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Abstract

Co-adaptive training paradigms for event-related desynchronization (ERD) based brain-computer interfaces (BCI) have
proven effective for healthy users. As of yet, it is not clear whether co-adaptive training paradigms can also benefit users
with severe motor impairment. The primary goal of our paper was to evaluate a novel cue-guided, co-adaptive BCI training
paradigm with severely impaired volunteers. The co-adaptive BCI supports a non-control state, which is an important step
toward intuitive, self-paced control. A secondary aim was to have the same participants operate a specifically designed self-
paced BCI training paradigm based on the auto-calibrated classifier. The co-adaptive BCI analyzed the electroencepha-
logram from three bipolar derivations (C3, Cz, and C4) online, while the 22 end users alternately performed right hand
movement imagery (MI), left hand MI and relax with eyes open (non-control state). After less than five minutes, the BCI auto-
calibrated and proceeded to provide visual feedback for the MI task that could be classified better against the non-control
state. The BCI continued to regularly recalibrate. In every calibration step, the system performed trial-based outlier rejection
and trained a linear discriminant analysis classifier based on one auto-selected logarithmic band-power feature. In 24
minutes of training, the co-adaptive BCI worked significantly (p = 0.01) better than chance for 18 of 22 end users. The self-
paced BCI training paradigm worked significantly (p = 0.01) better than chance in 11 of 20 end users. The presented co-
adaptive BCI complements existing approaches in that it supports a non-control state, requires very little setup time,
requires no BCI expert and works online based on only two electrodes. The preliminary results from the self-paced BCI
paradigm compare favorably to previous studies and the collected data will allow to further improve self-paced BCI systems
for disabled users.
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Introduction

Performing specific mental tasks such as movement imagery

induces spatio-spectrally specific power decreases (event-related

desynchronization, ERD) and increases (event-related synchroni-

zation, ERS) in oscillatory bio-electrical activity as measured by

the electroencephalogram (EEG) [1,2]. ERD-based brain-com-

puter interfaces (BCIs) use machine learning techniques to

translate patterns of such power changes into control signals [3].

This form of direct communication between brain and environ-

ment does not rely on the typical muscular output pathways of the

body and can hence serve as assistive technology for individuals

with severe motor impairment [4–7]. Intuitive, on-demand BCI

control, independent of system cues has previously been demon-

strated in healthy [8] and disabled users [9,10] using self-paced

BCI systems. For self-paced operation, the BCI ideally detects

whether the user is in a state where s/he intends to convey

commands (‘‘control state’’) or not (‘‘non-control state’’). The BCI

then triggers commands only in the control state.

ERD-based BCIs can be a promising assistive technology. Their

operation, however, is a skillful action that can require a varying

amount of training [11]. The typical approach to setup ERD-

based BCIs is to first (1) record EEG while the user performs

specific mental tasks in a cue-guided paradigm. A BCI expert then

(2) trains a statistical classifier based on the collected data. This

classifier is then used to (3) provide feedback during an online

training session. To attain effective BCI control using a small

number of electrodes (e.g. less than 16), it is common to analyze

the data from online sessions and to re-train classifiers over

multiple sessions. Through this feedback training, the user ideally

learns to produce better discriminable patterns of brain activity.

This method has been shown to be effective ([4,5,7,9]), but takes

time and can be strenuous for the user. Using a high number of

electrodes with this conventional training approach can lead to

highly effective ERD-based control in only one day of training in

able-bodied users ([12]), but is slightly less practical due to the

longer setup time.

Co-adaptive ERD-based BCIs on the other side, typically

provide feedback for the user’s brain-activity as early as possible

and continuously adapt the underlying classifier model. In healthy

individuals, co-adaptive ERD-based BCIs have proven highly

effective both using a low (c.f. [13–15]) and a high number of EEG

electrodes (c.f. [16]). To a limited extent, co-adaptive ERD-based

BCIs have also been shown to be effective for users with severe

motor impairment [5,17,18].
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As of yet, there is no previous work that evaluates the suitability

of auto-calibrating and co-adaptive training approaches, to

establish ERD-based BCI control for a representative sample of

novice users with severe motor impairment. In particular, no

previous work in this research direction involved a non-control

state which is an important step toward intuitive self-paced

operation. Leeb and colleagues ([7]) trained 24 users with motor

impairment in a conventional cue-guided paradigm over a

maximum of ten sessions, so that half of the users were eventually

able to control a spelling application or a tele-presence robot.

