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Abstract 
Visual trackan,g cou,ld be treeted as a param,eter esti- 

m.ation. problem, of target representastion based on obser- 
vations in im,age sequ.ences. A rich,er target represen,ta- 
tion, would i n c w  better ch,ances of successfd tracking in 
cluttered a n d  dyn.a.m.ic en,viron,m,ents. However, th,e di- 
m,ensionmlity of target's state space also increase.s m,&- 
inlg tracking a formlidable estim,ation problem. I n  this 
paper; the problem, of trncking and integmtin,g m,vlti- 

ed in, n probabilistic fra,m,ework and 
torized graphical m,odel. Stmxtu.red 
of such gmphicnl m,odel factorizes 

diflerent m,odalities nn,d suggests 0. co-inference process 
am,on,g these m,odalities. A sequ.en,tial Mon,te Carlo a,l- 
gorith,m. is propo.sed to  give nn. eficien,t o,pproxim.ation 
of the co-inference based on the h p o r t a n c e  sam,plin,g 
tech,n,ique. This nlgorith)m, is im,plem,ented in, real-ti,m,e 
at arou.nd 30Hz. Spec(fically, tro,ckin,g both position,, 
.sh,n,pe and color distribu.tion of a tnrget is  investigated 
in, th,i.s paper. Our exten,sive experim>en,ts show th,at the 
proposed nlgori,thlmj performs robu,stly in n la1-9e vari- 
e t y  of trackin,g scenmrios. T h e  q p r o a c h  presen,ted in 
th,is pctper ha,s th,e poten,tial t o  solve oth,er .sensor fmion ,  
problem,s. 

1 Introduction 
Visual t,racking is an import,ant, problem in visual 

surveillances and vision-based int.erfaces. One of the 
piirposes of visual t,racking is to infer the states of the 
t,arget,s from image sequences. It, involves some funda- 
nient,al research problems such as object, representat,ion 
and mat,ching. 

Bottom,-u.p and top-down approaches are t.wo kinds 
of methodologies t.o approach t,he visual t,racking prob- 
lem. Bottom,-u,p approaches generally t,end t.0 const,ruct, 
object st.at,es by analyzing the content, of images. Basi- 
cally, many segmentation-based met,hods can be cat,e- 
gorixed as bottom-u.p approaches. For example, blob 
tracking t,echniqiies group similar image pixels int,o 
blobs t.o est,imat.e the posit,ions and shapes of the tar- 
get,. On t,he cont,rary, top-down, approaches generate 
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candidat,e hypotheses from previous time frame based 
on a paramet,ric represent,at,ion of t,he t.arget,. Tracking 
is achieved by measuring and verifying these hypothe- 
ses against, image observations. Many model-based and 
t.emplat,e-mat,ching methods can be categorized as top- 
dovin approaches. Bottom,-u.p methods could be effi- 
cient,, yet the robustness is largely limited by t,he abil- 
it,y of image analysis. On t,he ot,her hand, top-down a p  
proaches depend less on image analysis, but, their per- 
formances are largely det,ermined by hypot,heses gener- 
'at,ing and verificat,ion. 

Tracking kchniques generally have four elements, 
target repre.sentation, observation representation, hy- 
potheses generatinq, and h,ypoth,eses m,ea>su.rem,ent, 
which roughly characterize tracking performances and 
limitations. To discriminat,e the target from other o h  
jects, to.rget represen,tation: including t,arget's geome- 
txy, mot,ion, appearance, etc., characterizes t,he target, 
in a state space either explicit,ly or implicitly. It, is 
a f~indament~al problem in comput,er vision. For es- 
ample, paraniet,erixed shapes [12, 131, and color dist,ri- 
but,ions [6, 17, 231 are oft,en employed as t,arget r e p  
resentations. To provide a more constrained descrip 
t.ion of the t,arget, some met,hods employ both shape 
and color [l: 13, 18, 211. To add uniqueness in the 
t,arget, represent,ation, many methods even employ t,ar- 
get,s appearance, such as image templat.es [ll: 201 or 
eigen-space represent,at,ion [2] ~ as the t,arget represen- 
t.ation. Motion could be taken into accoiint in t,arget, 
representations, since different, object,s can be discrimi- 
nat,ed by the differences of their mot,ions. If t,wo objects 
share the same represent,at,ion, it, would be difficult, t.o 
correct,ly t,rack eit,her of t,hem when t,hey are close in 
t,he state space. For inst,ance, tracking a person in a 
crowd would be a challenging visual task. Closely re- 
lated t,o target repre.sen.tataon, observation, represen,ta- 
tion defines t,he image evidence of the object represen- 
t.at,ion. For example, if the t,arget is represented by 
it,s cont.our, we expect to observe edges of t,he cont,our 
in t,he image. Hypoth,eses m,easurem,ent evaluat,es t,he 
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matching between hypotheses a,nd image observations. 
For example, templatematching t,racking met,hod of- 
ten takes SSD as t,he measurement,. The evahiat,ion 
would be quite challenging when measuring a shape 
hypothesis in a clutter background. Although some 
analytical results were reported in [3]: many current, 
t,racking met,hods take ad hoc measurements. Hgpothe- 
ses gen.ero.tinq is t,o produce new hypot,heses based on 
old estimation of t,arget's representation and old obser- 
vat.ion. Target,'s dynamics conld be embedded in such 
a .predict,ing process. Intuitively, hypot.heses generat,- 
ing charackrizes t,he search range and confidence level 
of the tracking. The Kalman fikering techniqne gives a 
classical exaniple of hypot,heses generating under Gaus- 
sian assumptions. 

