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Abstract

Visual tracking could be treated as a parameter esti-
mation problem of target representation based on obser-
vations in image sequences. A richer target representa-
tion would incur better chances of successful tracking in
cluttered and dynamic environments. However, the di-
mensionality of target’s state space also increases mak-
ing tracking a formidable estimation problem. In this
paper, the problem of tracking and integrating multi-
ple cues is formulated in a probabilistic framework and
represented by a factorized graphical model. Structured
variational analysis of such graphical model factorizes
different modalities and suggests a co-inference process
among these modalities. A sequential Monte Carlo al-
gorithm is proposed to give an efficient approrimation
of the co-inference based on the importance sampling
technique. This algorithm is implemented in real-time
at around 30Hz. Specifically, tracking both position,
shape and color distribution of a target is investigated
in this paper. Qur extensive erperiments show that the
proposed algorithm performs robustly in a large vari-
ety of tracking scenarios. The approach presented in
this paper has the potential to solve other sensor fusion
problems.

1 Introduction

Visual tracking is an important problem in visual
surveillances and vision-based interfaces. One of the
purposes of visual tracking is to infer the states of the
targets from image sequences. It involves some funda-
mental research problems such as object representation
and matching.

Bottom-up and top-down approaches are two kinds
of methodologies to approach the visual tracking prob-
lem. Bottom-up approaches generally tend to construct
object states by analyzing the content of images. Basi-
cally, many segmentation-based methods can be cate-
gorized as bottom-up approaches. For example, blob
tracking techniques group similar image pixels into
blobs to estimate the positions and shapes of the tar-
get. On the contrary, top-down approaches generate
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candidate hypotheses from previous time frame based
on a parametric representation of the target. Tracking
is achieved by measuring and verifying these hypothe-
ses against, image observations. Many model-based and
template-matching methods can be categorized as top-
down approaches. Bottom-up methods could be effi-
cient, yet the robustness is largely limited by the abil-
ity of image analysis. On the other hand, top-down ap-
proaches depend less on image analysis, but their per-
formances are largely determined by hypothesés gener-

‘ating and verification.

Tracking techniques generally have four elements,
target representation, observation representation, hy-
potheses generating, and hypotheses measurement,
which roughly characterize tracking performances and
limitations. To discriminate the target from other ob-
jects, target representation, including target’s geome-
try, motion, appearance, etc., characterizes the target

. in a state space either explicitly or implicitly. It is
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a fundamental problem in computer vision. For ex-
ample, parameterized shapes [12, 13|, and color distri-
butions [6, 17, 23] are often employed as target rep-
resentations. To provide a more constrained descrip-
tion of the target, some methods employ both shape
and color [1, 13, 18, 21]. To add uniqueness in the
target representation, many methods even employ tar-
gets appearance, such as image templates [11, 20] or
eigen-space representation [2], as the target represen-
tation. Motion could be taken into account in target
representations, since different objects can be discrimi-
nated by the differences of their motions. If two objects
share the same representation, it would be difficult to
correctly track either of them when they are close in
the state space. For instance, tracking a person in a
crowd would be a challenging visual task. Closely re-
lated to target representation, observation representa-
tion defines the image evidence of the object represen-
tation. For example, if the target is represented by
its contour, we expect to observe edges of the contour
in the image. Hypotheses measurement evaluates the



matching between hypotheses and image observations.
For example, template-matching tracking method of-
ten takes SSD as the measurement. The evaluation
would be quite challenging when measuring a shape
hypothesis in a clutter background. Although some
analytical results were reported in [3], many current
tracking methods take ad hoc measurements. Hypothe-
ses generating is to produce new hypotheses based on
old estimation of target’s representation and old obser-
vation. Target’s dynamics could be embedded in such
a.predicting process. Intuitively, hypotheses generat-
ing characterizes the search range and confidence level
of the tracking. The Kalman filtering technique gives a
classical example of hypotheses generating under Gaus-
sian assumptions.

Since image sequences contain very rich visual infor-
mation, using single object representation would not
be robust when the target is in a clutter. A hypothe-
sis of a richer target representation would have better
opportunities to be verified according to various as-
pects of image observations. For example, combining
color distribution of the target could largely enhance
the robustness of contour tracking in a heavily clut-
tered background, and integrating shape and color rep-
resentations could incur better tracking against color
distracters. On the other hand, if the target and the
clutter are indistinguishable in terms of their represen-
tations, the tracking has to be almost determined by
the prior knowledge about the dynamics at least in a
short period of time. If such prior dynamics is not
available or we assume random walk for the target, we
could say that the target is intrackable in terms of 2D.
This aperture problem motivates the research of track-
ing and integrating multiple visual cues.