Among other things, the authors identified auto-calibration and a

non-control state especially for self-paced operation as important

future research directions. Previous publications about self-paced

operation in users with motor impairment were mostly case-studies

using conventional, non-automated setup protocols, that required

a BCI expert and training over a number of sessions [9,10,19].

Our primary aim in this work is to evaluate the effectiveness of a

cue-guided, auto-calibrating and online re-calibrating ERD-based

BCI training paradigm with a large group of 22 (20 novice) users

with severe motor impairment. The BCI requires only six scalp

electrodes overlaying the sensorimotor cortex and provides real-

time feedback based on only two of these electrodes. The system

starts collecting cue-guided mental activity for movement imagery

of left and right hand and a non-control class. After approximately

five minutes the system auto-calibrates and proceeds to provide

visual online feedback for classifying the non-control state against

the movement imagery of the particular hand that allowed for

higher statistical discriminability. As a secondary aim we want to

present preliminary results from a specifically designed self-paced

training paradigm that is based on a low-bandwidth user interface

adapted from literature [20].

Methods

Recording setup
Six EEG channels were recorded for the BCI. Ten additional

channels were recorded for later offline analysis (not presented in

this paper). The active electrodes were placed according to the 10/

20 System of Electrode Placement (see Figure 1). The signal was

sampled at 256 Hz with a band pass filter between 0.5 and 100 Hz

and a notch filter at 50 Hz. A biosignal amplifier (g.tec Medical

Systems, Graz, Austria) was used for recording.

Participants
Twentytwo volunteers with severe motor impairment partici-

pated in our study (age 37.8 + 16.0 (SD) years; six female). All

participants suffered from motor impairment in all four extrem-

ities. The medical conditions were either cervical spinal cord

injury (SCI; ASIA A to D according to [21]), polyneuropathy,

traumatic brain injury (TBI) or multiple sclerosis (MS). See Table 1

for details. Participant P18 suffered from paralysis of the right eye.

All other end users had normal or corrected to normal vision.

Participant P17 was in ‘‘Locked-in State’’ according to the

definition in [22]. All measurements were conducted at the

Institut Guttmann Neurorehabiliation Hospital (Barcelona, Spain).

The study, including the measurement protocol and the consent

procedure were approved by the local ethics board, ‘‘Comitè

d’Ètica Assistencial de l’Institut Guttmann’’. All participants gave

informed, oral consent. In addition, written consent was obtained

for every participant. The signed consent forms are stored with the

participants’ clinical files. In many cases, written consent had to be

provided by the participants’ legal representatives as many

participants were not able to write due to tetraplegia. The

participants were instructed in person by caregivers with the

support of presentation slides as briefing material.

Data collection
We recorded all EEG data in segments (‘‘runs’’). One run lasted

one to seven minutes. See Figure 2 for an overview. For the co-

adaptive paradigm we collected four runs of data (six minutes per

run). There were 36 trials per run and 144 trials total for two

classes per participant. For the self-paced paradigm, we recorded

three runs of data. The first of these three runs was one minute

long and was used to automatically adapt the bias of the classifier.

The other two runs were seven minutes long. Two participants

(P04 and P10) did not participate in the measurements for the self-

paced paradigm.

Co-adaptive BCI paradigm
The co-adaptive paradigm started collecting data trials for one

non-control class and two movement imagery classes (see Figure 3,

Panel (A) and (B)). Cues were presented as audio-playback of

spoken words and large, well discernible visual shapes, to make the

paradigm usable for individuals with visual impairment. Every

trial started with a reference period where a white cross was

displayed from second zero to two. For this time, participants were

instructed to visually fixate the white cross and relax with eyes

open.

