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A CNN-Transformer Hybrid Approach for Crop
Classification Using Multitemporal

Multisensor Images
Zhengtao Li , Guokun Chen, and Tianxu Zhang

Abstract—Multitemporal Earth observation capability plays an
increasingly important role in crop monitoring. As the frequency
of satellite acquisition of remote sensing images becomes higher,
how to fully exploit the implicit phenological laws in dense mul-
titemporal data is of increasing importance. In this article, we
propose a CNN-transformer approach to perform the crop clas-
sification, in the model, we borrow the transformer architecture
from the knowledge of NLP to dig into the pattern of multitem-
poral sequence. First, after unifying the spatial-spectral scale of
each multiband data acquired from different sensors, we obtain
the scale-consistent feature and position feature of multitempo-
ral sequence. Second, with adopting multilayer encoder modules
derived from the transformer, we mine deep correlation patterns
of multitemporal sequence. Finally, the feed-forward layer and
softmax layer serve as output layers of the model to predict crop
categories. The proposed CNN-transformer approach is illustrated
in a crop-rich agricultural region in central California, where
65 multitemporal profiles from multisensor Sentinel-2 A/B and
Landsat-8 are obtained in 2018. Through multiband multiresolu-
tion fusion, sequence correlation extraction of multitemporal data
and category feature extraction, the classification results show that
the proposed method has a significant performance improvement
compared with other traditional methods.

Index Terms—Crop classification, multitemporal multisensor,
self-attention, transformer.

I. INTRODUCTION

FOOD security is the foundation of world economic security.
Agriculture is not only the basic condition to ensure social

development, but also an important economic area for promoting
social development. In order to improve the healthy development
of agriculture, it is increasingly important to monitor the types of
crops on the agricultural land and to control the changes of crop
types. In recent years, with more and more earth observation
satellites being put into use, we can obtain increasingly time-
intensive remote sensing (RS) images, and that can help us to
improve the classification accuracy of crops [1], [2]. Especially,
by combining Sentinel-2 A,B and Landsat-8 [3], we can obtain
medium-resolution RS data with a revisit cycle as short as 3–5
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days [4]. Benefited from dense temporal RS data, we can monitor
land use more accurately [5], [6], such as: the crop classification,
phenological changes, and land classification.

Different crops have phenological differences, and the classi-
fication accuracy of crops can be improved through distinguish-
ing different temporal spectral rules of crops. Several studies
have shown the importance of multitemporal information, De-
vadas et al. [7] present an object-based classification approach
using support vector machine (SVM), which is superior to
the pixel-based methods for classifying different crop types in
summer and winter seasons with multitemporal Landsat data.
Li et al. [8] use SVM and decision tree supervised classifi-
cation methods on multitemporal HJ satellite images, and the
crop classification results indicate that HJ-1 A/B satellite had
the particular advantage in extracting vegetation information
because its higher temporal resolution. In [9], Melgani proposed
a spatial and spectral fuzzy fusion approach for classification,
and obtained the temporal information by using transition prob-
abilities. The accuracy of agricultural land cover mapping is
basically positively correlated with the number of multitemporal
images, Pax et al. [10] found that with the increase in the number
of time-series images, the estimation accuracy of land area in
agricultural areas in Egypt become higher. In order to obtain
sufficient cloud-free remote sensing data in humid, tropical, or
subtropical regions, Useya and Chen [11] fuse multitemporal
Landsat 8, Landsat 7, and Sentinel-2 data, and obtain more
accurate crop maps in Zimbabwe. However, in the critical stages
of crop growth, the subtle differences in phenology often have
important indications for crop production, such as: the flowering
of canola or the tillering stage of transplanted rice. But the sparse
multitemporal RS data does not indicate the subtle differences in
crop phenology, therefore, it is important to use the dense mul-
titemporal RS data to mine the subtle phenological differences.
Up to now, how to use dense temporal features of RS data to
distinguish the fine phenological differences of crops is still an
important challenge.

As a powerful feature extraction framework, deep learning
has achieved great success in a wide range of tasks. Compared
with the traditional machine learning algorithms that require
complex feature engineering, deep learning can automatically
learn robust feature representation and adapt to different fields
and applications more easily. In remote sensing image pro-
cessing tasks, deep learning also shows great potential [12]. In
Data Fusion Contest organized by the Image Analysis and Data
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Fusion Technical Committee of the IEEE Geoscience and Re-
mote Sensing Society, a series of deep learning techniques [13],
such as CNN and super-resolution, played a significant role and
achieved obvious results. Zhang et al. [14] proposed a unified
spatial–temporal–spectral framework based on CNN to com-
plete the missing data in remote sensing image, and the proposed
approach can solve the missing information reconstruction tasks
include: dead lines in MODIS band 6, thick cloud removal, etc. In
addition to multisensor images, Chen et al. [15] introduced deep
learning architecture in hyperspectral classification problem. By
using stacked autoencoders, the classification results achieved
competitive performance than the traditional SVM methods.