Multiple cues integration could be done in terms of
object representation and observation representation.
Some approaches perform multiple observation mea-
surements, and accumulate the measurements for each
hypothesis {1]. Although robust to some extent, many
methods of combining the measurements from differ-
ent sources are often ad hoc. To integrate shape and
color, many tracking algorithms assume fixed color dis-
tribution [13, 21] for the target to enable efficient color
segmentation. However, such assumption is often in-
valid in practice. Instead of assuming fixed color rep-
resentation, some methods also include color modality
in the target representation [4, 18, 22], in which a mul-
tivariable Gaussian was used to represent both color
and motion parameters. Non-stationary color tracking
methods [17, 23] were also reported in the literature.
Tracking both shape and color would be a formidable
problem, since it increases the dimensionality of the
state space of the target. In this scenario, tracking is
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equivalent to recover the joint states of position, shape
and color.

To approach the problem of tracking multiple cues,
this paper formulates it as a factorized graphical model.
Due to the complexity of such a graphical model,
a wvariational method is taken to approximate the
Bayesian inference. Different modalities in the model
present a co-inference phenomenon. Based on the anal-
ysis of the factorized model, this paper presents an effi-
cient Monte Carlo tracking algorithm to integrate mul-
tiple visual cues, in which the transduction of different
modalities is achieved by the EM iterations.

The factorized graphical model will be presented in
section 2. Section 3 will describe the techniques in
sequential Monte Carlo approaches for tracking prob-
lems. Our proposed approach will be presented in sec-
tion 4, and the details of our tracking implementation
and experiments will be described in section 6.

2 Graphical Model of Tracking

In a dynamic system, the states of the target and
image observations are represented by X; and Z;, re-
spectively. The previous states and measurements are
denoted by X, = (Xy1,...,Xy) and Z, = (Z,,...,Z,).
The tracking problem could be formulated as an in-
ference problem with the prior p(X¢+1|Z,), which is a
prediction density. We have

P(Xi+1lZy1) X P(Zer1XKer1)P(Xev11Zy)
p(Xes1lZy) = /P(Xzﬂ\xt)P(XtIZz)dxt

where p(Z;41|X¢+1) represents the measurement or ob-
servation likelihood, and p(X¢4+1|X:) is the dynamic
model.

The probabilistic formulation of the tracking prob-
lem could be represented by graphical models in Figure
1. At time ¢, the obsevation Z, is independent of previ-
ous states X, _; and previous observations Z,_;, given
current state Xy, i.e., p(Z4|X,,Z,_,) = p(Z:]X}), and
the states have Markov property, ie.., p(X;|X,_;) =

(X Xp-1)-
’*@“‘"“’ Xm‘.*’
OO 6

Figure 1: The tracking problem could be represented by a
graphical model, similar to the Hidden Markov Model.

The tracking problem can be approached by the in-
ference techniques in graphical model. Consequently,
when the dimensionality of the hidden states increases,
the inference and learning would become difficult due



to the exponential increase of required computational
resources. However, a distributed state representation
could largely ease this difficulty by decoupling the dy-
namics. Fox example, target states could be decom-
posed into shape states and color states with such the
architecture shown in Figure 2(a).

—» /fl 7 Zian
o~ T

E -7 o 3
- “l“ .

Z o A

" (b)

(a)

Figure 2: Factorized Graphical Models: (a) The states of
the target could be decomposed into shape states X; and
color states X§ in a factorized graphical model. (b) The
observation could also be separated into Z; and Zg.

Furthermore, the observation could also be sepa-
rated into Z§ and Z¢ for shape and color respectively in
Figure 2(b). Each observation depends on both color
and shape states.