The visual and audible cue for one of initially three classes was

presented at second two. The sequence of cues was random: The

class non-control was indicated by a white cross and the spoken word

‘‘relax’’. For this class, participants were instructed to continue to

relax with eyes open and to focus on the white cross. For class left

and right, the participants were instructed to sustain kinaesthetic

movement imagery (palmar grasp, [23]) of the left or the right

hand over the whole imagery period until second seven. The two

Figure 1. Recorded scalp electrode positions. The three bipolar
derivations, indicated by the arrows were considered by the co-
adaptive BCI. Feedback was provided from only one of these bipolar
derivations. The bipolar derivation selected in the last re-calibration,
was also used for the self-paced paradigm. The black circles mark
electrodes, recorded for future analyses. The reference electrode was at
the left ear-lobe (Ref.) and the ground electrode at AFz (Gnd.).
doi:10.1371/journal.pone.0101168.g001
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classes were indicated by a left and right pointing arrow and the

audible cues were the spoken words ‘‘left’’ and ‘‘right’’. No

feedback was provided during the ‘‘initial calibration phase’’. In

the background the system continuously identified artifact-

congested trials in two steps: First by thresholding amplitude,

kurtosis and probability of the band-filtered EEG [24] and second,

by identifying trials where at least one feature is an outlier to the

distribution of the values for all other trials [15].

As soon as nine artifact-free trials per class (TPC) were available,

the system trained one linear discriminant analysis (LDA) classifier

for class left against class non-control and another one for class right

against class non-control. For each classifier, the system chose one of

six logarithmic band power features (m~½9,13� Hz and b~½16,26�
Hz from the bipolars at C3, Cz and C4). The BCI then selected

the one MI class with higher cross-validation classification

performance against class non-control and proceeded to provide

continuous, real-time visual feedback only for these two classes for

the rest of the measurement (see Figure 3, Panel (C)).

In this ‘‘online phase’’, the system continued to perform trial-

based outlier rejection and re-calibrated the system whenever five

new artifact-free TPC were available (see Figure 3, Panel (A)). In

every calibration step, the system also trained an autoregressive

(AR) filter model (order 11) on all artifact-free trials. See Appendix

A for more details on the calibration procedure and how the

Table 1. Information about the severely impaired participants.

Hand Months

User Age Sex dominance since injury Medical Condition Disability

P01 66 F Right 8 Guillain-Barré syndrome Tetraparesis

P02 21 M Right 2 SCI C4, ASIA A Tetraplegia

P03a 46 M Right 24 SCI C4, ASIA A Tetraplegia

P04 19 M Right 6 SCI C3, ASIA A Tetraplegia

P05 39 M Right 19 SCI C6, ASIA A Tetraplegia

P06 45 M Right 3 SCI C7, ASIA C Tetraplegia

P07 60 M Right 4 Brain Anoxia Tetraplegia

P08 25 M Right 11 SCI C4, ASIA A Tetraplegia

P09 19 M Left 5 SCI C4, ASIA B Tetraplegia

P10a 43 F Right 280 SCI C4, ASIA A Tetraplegia

P11 21 M Right 6 SCI C5, ASIA B Tetraplegia

P12 65 F Left 4 SCI C1, ASIA C Tetraplegia

P13 38 M Right 3 SCI C4, ASIA D Tetraplegia

P14 19 M Right 66 SCI C4, ASIA A Tetraplegia

P15 47 M Right 12 SCI C7 and TBI, ASIA A Tetraplegia

P16 42 M Right 147 SCI C6, ASIA A Tetraplegia

P17 23 M Right 6 TBI Locked-in state

P18 34 F Right 74 Multiple Sclerosis Tetraplegia

P19 28 M Left 5 TBI & brachial plexus injury Tetraparesis

P20 24 F Right 64 SCI C2, ASIA A Tetraplegia

P21 41 F Right 9 Hemorrhagic stroke Tetraplegia

P22 66 M Right 15 Polyneuropathy Tetraparesis

Mean 37.8 35.1

SD 16.0 64.9

The participants are sorted by co-adaptive BCI performance. The superscript ‘‘a’’ marks the two participants who had used ERD-based BCIs before. TBI stands for
traumatic brain injury. Functional scoring for spinal cord injury (SCI) is according to the American Spinal Injury Association (ASIA, [21]).
doi:10.1371/journal.pone.0101168.t001

Figure 2. Overview of the measurement procedure. The runs colored in blue were recorded with the co-adaptive paradigm (see Figure 3). The
runs colored in green were recorded with the self-paced paradigm (see Figure 4). During the non-control runs, we recorded EEG while participants
relaxed with eyes open looking at a black screen. These non-control runs are not analyzed in this paper.
doi:10.1371/journal.pone.0101168.g002
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created classifier model was used in the self-paced BCI training

paradigm.

