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ABSTRACT: 

 

The adverse effects of flood events have been increasing in the world due to the increasing occurrence frequency and their severity 

due to urbanization and the population growth. All weather sensors, such as satellite synthetic aperture radars (SAR) enable the 

extent detection and magnitude analysis of such events under cloudy atmospheric conditions. Sentinel-1 satellite from European 

Space Agency (ESA) facilitate such studies thanks to the free distribution, the regular data acquisition scheme and the availability of 

open source software. However, various difficulties in the visual interpretation and processing exist due to the size and the nature of 

the SAR data. The supervised machine learning algorithms have increasingly been used for automatic flood extent mapping. 

However, the use of Convolutional Neural Networks (CNNs) for this purpose is relatively new and requires further investigations. In 

this study, the U-Net architecture for multi-class segmentation of flooded areas and flooded vegetation was employed by using 

Sentinel-1 SAR data and altitude information as input. The training data was produced by an automatic thresholding approach using 

OTSU method in Sardoba, Uzbekistan and Sagaing, Myanmar. The results were validated in Ordu, Turkey and in Ca River, Vietnam 

by visual comparison with previously produced flood maps. The results show that CNNs have great potential in classifying flooded 

areas and flooded vegetation even when trained in areas with different geographical setting. The F1 scores obtained in the study for 

flood and flooded vegetation classes were 0.91 and 0.85, respectively. 
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1. INTRODUCTION 

Flooding are among of the most common and destructive 

natural hazards that cause social and economic disruption as 

well as causing loss of human lives. Besides the floods caused 

by heavy rainfall; coastal floods and rapidly melting snow and 

ice in mountainous areas should also be taken into account as 

hazard triggering factors. In addition, dam flooding can also 

occur after sudden and heavy rainfall and or due to 

infrastructure failure. Although different triggering factors exist, 

in flood events, a quick assessment of the event followed by a 

quick response is important in many aspects. 

 

The flood extent mapping studies utilize spectral information 

from optical remote sensing data, synthetic aperture radar 

(SAR) data or a combination of these two together (Shen et al., 

2019a). Although the data from optical sensors have been used 

for flood monitoring for a long while, they have significant 

limitations in flood assessment studies due to atmospheric 

conditions, e.g., cloud cover, and their inability to provide data 

at night (Clement et al., 2018). SAR sensors is a valuable data 

source to detect and monitor floods as they can provide data in 

all-weather conditions and also at night (Manavalan, 2017). On 

the other hand, water-like surfaces such as shadows, speckle 

effect, and geometric correction found in SAR data can be 

limiting factors in flood mapping studies. 

 

Studies aimed at detecting floods from SAR data began to 

appear in the literature in the 1980s and have since been 

developed (Lowry et al., 1981). Thanks to the increase in SAR 

sensors and advances in remote sensing and computer vision 

algorithms in recent years, SAR data has been widely used in 

flood extent mapping and magnitude analysis. In this context, 

various methods have been used in the literature. These can be 

briefly listed as visual interpretation (Oberstadler er al., 1999), 

manual and automatic histogram thresholding (Nakmuenwai et 

al., 2017), supervised classification (Pulvirenti et al.,2013; 

Tavus et al., 2019, 2020, 2021), automatic segmentation 

(Pulvirenti et al.,2011), region growing (Matgen et al., 2011), 

fuzzy logic (Twele at al., 2016), change detection (Giustarini at 

al., 2012; Zhao et al., 2019), combination threshold and change 

detection (Tavus et al., 2018) and interferometric SAR 

coherence (Chini et al., 2019; Li et al., 2019; Pelich et al., 

2021). 

 

Recently, there have been significant advancements in the 

supervised machine learning (ML) algorithms, especially the 

deep learning (DL) methods and the Convolutional Neural 

Networks (CNNs) (Jia et al., 2014).  Unlike the pixel-based 

learning approaches, the CNNs can take advantage of the spatial 

structure of the target segment. Besides, an automatic feature 

presentation splits the feature space by reducing the 

uncertainties in the data. Due to these features, CNNs have 

become a method that has been successfully applied for flood 

mapping in recent years, as in many other application areas. 

 

Gebrehivot et al. (2019) investigated the potential of CNN 

method to detect floods from high-resolution unmanned aerial 

vehicle (UAV) images. As a result of the study using VGG-
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based fully convolutional network (FCN-16s), it was 

emphasized that it can successfully detect the flooded regions in 

the images in comparison to the conventional classification 

methods, such as FCNs and support vector machines (SVMs). 