Due to the complex structure of the factorized net-
work, the exact inference would be formidable. One
approach to this problem is statistical sampling-based
methods, such as Gibbs sampling. Another approach
is to approximate the posterior probability p(X,|Z,)
of the hidden states by a tractable distribution Q(X,).
A lower bound on the log likelihood log P(Z,) can be
achieved by such an approximation {10, 14]:

osP(Z) 2 Y QX o fesdd
o Q)
KLQIIP) = ZQ(Xt)log AR

Generally, we can choose Q(-) to have a simpler
structure by eliminating some of the dependences in
P(-), while minimizing the Kullback-Leibler divergence
between P(-) and Q(-) in equation 2. It can be achieved
by a structured variational inference. The basic idea is
to uncouple the Markov chains and replace the true
observation probability of each hidden state by a dis-
tinct variational parameter, which can be varied for the
minimization. We could write:

Q(X,10)

H

1 M T
7 1 Q(XTW)HQ(XTIX'?L,G)

rnm h XmX
ZQHh H IXi2))
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where M is the number of factorized Markov chains,
X7 is the state of the m-th modality at time frame ¢,
hi are the variational parameters, and Zg is a normal-
ization constant. Although general continuous analysis
of such approach is unavailable, [10] presented a struc-
tured variational analysis for the case of discrete hidden
state and observation. A set of fixed point equations
for A to minimize K L(Q||P) were obtained {10]:

hip = g(Z, {E[X}|Z, R Y #m})  (3)
where g(-,-) is a function that details could be found
in the appendix of the paper, E[X}|Z7, h™] = (X)

is the estimation of the hidden state X} at the n-th
uncoupled Markov chain, based on the variational pa-
rameters h™. Using these variational parameters, a new
set of expectation for the hidden states (X{*) will be
fed back into equation 3, which can be solved itera-
tively. It is very similar to the EM algorithm(7].
make it clear, we could explicitly write up in Equation
4 the fixed point equations in Equation 3 for the case
of two modalities, for example, shape and color:

};:; g(Zt,
hj—u

g(Zif
where X7 is the shape state, X¢{ is the color state, and
hs, and hg represent the shape and color variational
parameters, respectively.

It should be noticed that the original densely con-
nected graphical model is uncoupled. The hidden
states of each uncoupled Markov chain could be es-
timated separately, given the set of variational param-
eters. The estimation of the variational parameters
of one of the chains depends on the hidden states of
the other chains. If we treat each Markov chain as
a modality, this result is quite interesting. We call it
co-inference, since one modality could be inferred iter-
atively by other modalities.

The variational analysis of the factorized model in
Figure 2 is meaningful for the problem of multiple cues
integration, since it reveals the interactions among dif-
ferent modalities. It thus suggests an efficient approach
to track multiple cues, which will be presented in sec-
tion 4.

3 Monte Carlo Tracking
Sequential Monte Carlo methods for dynamic sys-
tems are also studied in the area of statistics [9, 15].
A set of weighted random samples {(s™,7(")},n =
., N is properly weighted with respect to the distri-
bution f(X) if for any integrable function h(-),

Egzl h(s™)(m)
Zi\r:l m(n)

E[X{1Z5, b))
12D AVAN )]

(4)

lim
N—o00

= E¢(WX))



In this sense, the distribution f(X) is approximated
by a set of discrete random samples s(™), each having
a probability proportional to its weight (%),

Generally, closed-form solutions of dynamic systems
are intractable. Monte Carlo methods offer a way to
approximate the inference and to characterize the evo-
lution of dynamic systems. Since the posteriori density
p(X:|Z,) is represented by a set of weighted random
samples {(sg ,wt("))} such sample set will evolve into
a new sample set {(sgi)l,wt(i)l)} representing the pos-
terior p(X¢41/Z,,,) at time ¢ + 1.

When samples are drawn from the prediction prior
p(X¢+1|Z;), and sample weights are proportional to
the observation likelihood p(Z41|X¢+1), this sequen-
tial Monte Carlo technique is called factored sampling,
which is an important part, of the CONDENSATION algo-
rithm [12]. The robustness of Monte Carlo tracking is
due to the maintenance of a pool of hypotheses. Gener-
ally, the more the hypotheses, the more chances to get
accurate tracking results but the slower the tracking
speed. Consequently, the number of samples becomes

an important factor in factored sampling, since it deter-

mines the tracking accuracy and speed. Unfortunately,
when the dimensionality of the state space increases,
the number of samples increases exponentially.

This phenomenon has been observed and different
methods have been taken to reduce the number of
samples. A semi-parametric approach was taken in
(5], which retained only the modes (or peaks) of the
probability density, and represented the local neigh-
borhood surrounding each mode as a Gaussian dis-
tribution. This approach eliminated the need for a
large number of samples for representing the distribu-
tion around each mode non-parametrically. Different
sampling techniques were also investigated to reduce
the number of samples. In [16], a partitioned sampling
scheme was proposed to track articulated objects. It
was basically a hierarchical method to generate the hy-
potheses. In [8], an annealed particle filtering scheme
was taken to search the global maximum of the poste-
riori probability density.