During online operation, the system then applied the inverse

transfer function of the AR filter to the EEG and thresholded the

residual (prediction error) to detect artifactual activity in real-time

[25]. Whenever artifactual EEG was detected, the system

displayed a yellow dot (see Figure 3, Panel (C)). The yellow dot,

remained on display for 0.5 s after offset of artifact detection. The

end users were instructed to try to avoid any activity that would

produce EEG artifacts.

To maximize the training effect and motivation in our group of

mostly novice users, we only provided positive feedback between

second 3.75 and 7 [15,26,27]. Specifically, only when the class-

label predicted by the LDA matched the true class-label, a yellow

feedback bar was displayed within the yellow rectangle seen in

Figure 3, Panel (C). The yellow bar extended in length from left to

right in proportion to the LDA distance. The users were instructed

to try to extend the bar as far as possible. Whenever the predicted

class-label did not match the true class-label of the cue, the yellow

rectangle stayed empty.

If the predicted class-label and the true class-label matched for

longer than a total time of two seconds between second three and

seven, the system displayed a smiley and played an audio

recording saying ‘‘excellent’’ starting with the pause at second

seven. The length of the pause was random between two and three

seconds.

Self-paced BCI paradigm
The self-paced paradigm was based on a validated low-

bandwidth input user interface (UI) used in a very similar form

in the assistive technology prototype BrainAble [20,28,29] (see

Figure 4). It typically displays around six menu items in a circular

arrangement of segments. An arrow points from the center of the

user interface toward one segment at a time. The head of the

arrow rotates clockwise around the center so that it takes four

seconds to rotate over one segment. The length of the arrow stays

at a fixed short length in case the non-control class is detected. The

arrow grows proportional to the LDA distance in case movement

imagery is detected. When the arrow length exceeds a predefined

threshold, the arrow turns red. Keeping the arrow above the

threshold for a certain uninterrupted period of time would usually

trigger a selection of the menu item in the segment that the arrow

is pointing at.

To evaluate the efficacy of this self-paced BCI training

paradigm in a reliable and controlled way, we had to instruct

the participants as to which menu items to select. We therefore

displayed dynamically updated instructions in a dialog box above

the UI (see Figure 4). The next target was determined randomly to

be two to five segments clockwise after the last target item or the

position of the arrow at the beginning of the run. We found this

setup to be closest to the real-world case where the user decides

autonomously which item to select. The participants were

instructed to look at the screen and do nothing, whenever the

arrow was pointing to a segment other than the target. For when

the arrow was pointing to the target segment, participants were

instructed to perform the previously trained movement imagery

(either right or left hand).

To improve motivation [15,26,27] and to avoid inducing EEG

non-stationarities as a result of ‘‘perceived loss of controllability’’

[30], we displayed the actual feedback only when the arrow was

pointing to a target segment. When the arrow was pointing at non-

target segments we displayed artificially generated feedback, where

arrow length varied with gaussian noise around a length below the

activation threshold. For target segments, the users always had full

control. For every uninterrupted full second users managed to

extend the arrow beyond the activation threshold they scored one

point (maximum of four possible). If the users scored at least one

point, the paradigm stopped for three seconds at the end of the

segment and displayed the points in the instruction panel as seen

in Figure 4, Panel (C).

Evaluation
For the co-adaptive paradigm we computed the accuracy for

every sample point between second three and seven in the trial and

Figure 3. Schematic description of the co-adaptive BCI paradigm. Panel (A) shows how the system initially collected trials for three classes
non-control, left and right hand movement imagery (MI left/right hand). Panel (B) shows the trial structure for the ‘‘Initial calibration phase’’. After nine
‘‘artifact-free’’ trials per class (TPC) were collected the system auto-calibrated, selected one of the hand MI classes and continued to provide visual,
real-time feedback. Panel (C) shows the trial structure for the ‘‘Online phase’’. The system re-calibrated whenever five new artifact-free TPC were
available.
doi:10.1371/journal.pone.0101168.g003
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report the peak value. To compare with results in literature, we

also computed the Youden index [31] as the difference between

true positive and false positive rate at an optimized threshold and

dwell-time (range 0.5 to 4 s in steps of 0.5 s). The Youden index

ranges from -1 (all targets missed, all non-targets hit) to +1 (all

targets hit, all non-targets missed). We identified better than

chance performance by comparing to confidence intervals around

the theoretical chance level [32]. The threshold level of chance

accuracy was 61.0 % (54 TPC; p = 0.01) for the co-adaptive

paradigm.