The attention mechanism is a method, which human rapidly
screen out high-value information from a large amount of in-
formation with utilizing attention. It is a survival mechanism
formed in the long-term evolution of human beings. Visual
attention mechanism can greatly improve the efficiency and ac-
curacy of information processing. Attention mechanism imitate
the internal processing of biological observation behavior, which
align internal perception and external sensation to increase the
observation fineness in some areas. Attention can be interpreted
as a method, which allocates available computing power to the
most informative part of the signal [16]–[19]. And attention
mechanism has shown its utility in many tasks, including: se-
quence learning [20], [21], image captioning [22], [23], machine
translation [24], [25], sentence summarization [26], machine
comprehension [27], and document classification [28].

In this article, we borrow the transformer architecture from
the field of NLP to model the crop phenological differences.
The transformer architecture proposed by Google, which based
on self-attention mechanism has shown an excellent expression
ability to model the sequence correlation, and it has achieved the
best results in many NLP tasks, such as machine translation [29],
document classification, etc. Depending on the powerful se-
quence modeling capability of the self-attention module, we can
distinguish the subtle but important phenological differences,
such as in the rice transplanting period, the subtle phenological
differences contained in the dense time-series data can help us
to distinguish the tillering period, and to predict the number
of tillers [30]; the flag leaf growth at the booting stage of cereal
crops which has subtle phenological differences also can be used
to predict the grain production [31]; and due to the differences in
planting dates, cultivars and soil conditions, the timing of flower-
ing and podding among fields of canola is usually different, the
dense monitoring of phenology and environmental conditions
can elevate disease and insect infestations risk in canola [32]. For
these cases, compared with the traditional classification meth-
ods [7], the transformer architecture can obtain more precise
phenological patterns.

The transformer architecture utilizes multihead self-attention
modules to represent the sequence patterns. The multihead self-
attention modules abandon the traditional recurrent sequence
information modeling methods such as RNN, GRU, and LSTM,
shorten the length of the paths by which information between
different positions in sequence traverse in the network, and can
directly obtain long-range dependencies for any combination
of positions in sequence. Therefore, compared with the tradi-
tional RNN and LSTM structures, the multihead self-attention

modules greatly improve the ability of sequence information
correlation representation. We use this excellent structure to
extract the characters of sequence information, express the
correlation between time positions in sequence, and use phe-
nological differences between crops to obtain more accurate
results of crops classification. First, by using the ability of
CNN to express spatial and spectral correlations, we unify the
scale of spatial-spectral features for Sentinel-2 and Landsat-8
sample multiband images. Second, we apply the transformer
architecture on temporal-spatial-spectral tensor to obtain its
temporal correlation. Finally, appending a feed-forward layer
and a softmax layer, we can get the crop types.

The rest of this article is organized as follows. Section II
describes, the ground truth of crop types in the study region and
the data preprocessing. Section III illustrates the classification
method based on transformer architecture. Section IV describes
the study region and the results of experiment. Finally, further
discussion and conclusion of this article are given in Section V.

II. RELATED WORK

A. Ground Truth of Crop Types

The cropland data layer (CDL) product, produced by the
United States Department of Agriculture (USDA) National
Agricultural Statistics Service, is a georeferenced, rasterformat-
ted, crop types cover classification map with a resolution of 30 m
across the country. By using the CDL data, a series of cropland
changes can be well assessed, such as crop intensity, rotation,
epidemiology, watershed, environmental risk, and disaster re-
sponse. For instance, Maxwell et al. [33] study the relationship
between cancer and agricultural chemical exposure. Shan et al.
[34] estimate and map the flood damage with RS images and
CDL product.

During the process of CDL production, the project utilizes
USDA’s Farm Service Agency (FSA) Common Land Unit
(CLU) data, National Land Cover Database data, remote sensing
satellite data, and some other ancillary data as the input data.
Among the input data, FSA CLU data set is a comprehensive
agricultural ground truth data of crop types, which is updated
multiple times in the growing season. Benefit from the increased
available ground truth data of crop types, the CDL program
has greatly increased efficiency and accuracy. By comparing the
CDL crop types with independent validation data extracted from
FSA CLU ground truth data, the accuracy of CDL agricultural
crop types maps can be obtained. Since a large amount of
agricultural survey data are used in the production of CDL
products, the classification accuracy of the major crop categories
is high, usually 85% to 95%. In this article, we select pure single
crop regions with large areas as our crop types ground truth.

