-AE architecture can be trained

with limited epochs, since it has fast training convergence.
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