For computing accuracy in the self-paced paradigm we

considered true positive (TP), false positive (FP), true negative

(TN) and false negative (FN) events. We counted one activation

whenever the arrow was continuously extended above threshold

for one second. Activations that were triggered while the arrow

was pointing at the current target segment were counted as TP. All

other activations were counted as FP. Notice, FP activations were

not displayed to the user during online operation. If there was no

activation throughout a segment, we counted one FN activation in

case of a target- and one TN activation in case of a non-target

segment. From all segments on average 31.2% were targets, the

rest were non-targets. For computing accuracy we corrected the

confusion matrices for this class imbalance so that the theoretical

chance level was 50%. We conservatively computed the level of

statistically significant (p = 0.01) chance accuracy based on the

number of target segments for every end user. For statistical

comparisons with results from literature we used undirected t-tests

for independent samples.

Results

The co-adaptive paradigm worked with a peak online accuracy

of 68.6 + 8.2 (SD) %. The performance for 18 of 22 participants

was significantly better than chance (p = 0.01). Figure 5 shows the

overall peak accuracies as blue dots and the peak accuracies within

the session as grey dots. In addition, the figure shows the evolution

of feature separability as measured by the Fisher criterion over the

recording session for every end user. The system auto-selected the

classes left and right hand movement imagery equally often. From

the 50% of end users who scored the highest online accuracy 8 of

11 were using right hand movement imagery. Figure 6 shows which

features were most dominant in the final calibration step. We

found Beta-Cz to be most dominant, followed by Beta-C3, Mu-

C3, Beta-C4, Mu-C4 and Mu-Cz. Figure 7 shows exemplary

power spectra for the three users, for whom the system worked

most effectively. Two end users did not participate in the

measurements for the self-paced paradigm. For the other 20

participants, we individually corrected the confusion matrices for

class imbalance and found an overall accuracy of 64.4 + 11.0

(SD) %. The accuracies were significantly higher than chance

(p = 0.01) in 11 of 20 end users. Table 2 shows detailed results for

both paradigms including the accuracies from the corrected

confusion matrices for the self-paced paradigm.

Discussion

Effectiveness of the cue-guided, co-adaptive paradigm
The co-adaptive paradigm effectively provided better than

chance online feedback for the majority (81.8%) of a representa-

tive sample of mostly novice severely disabled end users diagnosed

with SCI, TBI, polyneuropathy or MS. The system used only two

electrodes for online control. At least in healthy users, we

previously found that scalp locations with relevant features tend

to stay the same between sessions for the same individual [15].

Future training protocols could hence use six electrodes in the first

session and mount only the two most relevant electrodes in

consecutive sessions. As to feature relevance: Beta features were

dominant for most of the users in the final calibration step. Mu

features were mostly relevant at position C3; less at the positions

C4 and Cz. Features from position C4 were dominant least

frequently. We speculate that the factor handedness (19 from 22

users were right handed) might have influenced this outcome. The

Figure 4. The self-paced BCI paradigm in different states of operation. The head of the arrow was generally rotating clockwise around the
center. Panel (A) shows how the arrow is short and colored in blue, whenever class non-control is detected. The dialog above the window indicated
the next target item. Panel (B) shows how the arrow changed its color to red, when movement imagery was above the activation threshold. The user
scored one point for every second the arrow stayed above this threshold in a target segment. Panel (C) shows how the user received feedback if s/he
scored at least one point. In this case the arrow stopped rotating and turned grey. After a refractory period of three seconds the paradigm returned
back to the initial state depicted in Panel (A).
doi:10.1371/journal.pone.0101168.g004
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exemplary spectra for the three most successful users in Figure 7

look as expected, and show how decreases in sensorimotor rhythm

power were used to control the BCI systems.

Comparing to cue-guided, co-adaptive paradigms in
healthy users

Vidaurre and colleagues ([13]) presented a highly effective, co-

adaptive ERD-based BCI that used 6 electrodes in tests with 12

healthy, novice volunteers. Correcting for statistical chance

(p = 0.01) [32] we found our co-adaptive paradigm to work on

average 6.7% better than chance (22 end users, none rejected, 20

BCI-novice). The BCI of Vidaurre and colleagues worked on

average 11.6% better than chance (12 users, 3 rejected). Even

though, this rejection of participants likely skewed the results in

favor of the BCI in Vidaurre et al., there is still no significant

difference between the results (p = 0.099). This result is highly

encouraging, as it indicates that a co-adaptive BCI that supports a

non-control state and uses only two electrodes online can work in

severely disabled end users with an accuracy comparable to a

slightly more complex system in healthy users.