B. Preprocessing

Before the crop classification, several preprocessing steps
for satellite images are implemented. For the Sentinel-2 Level-
1C scenes downloaded from USGS, we first use Sen2cor
atmospheric correction module to acquire the surface reflectance
data derived from Level-1C TOA reflectance values, and then
use the Fmask algorithm developed and improved by Zhu et al.
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Fig. 1. Multitemporal multisensor sample in a study region. In multitemporal
sample sequence, Mi indicates multiband images from Sentinel-2 or Landsat-8.

[35] to perform clouds and cloud shadows removal. Similar to
Sentinel-2, for the downloaded Landsat-8 Level1 DN values,
Landsat-8 images are first converted from DN values to spectral
radiance, and then the spectral radiance is converted to the sur-
face reflectance by atmospheric correction tool FLAASH which
is available in ENVI. Clouds and cloud shadows removal are im-
plemented with using the same Fmask algorithm as Sentinel-2.
Next, the cloud-free scenes are mosaicked in the study region.
Finally, for the surface reflectance data with missing cloudy
holes, we use the self-organizing Kohonen maps (SOMs) to
reconstruct the missing gap data of time-series images. The
reconstruction of holes is performed for each spectral band: 1)
For the time-series band images from Sentinel-2 or Landsat-8,
some pixels of temporal profile contain the holes derived from
the removal of clouds, and we choose the pixels of temporal
profile without temporal gaps to train the SOM. 2) By SOM
learning, the pixels of temporal profile without gaps can be
projected into the subspace of map vectors, that is, the weight
vectors of SOM indicate the temporal profiles of training sample.
3) Finally, the relevant components of the neuron-winner weight
vector in SOM are used to reconstruct the missing data in the
time series [36].

III. PROPOSED METHODOLOGY

In this article, the multitemporal multisensor images acquired
by Sentinel-2 and Landsat-8 can be downloaded from the USGS
EROS Center. As shown in Fig. 1, the sample in the study region
can be expressed as M = [M1,M2, . . .Mi. . .,Mn], where n is

Fig. 2. Spatial and spectral fusion scheme for multiband images. The left part
shows multiband images Mi, the middle part indicates the multiband features
with unified spatial dimensions(wi, hi), and the right part expresses the spatial-
spectral-unified SSU feature.

the temporal length of multitemporal sample and Mi represents
the date-corresponding multiband images.

In the sampleM, the multiband images setMi from Sentinel-
2 or Landsat-8 can be expressed as:

Mi = {bik : ik ∈ spectral bands} (1)

where i indicates the acquiring time in multitemporal sequence,
k denotes the sensor band, and ik is the sensor band on the
acquiring time i, and bik expresses the band image of ik with
dimensions wik × hik .

In general, sensors have different numbers of multispectral
bands, Sentinel-2 has 13 bands with a spatial resolution of 10,
20, and 60 m, and Landsat-8 has 11 bands with spatial resolution
of 15 and 30 m. In order to obtain the normalized feature maps
from different sensors, first, we normalize the spatial resolution
for each band image in Mi to obtain the normalized width and
height, and then normalize the channel dimension of feature
maps.

A. Multisensor Spatial-Spectral Scale Unification

Corresponding to the multitemporal multisensor sample
M = [M1,M2, . . .Mi. . .,Mn], we perform spatial-spectral fu-
sion to get the spatial-spectral-unification (SSU) features G =
[G1, G2. . ., Gi, . . .Gn] for each images set Mi, where Gi has
the unified feature dimensions (w, h, c), and w, h, c indicate the
width, height, and channels number of SSU features.

As shown in Fig. 2, the spatial-spectral unification is divided
into two steps, spatial unification and spectral unification.

1) Spatial Scale Unification for Each Band: In order to unify
the spatial resolution of multiband images, we convolve each
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image bik from the images set Mi and then concatenate all
convolved features with unified scale:

˜bik = Conv(bik)bik ∈ Mi

Si = Concat({˜bik : ik ∈ 1, 2, . . ., ci}). (2)

In the formula, Conv represents transposed convolution trans-
formation on bik to get scale-unified features, Concat expresses
concatenating all features data with unified scale, bik is the image
of band ik inMi,˜bik is the feature of band ik with unified spatial
scale (wi, hi), and Si is a 3-D tensor of dimensions (wi, hi, ci),
wherewi andhi correspond to the width and height of the unified
features and ci to bands number of sensor on time i.