Since image sequences cont,ain very rich visual infor- 
mat,ion, ming single object. represent,at,ion wonld not. 
be robiist when t.he t,arget is in a clutter. A hypothe- 
sis of a. richer target .represent,ation would have bet,ter 
opportnnities to be verified according t.o various as- 
peck of image observations. For example, combining 
color distribntkm of the t,arget coiild largely enhance 
the robnstness of cont,oiir tracking in a heavily cliit.- 
t.ered background, and integrating shape and color rep- 
resent,at,ions coiild inciir bet,t.er tracking against color 
distracters. On t.he other hand, if t,he t.arget and the 
clut,t.er are indist,ingiiishable in t,ernis of their represen- 
t.nt.ions: t.he tracking has to be almost determined by 
t,he prior knowledge aboiit, the dynamics at. least, in a 
Short. period of t,ime. If snch prior dynamics is not. 
available or we assitme random walk for t.he t,arget,: we 
coitld say that the target. is in,tro,ckahle in terms of 2D. 
This apert.iire problem mot,ivates t,he research of track- 
ing and int,egrat,ing miikiple visiial cues. 

h4iilt iple cues int,egrat,ion could be done in ternis of 
object representat,ion and observat,ion represent,at.ion. 
Some approaches perform miilt.iple observat,ion niea- 
surement,s, and accuniiilat,e t,he measnrements for each 
hypot,hesis [l]. Alt,hoiigh robnst t,o some ext,ent: many 
met,hods of combining the measiirement,s from differ- 
ent. sources are oft,en ad h,oc. To int.egra 
color, many kicking algorithms assnnie fixed color dis- 
t,ribiit,ion [13: 211 for t,he target, t,o enable efficient. color 
segmentation. However, snch assumption is oft.en in- 
valid in pract,ice. Inst,ead of assuming fixed color rep- 
resentat ion: some met hods also inchtde color modalit,y 
in the target. representat,ion [4, 18, 221: in which a mill- 
t,ivariable Gaussian was iised t,o represent b0t.h color 
and motion parameters. Non-stat,ionary color tracking 
met,hods [17, 231 were also report,ed in the lit,eratnre. 
Tracking both shape and color would be a formidable 
problem, since it, increases the dimensionalit,y of t,he 
stat.e space of t,he t.arget,. In this scenario, t.racking is 

equivalent to recover the joint, states of position, shape 
and color. 

To approach t,he problem of tracking multiple cues, 
this paper formulates it as a factorized graphical model. 
Due to the complexity of such a graphical model: 
a variational m,ethod is taken to approximate the 
Bayesian inference. Different modalities in t,he model 
present, a co-inference phenomenon. Based on the anal- 
ysis of the fact.orized model: t,his paper presents an effi- 
cient, htonte Carlo tracking algorit,hm to integrate mill- 
tiple visiial cues: in which t,he t,ransduct,ion of different. 
modalit.ies is schieved by t.he EM iterat,ions. 

The fact,oriaed graphical model will be presented in 
section 2. Sect.ion 3 will describe the t,echniques in 
sequential h4ont.e Carlo approaches for tracking prob- 
lems. Our proposed approach will be presented in sec- 
tion 4, and tlhe details of onr tracking implementation 
and experiment,s will be described in sect,ion 6. 

2 Graphical Model of Tracking 
In a dynamic system, the stat,es of the t,arget and 

image observat,ions are represent,ed by Xt and Z t ,  re- 
spectively. The previous states and measnrement,s are 
denoted by X t  = (XI, .  . . , X t )  and 2, = ( Z i , .  . . , Z t ) .  
The t.racking problem coiild be formnlated as an in- 
ference problem with t.he prior p(Xt+l&), which is a 
prediction densit,y. 1% have 

P(Xt+lIZt+,) P(Zt+llXt+l)P(Xt+llH,) 

P(Xt+llZ,) = ~P(Xt+l lXt)P(XtI2 , )dXt  

where p(Zt+l lXt+l) represent,s the m,ensu.rem,ent or ob- 
servat,ion likelihood, and p(Xt+l IX,) is the dynamic 
model. 