Figure 5. Online performance for all 22 end users. The blue dots show the overall peak accuracy, while the grey dots depict within session
performance. The color coded maps show the Fisher criterion [48] over time (left to right) for the features m C 3, b C 3, m C z, b C z, m C 4 and b C 4 (bottom
to top).
doi:10.1371/journal.pone.0101168.g005

Figure 6. Feature dominance after calibration. Shows for what percentage of users, the different logarithmic band-power features were
selected in the final classifier calibration step.
doi:10.1371/journal.pone.0101168.g006
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Figure 7. Overview of power spectra. The three panels show power spectra for the three participants for whom the BCI system worked most
effectively. For participant P01 and P03, the system selected the b-feature and for participant P02 the a-feature. Here, all three users control the
system by causing oscillatory power of the sensorimotor rhythms to decrease (event-related desynchronization, c.f. [2]).
doi:10.1371/journal.pone.0101168.g007

Table 2. Detailed results for both paradigms.

Co-adaptive BCI Self-paced BCI

User Acc. (%) Youden index Selected MI Feature Acc. (%)

P01 84.7* 0.773 Right b C z 94.2*

P02 82.6* 0.715 Left m C 3 75.6*

P03a 82.4* 0.686 Right b C 3 82.1*

P04 78.8* 0.573 Right m C 3 61.8*

P05 75.7* 0.373 Left b C 4 50.2

P06 75.0* 0.542 Left b C z

P07 74.5* 0.518 Right b C z

P08 69.9* 0.252 Right m C 4 58.5

P09 69.4* 0.356 Rightb b C z 73.4*

P10a 69.2* 0.401 Right b C z 69.8*

P11 66.7* 0.218 Right m C 3 75.1*

P12 64.9* 0.227 Leftb b C 3 51.8

P13 64.0* 0.258 Left b C 4 63.4*

P14 63.4* 0.268 Right b C 4 62.9*

P15 63.0* 0.120 Right m C 3 59.4

P16 62.7* 0.286 Left b C 4 53.3

P17 62.7* 0.152 Left b C 3 55.3

P18 62.0* 0.048 Left b C z 58.2

P19 60.4 0.188 Leftb b C 3 63.3*

P20 60.0 0.299 Left b C z 59.2

P21 59.0 0.130 Right b C 3 61.2*

P22 58.9 0.144 Left b C 3 58.8

Mean 68.6 0.342 64.4

SD 8.2 0.208 11.0

The accuracies for the self-paced paradigm were corrected for class imbalance, so that results are comparable. The superscript ‘‘a’’ marks the two end users who had
previously used ERD-based BCIs. The asterisks indicate significantly better than chance (p = 0.01) accuracy. The superscript ‘‘b’’ marks left-handed users. MI stands for
motor imagery and Acc. abbreviates accuracy.
doi:10.1371/journal.pone.0101168.t002
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Comparing to cue-guided paradigms in users with motor
impairment

Leeb and colleagues ([7]) validated a conventional ERD-based

BCI training protocol with 24 end users (11 with tetraplegia) in a

maximum of ten training sessions. The authors discuss, how auto-

calibrating and co-adaptive training approaches could expedite

BCI setup. Based on their findings, the authors continue to explain

how allowing for a non-control state ‘‘becomes essential for

mentally operating devices over long periods’’. Our system

implements these thoughtful propositions in that it offers a non-

control state, automatically selects the most effective class-

combination during auto-calibration and regularly re-calibrates

online. The system presented by Leeb and colleagues reached a

high Youden index above 0.4 for 41.7% of end users after a

maximum of ten training sessions. Our co-adaptive system

performed above the same threshold for 31.8% of end users after

24 minutes of training. That means less users reached the same

performance threshold with our system in the first session. Still,

our system advantageously complements this existing, effective

approach, as it offers a non-control state and completely removes

the requirement for a BCI expert (even for calibration). After the

caregiver mounts the six electrodes and starts the system, users can

typically train with real-time feedback based on two electrodes

after less than five minutes. Based on literature we would also

expect performance of the co-adaptive paradigm to improve over

multiple training sessions [5,13,15].