Nemni et al. (2020) designed a CNN-based approach for 

extracting the flooded areas in Sentinel-1 SAR data. In the 

study, the flood masks were created with classical semi-

automatic techniques, manual cleaning and visual inspections; 

and various CNN architectures were investigated. The 

methodology significantly reduced the time for producing the 

flood maps. The CNNs in the study achieved F1 scores of 91% 

and 92 % over the test dataset. 

 

Peng et al. (2019) proposed two different CNNs (PSNet-v1 and 

PSNet-v2) to predict the similarity between Planet Scope 

multispectral images with 3 m spatial resolution before and after 

flooding. Both architectures achieved superior performance 

with approximately 89% and 95% F1 score in 2017 Hurricane 

Harvey and 2018 Hurricane Florence, respectively. Similarly, 

Potnis et al. (2019) proposed an Encoder-Decoder neural 

network (NN) based on the Efficient Residual Factorized 

Convnet (ERFNet) for multi-class segmentation for analysing 

the urban floods from WorldView-2 data with 2 m spatial 

resolution. The ERFNet architecture proposed in the study 

provided an average Intersection Over Union (IoU) score of 

0.484 and an overall accuracy value of 87%. Thus, it showed 

promising results in urban flood assessment with the satellite 

optical images. Rambour et al. (2020) introduced a SEN12-

FLOOD dataset containing co-registered Sentinel-1 and 

Sentinel-2 images for flood detection and used the ResNet-50 

network for flood mapping. With a state-of-the-art network 

(Resnet-50), the accuracy achieved with the SAR data was 75%, 

while the combination of RGB and SAR data provided 90% 

overall accuracy.  

 

Bonafila et al. (2020) introduced Sen1Floods11 dataset with 

Sentinel-1, and permanent and flood water. Permanent water 

and flood water surfaces were segmented using fully 

convolutional neural networks (FCNNs). The study results 

indicated that radar data with DL models can outperform the 

threshold-based algorithms for flood detection. In addition, the 

training data with automatic labels obtained from the optical 

images yielded to higher accuracy in comparison to the hand-

labelled scarce data. Konapala et al. (2021) investigated the 

potential of combinations data from Sen1Floods11 (Sentinel 1 

and Sentinel 2), and Shuttle Radar Topography Mission 

(SRTM) data for generating accurate flood detection. As a 

result of the study evaluating the performance of the 

methodology with K-fold cross-validation using U-Net CNN, a 

median F1 score of 0.62 was obtained when only radar data 

were employed. A F1 score of 0.73 was obtained with the use of 

Sentinel-1 and altitude information together. 

 

As a result of the literature review, it was clear that Sentinel-1 

data has great potential in flood mapping, but have limitations 

in comparison to the optical data due to the nature of the flood 

events. On the other hand, the CNNs have been successfully 

used in many applications. Here, we applied a modified version 

of the U-Net architecture for multi-class segmentation to 

Sentinel-1 and SRTM data with 30 m resolution for accurate 

flood mapping. At the same time, we focused on further 

exploration of the potential of SAR data in identifying flood 

and flooded vegetation areas. In this paper, we present and 

discuss the initial results of the study.  

 

In Section 2, the datasets used here, the pre-processing steps, 

label/mask generation, and U-Net architecture are explained. 

Section 3 presents the multi-class segmentation results and their 

accuracy metrics. Finally, the conclusions of the study and 

future work are presented and discussed in Section 4. 

 

2. MATERIALS AND METHODS 

In this section, an overall methodological workflow, the study 

area and the datasets, the details of the CNN architecture and 

the validation approach are explained. 

 

2.1 Overall Methodological Workflow 

The overall methodological workflow of the study is given 

Figure 1. The study sites can be named as Ordu, Turkey, 

Sagaing, Myanmar, Ca River, Vietnam, and Sardoba, 

Uzbekistan (Figure 2). The sites were selected based on the 

availability of test data and the occurrence of recent major flood 

events. The input data includes pre- and post-event Sentinel-1 

(S1) data and the elevation information from SRTM. A number 

of preprocessing methods were applied to S1 data to obtain the 

polarization information, to reduce the noise, and to remove 

systematic errors caused by the terrain. The input features used 

in the CNN architecture includes thus the S1 polarization data 

and the SRTM data. For the model training and validation, 

masks for flood and flooded vegetation classes were produced 

using a stepwise automatic thresholding approach with OTSU. 