Importance sampling is another Monte Carlo tech-
niques. In practice, it would be difficult to draw ran-
dom samples from a distribution f(X), samples could
be drawn from another distribution g(X), but their
weights should be adjusted accordingly. This is the ba-
sic idea of importance sampling. When samples s(*) are

drawn from g¢(X), but weighted by 7(® = ;l(:%;fr(“),
it can be proved that the sample set {(s(™), #("M)} is
still properly weighted with respect to f(X).

To approximate a posterior p(X:|Z,), instead of
sampling directly from the prior p(X;|Z,_,), samples
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s(™ could be drawn from another source g,(X;), and
the weight of each sample is:

ft(st )

a(s™)

where f,(s{”) = p(X¢ = s{™|Z,_,). We should no-
tice here that in order to sample from g¢;(X;) instead
of fi(X,), both fi(s n)) and g,(stn)) should be evalu-
atable. The importance sampling technique is an im-
portant part in the proposed Co-inference tracking in
section 4.

‘n't(n) (Zt‘xt = S(n)) (6)

4 Co-inference Tracking

The structured variational analysis of the factorized
graphical model in section 2 suggests a way to uncouple
the dynamics of the states. In this section, we present
an efficient algorithm to approximate the co-inference
of the variational analysis based on statistical sampling
and sequential Monte Carlo technique.

Let s{™ = (55 &)
the target’s state at mme t, where s¢™ and &™) rep-
resent shape state and color state of a sample, respec-
tively. ;" ) Wf’(n), and 7rt(") denote the sample weight.
based on shape observation, color observation and a
combination of shape and color observation, respec-
tively. At time ¢, we have a set of samples associated
wit.h weights {(sé (n), 55 ) ps(n) o A(n) Trt(")),n

N} To generate the samples for time ¢ + 1, i.e.,

{( :+1 ’ t+;l)7 ts-i—(ln)r tc-{»(?)v t(+l) n “1 [V}, an it-
erative procedure is shown in Figure 3. ’

The basic idea behind the above iteration is that
one modality receives priors from other modalities such
that the co-training among all the modalities will tend
to maximize the likelihood. Specifically, at first shape
samples are drawn according to color measurements
based on importance sampling, i.e., shape samples are
drawn from g, ~ {(s2" 28U} instead of f,
{(s2™) 720}, Since the clutter could also incur high
shape measurements, sampling only from shape mea-
surements is difficult to handle clutter backgrounds, es-
pecially when a generic shape representation is taken.
However, sampling according to color measurements
would largely ease this difficulty, since the samples with
higher color measurements would have higher probabil-
ity to propagate. Weight corrections are:

denote the n-th sample of

s.(n)
s :
mp = LD, x, = )
g ( Sy )
s,(k s,(n s s,(k
fs‘(S:(n)) = z 7Tt (1)17 ~St'( )‘Xz— = 8. (1))



Generat‘e {(6:45’;)78:-15111)7”:-1-(?)77%_’5'11 ) t+l } from
{(Sf’(n),sf’("), ;' "), Fio¥ &(n) ,7Tt )} n=1,...,N:

/ /Step(O) Imtxahzatxon
), * ( )
Sto) =515 Wiy
fork=0:K-1

//Step(1): Shape eamples generating

sfk+)1) = I_Samping({(s k)' , fk()) b;

//Step(2): Shape observation
s,(-
T(ks1) —Shape_Dbsrv(s(k+l))

//Step(3): Color samples generating
c() ; c,(1) s,() .
Stierr) =1-Sampling ({(s(3y”, ™1y 1)

//Step(4): Color observation

260

T(ht1) =Color Obsrv(s%!

(k+1) );
end

= SE )) 'TH-(i) = T(;é))' ”t(+)1 = ”t+1)7r:+(1)

5&1

Figure 3: Co-inference tracking algorithm I: top-doun

Symmetrically, color samples are then drawn ac-
cording to shape measurements based on importance
sampling, i.e., color samples are drawn from g, ~
{(s en) g3 "))} instead of f. ~ {(s¢’ ), 7"}, This
step would let color samples with higher shape mea-
surements to have better chances to propagate to the
next time step.

c.(n fc ch(n)
wp = LD g, = )
gc(st' )
i k k
Fels7y = DA Pp(xg = s Xs, = 50 D)
k=1

The above two steps could approximate the co-
inference. The iteration would increase the likeli-
hood of observations. For simplicity, we let 7rt") =
s,(n)_c.(n)
Ty T

, and the estimates of the shape and color
states are given by:

N
Xf — Zsfv(") ") Xc _ Zst (n) (n)
n=1

Our approach is different, from the ICONDENSATION
algorithm in [13]. Their method assumes a fixed color
distribution and color is used as an extra prior, while
our approach could track both shape and color due to

)
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the co-inference between them. If color dynamics is
fixed, our approach would similar to their method.