2) Spectral Scale Unification: Different sensors usually have
different band numbers, in order to unify the multiband features
from different sensors, we convolve the 3-D tensor Si by uti-
lizing the consistent convolution kernel numbers for the whole
time sequence in the sample

Gi = Conv(Si) (3)

where Conv indicates the convolution transformation and Gi

is a SSU tensor with dimensions (w, h, c), in which w, h, c
correspond to the width, height, and channel of spatial-spectral-
unification features.

Next, the multitemporal transformer module will be applied
on the obtained scale-unified multitemporal SSU features.

B. CNN-Transformer Architecture for Classification

In the network, the transformer architecture, which has ex-
cellent expressive ability of sequence information is introduced
to model the input multitemporal features. The overall block
diagram for crop classification is shown in Fig. 3:

The model architecture consists of several modules: the SSU
features extraction module, position feature module, multilayer
transformer encodermodule, feed forward module, and softmax
output layer module. In this section, we will introduce these
modules as below.

1) SSU Features Extraction and Position Feature Embed-
ding: For sequence information input, the transformer adopts
1-D vector as the input for each sequence position, so the mul-
titemporal sequence of SSU features needs to be first converted
to a 1-D vector sequence. The multitemporal SSU features have
the unified shape of (w, h, c), after flattening SSU features on
each sequence position, we can obtain the feature sequence
WE = [e1, . . ., en], and the length of 1-D feature is w × h× c.

The position feature embeddings of sequence indicate the
relative or absolute position information of features in the se-
quence, and position features can be described by “positional
encodings.” The positional encodings have the same vector
length dmodel as the feature ei of w × h× c. Here, we cite the
functions in [37] to define positional feature embedding:

PE(p,2i) = sin(p/10 0002i/dmodel)

PE(p,2i+1) = cos(p/10 0002i/dmodel) (4)

where p is the position and i express the dimension of position
feature.

2) Multilayer Transformer Encoder Module: The trans-
former architecture [37] proposed by Google, which is differ-
ent from the previous RNN-like model for modeling sequence
information, has shown great vitality in the field of NLP. In
transformer architecture, the self-attention is a sequential encod-
ing mechanism similar to RNN and LSTM, and it improves the
expression ability of the relationship between word sequences to
get better performance on various NLP tasks. In addition to the
excellent expression ability of the relationship between sequence
information, the self-attention is much better than the RNN-like
model in parallel ability because it inputs the entire sequence at
a time for training, which can greatly improve the training speed
of a sequence model.

For the sequence modeling and sequence classification,
there are different task paradigms. For sequence modeling,
a typical task is the language modeling. For a sentence se-
quence U = {u1, . . ., un}, the standard language modeling
objective can be used to maximize the likelihood: L(U) =
∑

i logP (ui|ui−k, . . ., ui−1; Θ). When using transformer archi-
tecture to build the language model, the parallel training of
sentence sequences can be achieved through forward masking
mechanism which acts on the encoder and decoder. The mask
mechanism shield the future word embedding, so that only left-
ward information of the sequence can be seen, while rightward
information is blind. In contrast to the language model task,
in the classification task, the output is the classification label
rather than the sequence. And the label is visible to the entire
sequence information, so the classification model can utilize
all of the sequence information. Therefore, in the sequence
classification task, we only take advantage of the encoder module
in transformer without mask mechanism.

In the architecture, we use the multilayer transformer encoder
module for sequence model, and it is a variant of transformer.
As shown in Fig. 4, there are two sublayers in encoder module:
multihead self-attention is the first part followed by the second
positionwise fully connected feed-forward network. In addition,
there are residual connections and layer normalizations in each
encoder.

This module takes SSU features and position embeddings as
input, so h0 can be formed as

h0 = WE +WP (5)

where SSU feature sequence WE is the time-series features
[e1, . . ., en], which includes the entire dates and position feature
sequence WP represents the position embeddings for each time
position [PE1, . . .,PEn]. The multilayer encoder module can be
described as follows:

hl = transformer_encoder(hl−1)∀i ∈ [1, n] (6)

where n is the number of layers.
3) Output Layer for Supervised Classification: In order to

get the crop classification, we add feed-forward and softmax
layers to the network. For our classification task, we get a
labeled dataset C, where each instance consists of time series
features, G = [G1, . . ., Gn], along with a label y. We pass the
input sequence through feature extraction layer and multilayer
transformer encoder module to get the last encoder’s activation
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Fig. 3. Classification scheme for multitemporal multisensor images based on CNN-transformer sequence correlation extraction. The lower part of the figure
indicates multitemporal feature extraction and position feature embeddings; and the upper part expresses the sequence feature extraction with multilayer encoder
modules.

hl, then add feed-forward layer with parametersWy and softmax
layer to predict y

P (y|G1, . . ., Gn) = softmax(hlWy). (7)

By that formula, we get the objective to maximize

L(C) =
∑

(G,y)
logP (y|G1, . . ., Gn). (8)

In the above formula, the conditional probability P is modeled
using neural networks. The model can be trained using stochastic
gradient descent.