The flood maps were produced with the CNN model and an 

accuracy assessment was performed using the test data in Ordu 

and Sagaing. Further details are explained in the following sub-

sections. 

 
 

Figure 1. The overall methodological workflow. 

 

2.2 Datasets 

Here, Sentinel-1A C-band Interferometric Wide (IW) swath 

mode and Level 1 ground range detected (GRD) products were 

utilized. The products have vertical (V) and horizontal (H) 

polarization (i.e., VV+VH) information with a ground sampling 

distance (GSD) of 10 m. Datasets for each area were obtained 

from the ESA Copernicus Programme (Copernicus, 2020). The 

S1 data used in the study were chosen based on the acquisition 

dates considering the flood occurrence (before and after flood). 

The characteristics of the study data and the ground conditions, 

such as wet or dry, are summarized in Table 1. 
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Figure 2. The location map of the study sites. 

 

 

 

ID Acquisiton 

Date 

Condition  Image 

Size 

Usage 

Sardoba  
DS1 

DS2 

29 Apr 2020 

05 May 2020 

Wet 

Dry 
7339 x 5582 Train 

Sagaing  
DS3 

DS4 

18 Jul 2019 

24 Jun 2019 

Wet 

Dry 
8378 x 14616 Train 

Ca River 
DS5 

DS6 

06 Sep 2019 

08 Jul 2019 

Wet 

Dry 
3050 x 2536 Test 

Ordu 
DS7 

DS8 

11 Aug 2018 

30 Jul 2018 

Wet 

Dry 

1060 x 1480 

1045 x 707 
Test 

ID and Uniform Resources Identifier (URI):    
DS1:S1A_IW_GRDH_1SDV_20200429T132316_20200429T132341_032343_

03BE56_0401 (Wet) 
 

DS2:S1A_IW_GRDH_1SDV_20190716T132314_20190716T132339_028143_

032DC2_83D0 (Dry) 
 

DS3:S1A_IW_GRDH_1SDV_20190718T233107_20190718T233132_028178_

032ED3_94DF (Wet) 
 

DS4:S1A_IW_GRDH_1SDV_20190624T233131_20190624T233156_027828_

03243C_56D3 (Dry) 
 

DS5:S1A_IW_GRDH_1SDV_20190906T110524_20190906T110549_028900_

0346B3_457F (Wet) 
 

DS6:S1A_IW_GRDH_1SDV_20190708T110521_20190708T110546_028025_

032A40_F813 (Dry) 
 

DS7:S1A_IW_GRDH_1SDV_20180811T033315_20180811T033340_023193_

028523_20AD (Wet) 
 

DS8:S1A_IW_GRDH_1SDV_20180730T033314_20180730T033339_023018_

027FA3_3490 (Dry) 

 

Table 1. Basic specifications of the Sentinel-1 datasets used in 

the study. 

 

2.3 Feature Preparation Workflow 

The input features involved in the CNN architecture include the 

VV and VH polarization and the SRTM digital elevation model 

(DEM). The multi-class segmentation approach classifies the 

pixel as non-flood, flood, and the flooded vegetation. In order 

to determine the flooded (FL) area and flooded vegetation (FV) 

classes and thus to form the mask pixels to be utilized in the 

CNN architecture, the processing steps given in Figure 3 were 

applied. 

 

The mask data to be used in the model training phase were 

produced with the approach listed below. This approach is 

basically based on the data preparation stages that are part of 

the work carried out by Nemni et al (2020). The main difference 

here is that the threshold values determined for the classes are 

obtained automatically from the Multi-OTSU threshold 

algorithm instead of manual detection (Liao et al., 2001). In 

order to generate labelled mask data for model training, the 

following steps were applied to the data from Sardoba and 

Sagaing regions denoted as DS 1-4 in Table 1, respectively. 

 

 Before using the S1 images, some necessary 

preprocessing steps, such as radiometric correction, 

image speckle filtering, and orthorectification, were 

applied. Details on these processes can be found in 

Tavus et al. (2021). 

 

 The OTSU threshold method was applied to each 

image (pre- & post-event VV and VH) in order to 

determine the flood pixels. 

 

 Based on the flood-induced change in the field, 

difference VV and VH images were produced by 

taking the differences between the thresholded pre- & 

post-event VV and VH data. At this stage, VV and VH 

flood masks were obtained with the values as 1: 

representing the flood and 0: representing the 

background. Afterwards, the pixels labelled as 1 in 

both of the masks were recorded as a flood mask. 