Comparing to cue-guided paradigms in users with SCI
Pfurtscheller and colleagues ([33]) recorded 16 EEG channels

from 8 para- and 7 tetraplegic individuals with SCI at lumbar

(NL = 1), thoracial (NTh = 7) and cervical (NC = 7) level who were

instructed to perform three types of movement imagery in a cue-

guided paradigm. Using manual outlier rejection and common

spatial patterns (CSP, [34]), the authors found the highest offline

classification accuracy between movement imagery of the left hand

and both feet. We used these results for comparison. Correcting

for statistical chance [32] we found the system in Pfurtscheller et

al. to perform 8.2% better than chance (80 TPC; p = 0.01), while

our co-adaptive system performed 7.9% better than chance (15

users with SCI; 54 TPC; p = 0.01). We found no significant

performance difference (p = 0.943). This result is encouraging as

Pfurtscheller and colleagues discuss how their approach was

successful with only one of the tetraplegic users. Our co-adaptive

system worked better than chance for 14 of 15 tetraplegic end

users. Our system classified based on 2 instead of 16 electrodes and

automatically provided online feedback after less than five

minutes. Our system did further not require manual artifact

rejection, feature selection, classifier training or any other

interaction of a BCI expert. Most importantly our system supports

a non-control state which is important for intuitive, self-paced

interaction.

Conradi and colleagues ([35]) calibrated an ERD-based BCI

using CSP on 30 minutes of high density EEG (64 electrodes) from

7 BCI-novice individuals with cervical SCI at ASIA levels A or B.

The authors found discriminable ERD patterns in four of the

participants, computed classifiers and proceeded to record online

feedback runs. In the condition ‘‘cursor on’’, which is most similar

to our setup the system worked at 67.7% accuracy (computed as

the weighted average of accuracy values in Table 1 in [35]). For

our sample of 15 users with SCI (13 BCI-novice; none excluded,

ASIA A or B, three with C or D) we found a comparable average

online accuracy of 69.9 + 7.4 (SD) %. In comparison, our system

does not deliver much higher performance, but our implementa-

tion complements the existing, effective approach in other ways:

Our system does not require BCI expert interaction and provides

online feedback automatically after less than five minutes. The

caregiver needs to mount only six electrodes of which only two are

used for control, which may be more practical for some

applications. Finally, our system offers a non-control state, which

is important for self-paced BCI operation.

Rohm and colleagues ([36]) showed how 9 of 10 end users (one

rejected due to a classifier problem) with cervical SCI (ASIA A or

B) achieved an overall accuracy of 65.7% in a high number of

training sessions. While the online accuracy with our co-adaptive

system at 69.9 + 7.4 (SD) % is not much higher, there are some

ways how our system complements this existing approach: Instead

of more than 13 electrodes, our system requires only six electrodes,

from which it only uses two online. Instead of offline training and

manual calibration, our system provides feedback automatically

after less than five minutes. Most importantly our system supports

a non-control state which is important for self-paced operation.

Effectiveness of the self-paced BCI training paradigm
Several previous case studies ([10,19,37]) demonstrated success-

ful self-paced BCI control in individuals with SCI. A recent study

showed successful and reasonably flexible control of a spelling

application and a tele-presence robot in a large group of users with

motor impairment [7]. All of these end users had undergone

extensive BCI training typically over multiple sessions and in most

cases these systems did not support a non-control state. In our first,

simple attempt we found the present self-paced paradigm to work

significantly better than chance (p = 0.01) in 11 of 20 end users

(majority with SCI; 18 BCI novice). With the exception of P19 and

P21, the end users, who achieved better than chance accuracy

with the self-paced paradigm had generally also achieved better

than chance accuracy previously with the co-adaptive paradigm.

Our present approach can complement the effective, existing

approaches in that it allows for comparably fast (24 minutes) and

fully automatic setup and training without any BCI expert

interaction. Typical training protocols to improve performance,

like selecting optimal task combinations ([12,38–40]) were

performed automatically. Finally, the present self-paced paradigm

supports a non-control state and uses only two electrodes during

operation.