The above algorithm takes the top-down approach
for both shape and color by generating samples in the
joint shape and color state space. However, we notice
that it would be more efficient to combine the top-down
and bottom-up approaches, since color state could be
estimated by taking a bottom-up method. The basic
idea is that we generate shape samples but train a color
model of the target based the color data collected ac-
cording to shape samples in an EM framework. The
EM iteration would end up with a color model that
maximizes the likelihood of color observation.

At time £, we have {(s}"™ a8 7o) Wy ang
a color model M;. The procedure for generating the
samples at time ¢ + 1 is shown in Figure 4.

Generate {(s5%, fﬂff),wflf),ﬂtﬂ) M4} from

{(sf'(n) WfY(n)vﬂt n)7 En)>yMt};77r—l,...,N.

//Step(1l): Shape samples generating
siy) = 1sampling({(s;'"), 75"\

//Step(2)' Shape observation
7r(t+1) =Shape _Obsrv (sHEI))

//Step(3): Collecting of initial color observations
Zt(+)1 =Color Collect(sH_l) M = M;y;

//Step(4): Re-training of color model
fork=0:K-1

// E-step

o () _ () .

Ty =E(Zpin, Mik));

// M-step

Mgy =MCZ0, 7))
end

M

= M(ky;

Figure 4: Co-inference tracking algorithm II: combining
top-down and bottom-up.

The E-step calculates the observation probability
for color model hypotheses with respect to the cur-
rent color model M(k) at different positions and with
different shapes. The M-step trains a new color model
AZI(/C_H) based on such observations. The EM itera-
tion in the algorithm basically is a bottom-up routine
to learn a new color model based on the old one and a
set of training data obtained from shape model. It is
similar to the tranductive learning approach for color
tracking in [23].



5 Implementation

Section 4 proposed a framework for tracking and in-
tegrating multiple cues based on importance sampling
technique. The remainder of this paper presents a spe-
cific implementation of a real-time tracker.

5.1 Shape Representation

Instead of using a detailed shape model by B-splines,
we employ conics model for a general purpose, since it
is more flexible. The conics model is suitable for certain
specific applications, such as tracking human heads or
fingertips. We take a generic form of the conics, i.e.,
X'AX' +2BX 4+ C =0.

A shape template is initialized by conics fitting. The
deformation of the shape is governed by an affine trans-
formation, Y = AX +t, which characterizes the shape
space S. Thus, the dimensionality of the shape space &
is 6. A conic shape is determined when given the tem-
plate and an affine transformation. The shape samples
in our algorithms are drawn in the shape space, i.e.,
X* = (An, A1z, Aa1, Aga, t1,t2).

5.2 Shape Observation

It is crucial to have an accurate shape observation in
tracking. Our implementation takes a similar approach
used in [3]. Edge detection is performed in 1-D along
the normal lines of the hypothesized shapes, shown in
Figure 5. Thus, observation reduces to a set of scalar
positions z = (z1, ..., zar), due to the presence of clut-

ter. The true observation 7 could be any one of them.
So,

p(z|r) = gp(z|clutter) + Z (27, 2 = 2in)P(Z = 2m)

m=1

where = is the point on the shape contour and ¢ =
1—-3.P(2 = zx). When we assume that any true
observation is unbiased and normally distributed with
standard deviation o, P(z = z,,) = p for all z,,, and
the clutter is a Poisson process with density A, then,

pzlr) x 1+ 72__:_0(1_/\ Zexp N (zvm2;2-’£) (8)

m

Figure 5: Shape observation and measurement.

5.3 Color Representation

We take a parametric color representation in
normalized-RGB color space.” If the object is uniform
in color, a Gaussian distribution is taken to model
the color distribution. For simplicity, we represent
the color state by X¢ = (uz, ug, pj, 7, 0g,03). If the
target has two salient colors, a mixture of two Gaus-
sians could model such distribution. To keep the di-
mensionality small, we represent the color state by
X = (/'L%v /*Lgl]a #11,7“7%7 /"52}7/"% :

We also take a non-parametric representation by 2D
color histogram, which uses two normalized colors such
as 7 and g with NV bins. We set N = 3 for our approach
I and N = 8 for approach II.