 

 In order to determine the FV pixels, FL pixels were 

extracted from the difference VV and VH images with 

applying flood mask produced in the previous step. 

 

 The FV pixels were produced by applying the OTSU 

threshold method to difference images, which do not 

contain flood pixels anymore. 

 

 As in the generation of FL pixels, the final FV mask 

was produced by taking the overlapping pixels of the 

VV and VH vegetation pixels at this stage. In this 

mask, 0 represents the background while 2 label 

represents the flooded vegetation. 

 

 Majority filters applied to FL and FV masks and 

combined as a single mask. Finally, opening followed 

by closing morphological filters were also applied to 

the data in order to remove the elements that could not 

be removed by the majority filter, such as holes, noise, 

and borders remaining in the combined mask. In Figure 

4, FL, FV, and merged masks of Sardoba study area are 

given.  

 

Input data for all regions were created by stacking pre- & post-

event VV and VH, which were produced with the preprocessing 

in the beginning of mask production stage; and the SRTM DEM 

data correspond to the area and then compress to 8-bit. Finally, 

the data preparation process was completed by arranging the 5-

band input data as 256*256*5 and the mask data representing 3 

classes as 256*256*1 input size. As a result of this process, a 

total of 1086 images were generated and randomly allocated to 

the train, validation and test datasets, with have sample 

percentages of 72%, 18%, and 10%, respectively (Table 2).  
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Figure 3. The S1 preprocessing and mask generation workflow. 

 

 

Figure 4. Flood, flooded vegetation and merged masks for the 

Sardoba area. 

 

 Number of images Total number of images 

Train 781 (72%) 

1086 Validation 196 (18%) 

Test 109 (10%) 

 

Table 2. The number of images in each split and their 

percentages with respect to all training samples. 

 

2.4 CNN Architecture for Pixel-based Classification 

In this study, a modified version of U-Net architecture was used 

for the class segmentation task. The modifications were applied 

by using ResNet-50 model in the encoder part, removing 

upsampling layers, and replacing them with the transposed 

convolution layers in the decoder part (He et al., 2015). The 

input images included 5 channels, and no pre-trained weights 

were available (Figure 5). Therefore, all layers were initialized 

with the Glorot uniform initializer (Hanin and Rolnick, 2018).  

Table 3 shows the model configurations. 

 

Figure 5. A general overview of the workflow for model 

architecture. 

 

Model Architecture U-Net 

Backbone ResNet50 

Weight Initialization Glorot Uniform 

Optimizer Adam 

Metrics F1-Score 

Loss Function CCE-Dice Loss 

Epochs 100 

Batch Size 4 

Input Size 256x256x5 

 

Table 3. The model configurations used in the study. 
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3. RESULTS AND DISCUSSIONS 

Here, the statistical results obtained from the CNN predictor are 

presented and map results from Sardoba, Ordu and Ca River are 

discussed. The model trained with the data of Sardoba and 

Sagaing regions has been tested in the Ordu and Vietnam areas. 

 

3.1 CNN Model Accuracy 

The combination of Categorical Cross Entropy and Dice index 

was used as loss function and Adam method used as an 

optimizer. F1-score was used as accuracy metric for the 

performance evaluation. Table 4 shows the model results 

obtained from model training and validation samples. Table 5 

shows the F1-Score of each class calculated using the model 

predictions obtained from test data. 

 

The results presented in Table 4 show that the test and 

validation accuracies are similar. However, the test results in 

Table 5 presented for the individual classes are better. The FL 

class could be predicted with a higher accuracy than the FV 

class. The FL class prediction performance is comparable with 

the results of the recent CNN-based flood mapping studies in 

the literature. The determination of the FV class with the CNN 

approach is novel and thus not comparable with the existing 

studies. 

 

 F1-Score Loss 

Training 0.83 0.21 

Validation 0.82 0.21 

 

Table 4. Model results obtained from model training and 

validation stage. 

 

 F1-Score 

Non-Flood/ Background 0.99 

Flood 0.91 

Flooded Vegetation 0.85 

 

Table 5. F1-Score of each class in the test data. 

 

3.2 Model Test Results from Sardoba Site 

Figure 6 shows test data parts used as ground truth and the 

model predictions in Sardoba site. It must be emphasized that 

the prediction results were obtained from the test split, which 

was 10% of all samples. 