IV. EXPERIMENTATION

A. Study Area and Dataset Description

In our study, the northern Sacramento Valley in California was
selected as the study area, which has a typical Mediterranean
climate. The Mediterranean climate is sunny during the crop
growing season from March to September, with less cloud cover,
which is conducive to obtain more useful remote sensing images.
In the area, a region of approximately 100 km × 100 km was
selected as the study region, as shown in Fig. 5. This region has
a diverse crop matrix that includes tomatoes, corn, rice, grapes,
alfalfa, sunflower, clover, almonds, and walnuts as well as other
specialty crops (e.g., watermelons, carrots, onions, peas), as
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Fig. 4. Encoder module used in the proposed model.

Fig. 5. Crop types product for Northern Sacramento Valley in California. In
the region, there are a variety of crops, such as cotton, rice, corn, soy, etc.

shown in Fig. 6. The ground truth of the crop types in the region
can be obtained from CDL product.

In order to preserve the original spatial information of the
multiband images acquired by the satellites, spatial resampling
of multiband images with a different spatial resolutions should
be avoided. Therefore, the pixel size of sample patch is set to
60 m × 60 m, and within a pixel patch, the spatial information
of each band is original information acquired from satellites.
Within the study area, the pure crop plantations with a large
area are selected as the sample collecting area of interest for
major crops. With 60 m × 60 m as the size of the sample pixels,
we select approximately equivalent numbers of samples for the
major crop types to form the research dataset, including corn,
rice, alfalfa, clover, fallow, grapes, almonds, walnuts, pasture,
cherries, winter wheat, safflower. In this experiment, the dataset

Fig. 6. Pie chart depicts the share of various crops in the study area, such as
corn, rice, alfalfa, grapes, etc.

TABLE I
CROP CLASSES AND THE NUMBER OF SAMPLES IN THE DATASET

contains a total of ten types of 39 560 samples, out of which
1% are used for training and the remaining 99% are used for
verification, as shown in Table I.

For the study region, all the multiband remote sensing images
of Sentinel-2 and Landsat-8 were downloaded from USGS for
2018 year. Then, the images with thick clouds are removed, the
cloudless and less cloudy images are retained. Through several
preprocessing steps to mask the cloud in images, remove the
areas covered by the cloud and fill the corresponding holes, we
can obtain the time-series images with a length of 65. As shown
in Fig. 7, due to the fine weather, during the crop growing season
from March to September, the temporal data in growth period
is dense. Furthermore, abundant temporal information can help
us to dig out the small differences in crop phenology.

B. Evaluation Criteria and Classification Methods

In order to evaluate the effects of different classification
models, a lot of evaluation criteria have been developed. The
confusion matrix can clearly express the number of correctly
classified samples for each category and the detail for each
misclassified category. However, from the confusion matrix, we
cannot evaluate the performance of various classification mod-
els immediately. Therefore, a variety of classification accuracy
indicators are derived from the confusion matrix, among which
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Fig. 7. Multitemporal sequence from different satellites: Sentinel-2 A,
Sentinel-2B, and Landsat-8. The numbers in the icons represent the acquiring
DOY(day of year), and green, orange, and violet represent the different sources:
Sentinel-2 A, Sentinel-2B, and Landsat-8, respectively.

the overall accuracy (OA), average accuracy (AA), and Kappa
coefficient are the most widely used.

1) Overall Accuracy (OA): The overall accuracy is the sum
of the correctly classified values (values on the right diagonal)
in the confusion matrix, divided by the total number of samples,
which represents the ratio of the correctly predicted samples in
all samples.

2) Average Accuracy (AA): The average classification accu-
racy is the average value of all classification accuracies.

3) Kappa Coefficient: Different from the overall accuracy,
the Kappa coefficient is calculated from all the information of
the confusion matrix. It is considered as the consistency mea-
sure between the ground-truth map and the final classification
map, which can more accurately express the entire classification
accuracy.

In order to evaluate the effect of the CNN-transformer model
proposed in this article, we compare it with traditional vector-
based classification methods such as support vector machine
and random forest. Then, the performance of a classical deep
network model such as multitemporal CNN and CNN-LSTM are
further compared with the proposed CNN-transformer model.

1) RF-200: In the experiment, the number of decision trees in
the random forest is set to 200.

2) SVM-RBF: We use the LIBSVM package to carry out the
support vector machine classifier with RBF kernel, and take
into account fivefold cross-validation to optimize the hyperplane
parameters.