5.4 Color Observation

A set, of color pixels is collected inside the shape con-
tour. If the parametric approach is taken, a parametric
color model will be estimated based on these color pix-
els, and the Mahalanobis distance is used to measure
the similarity of the two distributions.

If non-parametric approach is taken, a color his-
togram will be built based on these color pixels, and the
histogram intersection [1, 19] is computed between the
hypothesis color model X¢ and the observed histogram
I: ’

, N e
p(XC) ~ ¢((5) — Zk:l mln(ls(k)’x (k)) (9)

il Ls(k)

6 Experiments

The tracking performances of both signal. cue and
multiple cues are examined in this section.
6.1 Single Cue

When the target is solely represented by its shape, a
conic in our case, the tracking algorithm works well in
simple backgrounds and where strong edges could be
observed. However, when the background is cluttered,
the tracking often fails because some hypotheses with
high probability might be distractors in terms of shape.
In Figure 6. many hypotheses have high probability-on
keyboard (Figure 6(a)) and bookshelf (Figure 6(b)).

(b)

Figure 6: Shape alone: many hypotheses were generated
on clutter. (a) Tracking hand, (b) Tracking head



When the target is solely represented by its color
distribution, tracking often fails when the background
has similar colors to the targets. Figure 7(a) shows the
case when the wooden color is similar to skin tone such
that false hypotheses are generated. In Figure 7(b), the
lighting conditions change dramatically, which makes it
difficult to track the shoulder of the person.

(a)

(b)

Figure 7: Color alone: color distractors and non-stationary
lighting make tracking difficult. (a) Face, (b) Shoulder

6.2 Multiple Cues

Our tracking algorithm has been applied to a variety
of environments and tracking tasks. Our experiments
show that the tracking algorithm with multiple cues
performs very robustly. The tracking algorithm runs
on a l-processor PIII 850MHz PC at around 30Hz 1.

Some results are shown in Figure 8. In Figure 8(a), a
hand is moving and rotating in a cluttered background.
If tracking is solely based on shape and edge, it will be
lost when the hand leaves the keyboard area. However,
our algorithm, which tracks both color and shape can
overcome this difficulty, due to the reinforcement from
multiple cues.

Figure 8(b) shows the result of our algorithm to
track a head in an office 2. The subject even turns her
head around which makes non-stationary color changes
of the visible side of the head. Our algorithm tracks
the head very accurately, even when she moves in front
of the wooden door.

Figure 8(c) shows the case of a lecture room where
the lighting changes dramatically due to an overhead
projector. The color of the spearker’s head varies in
a wide range of intensities. Our algorithm tracks the
speaker’s head pretty robustly, although it will fail rea-~
sonably due to large movements of the camera and
speaker’s uncertain movements in very dark lights.

Figure 8(d) shows the tracking scenario in a large
virtual environment, which has four displays on three
sides and floor. The camera is mounted on the ceil-
ing. It is of interest to estimate the user’s position and

1Some demo sequences of our algorithm could be ob-
tained from http://www.ifp.uiuc.edu/*yingwu

2Thanks Dr. Birchfield for this sequence obtained from
http://robotics.stanford.edu/"birch/headtracker.
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orientation by tracking his head and shoulder. The dif-
ficulty is that the displays will diffuse a large amount,
of lighting in the environments. Tracking the shoulder
is even harder than tracking head, since the shoulder
deforms more and it does not produce strong edges as
the head does. Our algorithm works robustly when
parameters are properly set.

Figure 8(e) shows a good example of our algorithm
to handle occlusion. The reason behind this example
is that the occluding object (the boy) has a different
size from the target (the girl), which avoids generating
too many hypotheses on the occluding object.

7 Conclusions

In this paper we have presented a co-inference ap-
proach for integrating and tracking multiple cues. This
approach is based on the structured variational analy-
sis of a factorized graphical model, which suggests that
the inference in a higher dimensional state space can
be factorized by several lower dimensional state spaces
in an iterative fashion. We call this co-inference. A
sequential Monte Carlo tracking algorithm, based on
importance sampling technique, is proposed to approx-
imate the co-inference process among different. modal-
ities. Our tracking algorithm is robust in dealing with
target deformation and color variations, since a richer

‘representation of the target is taken.

The co-inference problem is very interesting since it
involves the information exchanges between different.
modalities. We will extend our work to the case of
tracking multiple objects and articulated objects in the
future.
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