 

3.3 Ordu, Turkey Test Site Results 

The flood maps of Ordu and Ca River (DS 5-8) test sites were 

produced with the model trained in Sardoba and Sagaing (DS 1-

4) regions. The Ordu test site was analyzed for the subareas of 

Terme and the Yesilirmak River region of Samsun Province. 

Both provinces are located in the northern part of Turkey, in the 

Black Sea Region. The study area is complex due to rugged 

topography and mixed land cover with inland water bodies (i.e., 

streams and rivers), urban settlements, open terrain, and 

agricultural and dense forest areas. In the research conducted by 

Kocaman et al. (2020), Ordu flood map was generated from 

Sentinel-1 and Sentinel-2 data with Random Forest (RF) 

classification algorithm. In Figure 7, the FL and FV pixels 

produced from OTSU threshold algorithm, CNN and RF are 

shown together with zoom-in views. Please note that the FV 

and the FL classes were merged in one class in the RF results 

and marked as flooded area in Figure 7. 

 

Figure 6. Views of mask (ground truth) and the model 

prediction results from Sardoba site obtained from the test split 

of training dataset. 

 

Figure 7. Results of around the Yesilirmak River, Ordu, 

Turkey. 

Figure 7 shows the results around the Yesilirmak River. As can 

be seen from the RF result, the river is densely surrounded with 

agricultural and forest lands. As a result of the comparison of 

the CNN and RF results, an essential outcome of the model was 

that the pixels around the river were also labelled as FV (Figure 

7), which shows the high prediction performance of the 

proposed method.  

The results of Terme, another subarea of Ordu site, are shown in 

Figure 8. In this subarea, although the OTSU method could not 

produce useful outputs, the CNN results were similar to the RF 

results, which employed optical data as input feature as well. 

Again, the FV and the FL classes were represented with a single 

class (flood area) in the RF results in Figure 8. 
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Figure 8. OTSU, CNN and the RF results of Terme, Ordu. 

 

3.4 Ca River, Vietnam Test Site Results 

Another test was applied on the data of the flood event that 

occurred in Vietnam on September 6, 2019. This area represents 

a flood event that reaches much larger extents in comparison to 

the Ordu test area and spread to a relatively smooth topography. 

As there is no previous study or external reference data for this 

area, the CNN results were visually compared with data from 

the Flood Mapping Tool (FMT) published by Hamid Mahmood 

(2022) (Figure 9). 

 

 

 

Figure 9. The CNN and the FMT results from the Ca River, 

Vietnam flood. 

 

4. CONCLUSIONS AND FUTURE WORK 

In the present study, a CNN architecture was proposed for the 

mapping of flooded areas (FL) and flooded vegetation (FV) 

from Sentinel-1 data and SRTM DEM. Four different test sites, 

i.e., Ordu, Turkey, Ca River, Vietnam, Sardoba, Uzbekistan, 

Sagaing, Myanmar, with major flood events were utilized for 

this purpose. While the model training dataset was produced 

from the Sardoba and Sagaing test sites, further evaluations 

were carried out by using external references in Ordu and Ca 

River. The training dataset was split as train (72%), validation 

(18%) and test (10%) samples. The U-Net architecture on 

ResNet-50 backbone was implemented for the multi-class 

segmentation.  

 

The results show that the F1 scores obtained from the test 

samples were 0.91 for the FL and 0.85 for the FV classes. The 

present study is the first one for detecting FV class with a CNN-

based classifier. The visual assessments carried out in Ordu and 

Ca River also show high quality output of the method. The 

results from a subarea of Ordu, the Terme, also show that SAR 

data have potential for the detection of floods in the urban area. 

On the other hand, the Ordu site has rugged topography, which 

indicates that the use of SRTM DEM as input feature can also 

be recommended for accurate flood mapping in such areas. 

 

As future work, it is planned to improve the results with higher 

resolution SAR data and further tuning of the proposed 

methodology. As an example, data augmentation techniques for 

SAR data can be employed in order to investigate the influence 

of such techniques on small datasets. Fine tuning can also be 

applied to the CNN model trained in this study to assess its 

performance on different flood areas in the world. In addition, 

modifying the CNN architecture to utilize features from both 

SAR and optical sensors may improve the overall results.  

 

Furthermore, different deep learning architectures for 

segmentation such as LinkNet, PSPNet, etc. can also be 

combined with different encoders, (e.g., SE-ResNeXt50, 

seresnet34) in order to assess impact of the backbones and 

architectures on the results by using the same dataset. Finally, 

the proposed approach can be applied to more datasets at 

different geographical locations having diverse characteristics 

for further validation. 
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