3) CNN-transformer crop classifier: The proposed CNN-
transformer classifier combines CNN and transformer archi-
tecture to mine the category pattern of crops, where CNN is
used to extract the spatial-spectral features of each acquisition
date, and the transformer module with powerful sequence pattern
extraction capability is used to express the correlation of time
series.

4) Multitemporal CNN classifier: For the proposed CNN-
transformer classifier, we replace the multilayer transformer

Fig. 8. Multiband MSI images from Sentinel-2 in a sample.

encoder modules with regular CNN layers to obtain the Multi-
Temporal CNN (MT-CNN) classifier, which is compared with
CNN-Transformer classifier to represent the difference in the
ability to mine sequence information.

5) CNN-LSTM crop classifier: The CNN-LSTM classifier
combines CNN and LSTM to model the orderly and continu-
ing multitemporal multisensor features of the sample, different
from the multi-layer transformer encoder modules, this classifier
utilizes the RNN-like networks to mine the sequence pattern.

Experiments are organized into two parts. The first part first
discusses the spatial-spectral-unification parameters for the two
satellites on each acquisition date in the proposed method,
and then discusses the input tensor shape, self-attention layers,
number of encoder layers, and output layer configuration in
the transformer architecture, finally describes the compared
multi-temporal CNN classifier which replaces the transformer
architecture with CNN architecture. In the second part, the
effectiveness of a CNN-transformer classifier that is based
on transformer architecture is compared with the traditional
vector-based models, such as random forest, SVM, regular CNN
classifier which replaces the transformer encoder layers with
regular CNN layers, and CNN-LSTM classifier.

C. Hyperparameter Analysis of the Proposed Network

In experiments, the pixel-based samples set is collected with
size of 60 × 60 m.

1) Spatial-Spectral Unification for Sentinel-2: There are 13
multispectral images acquired by MSI on board the Sentinel-2 in
VNIR and SWIR bands, and the cirrus image with band of 10
mainly indicates the distribution of cirrus clouds rather than
ground reflections. Therefore, after discarding cirrus band, the
remaining multiband images are as follows:

1) 4 bands at 10 m: 490 nm (B2), 560 nm (B3), 665 nm (B4),
842 nm (B8).

2) 6 bands at 20 m: 705 nm (B5), 740 nm (B6), 783 nm (B7),
865 nm (B8a), 1610 nm (B11), 2190 nm (B12).

3) 2 bands at 60 m: 443 nm (B1), 945 nm (B9).
As shown in Fig. 8, in a sample region of 60 × 60 m, there are

three image resolutions: image size 6× 6 for 10 m bands, image
size 3× 3 for 20 m bands, and image size 1× 1 for 60 m bands.



854 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 9. Multiband OLI and TIRS images from Landsat-8 in a sample.

In order to obtain the spatial-unified features for multiband im-
ages, we use different transposed convolution kernel parameters
for each different input image:

1) 10 m resolution, unconvolving a 1× 1 kernel over a 6×
6 input with unitary stride and no padding (i = 6, k =
1, s = 1 and p = 0), output is a 6× 6.

2) 20 m resolution, unconvolving a 4× 4 kernel over a 3×
3 input with unitary stride and no padding (i = 3, k =
4, s = 1 and p = 0), output is a 6× 6.

3) 60 m resolution, unconvolving a 6× 6 kernel over a 1×
1 input with unitary stride and no padding (i = 1, k =
6, s = 1 and p = 0), output is a 6× 6.

Finally, the multisensor spatial-spectral-unification featureGi

with unified dimensions (6, 6, 5) is obtained with the same
number 5 of convolution kernels for multisensor.

2) Spatial-Spectral Unification for Landsat-8: There are 11
Landsat-8 spectral bands on the sample, of which cirrus detec-
tion image of band 9 shows the distribution of cirrus clouds rather
than ground information. Therefore, excluding the cirrus band,
there are ten multispectral bands with two spatial resolutions:

1) 9 multispectral bands at 30 m.
2) 1 panchromatic band at 15 m.
As shown in Fig. 9, in a sample of 60 m × 60 m, there are two

image sizes for Landsat-8 multiband data: image size 4× 4 for
15 m band and 2× 2 for 30 m bands. With producing the same
spatial output of 6× 6, we have two transposed convolution
kernel parameters for Landsat-8:

1) 15 m resolution, unconvolving a 3× 3 kernel over a 4×
4 input with unitary stride and no padding (i = 4, k =
3, s = 1 and p = 0), output is a 6× 6.

2) 30 m resolution, unconvolving a 5× 5 kernel over a 2×
2 input with unitary stride and no padding (i = 2, k =
5, s = 1 and p = 0), output is a 6× 6.