Limitations
A limitation of the present setup was that the self-paced

paradigm did not work better than chance for as many end users

as the co-adaptive paradigm. This was anticipated and can be

explained by the fact that in favor of stability we did not yet use

fully automatic optimization of the threshold but chose a fixed

value for all users. The threshold was fixed to a value which

allowed to easily trigger activations with the predefined activation

dwell-time of 1 s in the self-paced paradigm. By allowing the users

to trigger activations in the target segments, while suppressing

erroneous feedback in the non-target segments we were aiming to

make this training paradigm more enjoyable and motivating for

our mostly novice end users ([27]). In addition we wanted to avoid,

that the users’ perception of mistakes would introduce additional

non-stationarities in the EEG ([30]). Based on the clean data we

collected from these end users we can do further analyses and

simulations in the future to find system configurations that can

automatically optimize threshold, dwell-time and features to allow

for more robust self-paced operation.

Future prospects
In this work we used a co-adaptive BCI paradigm to quickly

establish a communication and control channel for users with SCI,
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TBI, polyneuropathy or MS. The co-adaptive paradigm already

supported a non-control state and the generated classifiers worked

well in the presented self-paced paradigm. Additional workload

measurements in future experiments could help to objectively

quantify the merit of supporting a non-control state. Based on the

collected data we are working to improve our signal processing

methods to attain higher system efficacy. In addition we plan to

explore the impact of using non-motor tasks and multi-session

training. The present system selected a user-specific control

strategy automatically based only on cross-validation accuracy

and feature separability. Future implementations could also

consider physiological markers in the decision process. In addition

to the user population in the present study, future research could

also target individuals in minimally conscious state [41]. Finally,

co-adaptive BCI training paradigms could also be evaluated for

their efficacy as tools in neuro-rehabilitation [42] after neural

injuries like stroke [43,44] or SCI [45,46].

Conclusions

We presented a cue-guided, auto-calibrating and online co-

adaptive ERD-based BCI training paradigm that allowed for

significantly better than chance (p = 0.01) control in 18 of 22

severely disabled users (20 BCI-novice). After only 24 minutes of

co-adaptive training, 11 of 20 end users were able to control a self-

paced BCI training paradigm with a control proficiency signifi-

cantly better than chance (p = 0.01). Comparing with literature we

found our co-adaptive BCI to well complement existing, effective

approaches in that it requires no BCI expert, supports a non-

control state and provides feedback based on only two electrodes

automatically after less than five minutes.

Appendix A. Details on classifier calibration and
use

For initial class selection, the typical calibration was performed

for both class combinations left vs non-control and right vs non-control

to select the one class combination that showed higher median

leave-one-out cross-validation (LooCV) test accuracy. Such

choosing of a user-specific task combination had been previously

shown to improve ERD-based BCI control proficiency [12,38–

40]. The calibration procedure always worked in the following

steps on all collected artifact-free trials: First the BCI extracted a

total of six logarithmic band-power features (1 second averaging)

in the bands 9 to 13 and 16 to 26 Hz ([15,47]) from bipolar

derivations at C3 (FC3 - CP3), Cz (FCz - CPz) and C4 (FC4 -

CP4). The system proceeded to select the single feature with

maximum discriminability according to the Fisher criterion (cf.

[48]) in the classification period from second three to seven within

the trial. The BCI then split the classification period into eight

adjacent 0.5 s windows and computed LooCV accuracy for every

one of theses windows. Specifically the system trained an LDA

classifier for the logarithmic band-power values in the 0.5 s time

window and then applied the classifier sample-wise to the feature

of the whole classification period of the test-trial. Averaging across

all test-trials resulted in one accuracy curve of 4 s length for every

training window (eight total). The training window, whose LooCV

accuracy curve yielded the highest median accuracy over these 4 s

was used to finally train the classifier. As a last step the system

trained the AR filter model (order 11) of the real-time artifact

detection method on all artifact free trials [25]. The system re-

calibrated seamlessly in the background whenever five new TPC

were available and the most recently trained classifier model was

always immediately used in the online system. The last classifier

generated in the co-adaptive paradigm was automatically used in

the first run of the self-paced paradigm. With an LDA output

ranging approximately from -1 to 1, the activation threshold was

set statically to 0.5 for all participants. An activation was triggered

whenever participants produced above threshold classifier output

for a fixed dwell-time of at least 1 s. The system automatically

adjusted the bias term of the classifier based on the data recorded

in the first run of the self-paced paradigm.
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