By concatenating the features of the same spatial scale, we can
obtain the dimension (6, 6, 10), and then perform convolution
with five convolution kernels, we can get the SSU feature Gi

with dimension (6, 6, 5).
3) Parameter Analysis of the CNN-Transformer Network: As

shown in Fig. 3, after the above spatial-spectral scale unification,
65 multitemporal spatial-spectral group features with shape of
[6, 6, 5] can be obtained. Then, in order to obtain the features for
transformer encoder inputs, we flatten the spatial-spectral group
features to generate 1-D feature with shape [180], meanwhile,
the dimension of position embeddings is set to [180], which
is the same as encoder inputs. In the model, the number of

multilayer encoder modules is experimentally set to 4, after
sequence encoding for multitemporal features, the parameters
of feed forward layer which consists of two fully connected
layers are set to 100 and 40.

In order to evaluate the effects of the models fairly, compared
with CNN-transformer network, multitemporal CNN classifier
and CNN-LSTM only replace the multilayer transformer en-
coder modules with regular convolution layers and LSTM layers,
and the other parts of the model, such as spatial-spectral unifi-
cation layer and categories output layer, have the same network
structure.

For the proposed model, the network with transformer archi-
tecture is trained with Adadelta algorithm, and in the experiment,
we use a low learning rate of 0.01 to train the network. In the
model, all the convolutional layers are appended by a batch
normalization layer in which all the weight matrices and bias
vectors of the convolutional layer in the model are uniformly
initialized by xavier, and the convolutional weights and BN
parameters are updated during training. In the experiments, the
training epoch number of CNN-transformer model and com-
pared multitemporal CNN model is set to 1000, which ensures
the convergence of models.

It should be noted that in the proposed network, we utilize
original spatial information of bands with different spatial res-
olutions, while traditional vector-based classification methods,
such as random forests and SVM require a uniform 60-m spatial
resolution band images that are resampled from bands data with
different spatial resolutions.

D. Experimental Results

The classification confusion matrix and accuracy assessment
for the multitemporal crop dataset are shown in Fig. 10 and
Table II. Due to the SVM with RBF kernel handle nonlinear
data more efficiently than the random forest, the classification
results show that the SVM model outperforms the random forest
model. Furthermore, it can be seen that the proposed CNN-
Transformer model yields more accurate results than the other
models. Specifically, as shown in Table II, compared with RF,
CNN-transformer model increases the accuracy significantly by
6.12% of OA, 5.61% of AA, and 0.0692 of the Kappa coefficient,
respectively. Compared with SVM-RBF, multitemporal CNN
and CNN-LSTM, the increments of OA, AA, Kappa coefficient
obtained by CNN-transformer model are 4.86%, 5.12%, 0.0548,
and 1.68%, 2%, 0.0189, and 2.28%, 2.66%, 0.0257, respectively.

According to the analysis of classification accuracies, RF and
SVM-RBF are not efficient in distinguishing between similar
crops such as corn and rice, walnuts and cherries because of
their similar phenological cycles. Compared with RF and SVM-
RBF, deep-learning based multitemporal CNN model which has
powerful feature expression ability can mine the phenological
features of similar crops to improve the crop discrimination.
Compared with RF and SVM-RBF, the misclassification rate
of multitemporal CNN and CNN-LSTM model for walnuts
and cherries is significantly reduced. CNN-transformer model
proposed in this article is better than multitemporal CNN model
in expressing the sequence information and distinguishing the
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Fig. 10. Confusion matrix of different methods for the study dataset. (a) RF-200. (b) SVM-RBF. (c) Multitemporal CNN classifier. (d) CNN-LSTM classifier.
(e) CNN-Transformer classifier.

TABLE II
CLASSIFICATION ACCURACIES OF DIFFERENT TECHNIQUES IN PERCENTAGES FOR TEST SAMPLES

The best accuracy in each row is shown in bold.

subtle differences of the sequence, compared with multitemporal
CNN, the misclassification rate of corn and rice is reduced by
4%, and walnuts and cherries by 3%.

In the experiments, we train the proposed CNN-transformer
model on a machine with four NVIDIA 1080ti GPUs and
TensorFlow library. The training times of different methods are
shown in Table III. It is expected that the training time of deep
neural network model is longer than the traditional methods,
however, as shown in Table IV, the deep neural networks have
an advantage in testing time.

TABLE III
STATISTICS OF TRAINING TIME (MIN)

TABLE IV
STATISTICS OF TESTING EFFICIENCY (PIXELS/S)
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Fig. 11. Multitemporal NDVI profiles across one year for various crops: corn,
rice, alfalfa, clover, grapes, almonds, walnuts, grass, cherries, the safflower.

V. DISCUSSION AND CONCLUSION

Multitemporal profiles of NDVI represent the growth and evo-
lution of crops, and different profiles correspond to different crop
types and phenology. The NVDI profiles of a certain category
in sample set are roughly consistent with same phenological
cycles, so, to compute the multitemporal NDVI profile of each
sample and further average the sample curves for each category,
we can obtain the average temporal NVDI profiles for each
crop type, as shown in Fig. 11. Among these crops, corn, rice,
and safflower are summer or autumn crops, the NDVI profiles
of these crops have obvious growth and development stages
in spring, and a drying stage in autumn. However, almonds,
walnuts, and cherries, these deciduous or semievergreen trees

Fig. 12. (a) Comparison of similar phenological cycles: the NDVI profiles of
corn, rice, and safflower. (b) Self-attention weights of the first encoder layer.

have no obvious growth period, but the NVDI profiles also
reflect the green condition of these trees. In addition, alfalfa
and clover, these herbaceous plants have no sudden changes in
the multitemporal NDVI profiles throughout the whole year. In
summary, all the differences of crops can be described by the
profiles of Fig. 11.

To further analyze crops with similar phenological cycles, as
shown in Figs. 12 and 13, we perform a comparison of corn, rice,
and safflower, as well as the comparison of almonds, walnuts,
and cherries.

Fig. 12(a) shows the phenological differences of corn, rice,
and safflower. With using these crops with similar phenology
to train the CNN-transformer, the model can get the differences
between these crop phenology. For a test crop sample, Fig. 12(b)
indicates the self-attention weights of the first encoder layer. The
lower sequence in the figure (b) represents the multitemporal
input of the encoder layer1, and the upper sequence indicates
the self-attention encoding output. In order to further analyze the
self-attention weights between the input and output sequences,
we visualize part of the self-attention weights of the output
sequence. Self-attention weights between output sequences can
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Fig. 13. (a) Comparison of similar phenological cycles: the NDVI profiles of
almonds, walnuts, and cherries. (b) Self-attention weights of first encoder layer.

be expressed in different colors, the dark colors represent larger
weights, while light colors mean smaller weights. From the
weight visualization in figure (b), it can be seen that the weights
of the self-attention have the larger values in the temporal
periods: 0–16, 24–40, and 50–60, which reflects the most ob-
vious phenological differences between crops in these temporal
periods. That is, the weights reflect the attention to phenological
differences, which can improve the discrimination accuracy of
similar crops.

Fig. 13(a) represents the phenological differences of almonds,
walnuts, and cherries. Similar to Fig. 12(b), Fig. 13(b) also
expresses self-attention weights of first encoder layer. And tem-
poral periods of 0–20 and 40–60 have the larger weight values,
which indicates the subtle phenological differences are mainly
in these periods.

From the above analysis, we find that the phenological dif-
ferences of some crops are mainly manifested in subtle periods.
Benefitting from the tense multitemporal data of 65 in one year,
as well as the powerful self-attention module to express the
temporal sequence attention, we can get better classification
results. In other words, the attention periods contribute more

to the classification results, and the discrimination of subtle
differences can be realized through self-attention mechanism.

In summary of this article, we propose the CNN-transformer
networks to perform crop classification on multitemporal multi-
spectral dataset. As more and more Earth observation satellites
are put into use, we can obtain dense multitemporal remote
sensing images. A study dataset with 65 acquiring dates is
collected from Sentinel-2 A/B and Landsat-8 in the article. The
multiband images of sensors have different spatial resolutions,
and then we use transposed convolution which can extract spatial
structure information of multibands to fuse the spatial-spectral
features. Multitemporal data can be viewed as a sequence of
features. To deal with the sequence information, we borrow the
transformer architecture from the knowledge of NLP, which has
the powerful modeling capability of sequence information, to
model the correlation between time series in crop classification.
In the networks, after first obtaining the unified multitemporal
features, we get the spatial-spectral features and position embed-
dings of the sequence information. Second, the encoder module
derived from transformer is used to express the correlation of
the sequence, and by stacking encoder modules with four layers,
we can obtain the depth pattern characteristics of the sequence.
Third, we use the feed-forward layer to extract the category
features of crops. Finally, the crop label is predicted by softmax
output layer. In the experiments, the results have proved that the
proposed CNN-transformer method can achieve the excellent
performance compared with other traditional methods.

This method utilizes the final output sequence of the multi-
layer encoder module to extract the category feature. The outputs
of different encoder layers can express the sequence correlation
of different levels. In the future, it can be considered to fuse the
output feature sequences of different layers, which can better
utilize the relationship between the various levels of sequence
information and improve the performance of the model.
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