The probabilistic formiilat,ion of the tracking prob- 
lem conld be represented by graphical models in Figure 
1. At. t,ime t ,  t,he obsevat.ion Zt is independent of previ- 
011s stat,es and previous observat,ions given 
current, state Xt, i.e., p(Ztl&,Zt-l) = p ( Z t ] X t ) :  and 
the states have htarkov propert,y, i.e.: p(XtI.Xt-l) = 
p(XtlXt-1). 

Figure 1: The tracking problem could be represented by a 
graphical model, similar to the Hidden Markov Model. 

The t.racking problem can be approached by t,he in- 
ference t,echniqnes in graphical model. Consequently, 
when t,he dimensionality of t,he hidden st,at,es increases, 
t.he inference and learning would become difficult due 
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t,o the exponential increase of required computational 
resources. However, a dist,ributed state represent,at,ion 
could largely ease t,his difficiiky by decoupling t,he dy- 
namics. Fox example, target states could be decom- 
posed into shape states and color states with such t:he 
architecture shown in Figure 2(a). 
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Figure 2:  Factorized Graphical klodels: (a) The states of 
the target coiild be decomposed into shape states Xi and 
color states X: in a factorized graphical model. (b) The 
observation could also be separated into Z; and Z : .  

Fiirt,hermore, the observation could also be sepa- 
rated int.o Z: and Zg for shape and color respectively in 
Figure 2(b). Each observat,ion depends on bot,h color 
and shape'st,at,es. 

Due to the complex struct,ure of t,he fact,orized net,- 
work, t,he exact, inference would be formidable. One 
approach t,o t.his problem is st,at,ist,ical sampling-based 
met,hods, such as Gibbs sampling. Another approach 
is t,o approximate t,he posterior probability p(& I&) 
of t,he hidden st,at,es by a t,ract,able distribiit,ion Q(&). 
A lower boiind on t,he log likelihood log P(&) can be 
achieved by such an approximat.ion [lo, 141: 

Generally, we can choose Q(.) t.o have a simpler 
struct,ure by eliminat,ing some of t,he dependences in 
P(.):  while minimizing t,he Knllback-Leibler divergence 
between P(.)  and Q(.) in equation 2 .  It. can be achieved 
by a structu.red variational inference. The basic idea is 
to uncouple t,he hiIarkov chains and replace t,he tme  
observat,ion probabilit,y of each hidden st,ate by a dis- 
tinct, variat,ional parameter, which can be varied for t,he 
minimizhon. We could writ,e: 

T 

where M is t,he number of fact,orized Markov chains, 
Xp is t,he st&e of the m.-tlh modality a t  time frame t ,  
h,"l are t,he variat,ional parameters, and ZQ is a normal- 
ization constant,. Alt,hoiigh general continuous analysis 
of such approach is unavailable, [lo] presented a struc- 
t,ured variational analysis for t,he case of discrete hidden 
s h t e  and observation. A set of fixed point eqiiat,ions 
for hg t,o minimize KL(Q1JP) were obtained [lo]: 

@ = g ( Z t ,  {E[X,nIZY, h"] : vn, # m.}) (3) 

where g(.! .) is a fiinction that details could be found 
in t,he appendix of t.he paper, E[X,"IZY,h"] (Xy) 
is t,he est.imat,ion of t.he hidden st,at.e Xr at, t.he ,n-th 
uncoupled Markov chain, based on t,he variat.iona1 pa- 
ramet.ers h". Using t,hese varia.t,ional paramet,ers, a new 
set, of expect,at,ion for t,he hidden st,at,es (Xp) will be 
fed back int,o equation 3 ,  which can be solved it,era- 
t,ively. It. is very similar t,o t,he Eh$ algorit,hm[7]. To 
make it, clear, we could explicit,ly writ,e np in Eqiiat,ion 
4 t,he fixed point, equat,ions in Equat,ion 3 for t,he case 
of two modalit,ies, for example, shape and color: 

where Xp is the shape state, XF is t,he color st,at,e, and 
hgl and h& represent, t,he shape and color variat,ional 
parameters, respectively. 

It, should be not,iced t.hat, t.he original densely con- 
nect,ed graphical model is unconpled. The hidden 
stat.es of each iincoupled Markov chain could be es- 
timat.ed separat.ely, given t,he set of variational param- 
et,ers. 
of one of t,he chains depends on t,he hidden st,at,es of 
the ot,her chains. If we treat, each h4arkov chain as 
a modality, t,his result is c1nit.e int,eresting. We call it, 
co-inference, since one modality conld be inferred iter- 
atively by other modalkies. 

The variat,ional analysis of the factorized model in 
Figure 2 is meaningful for t,he problem of mukiple cues 
int,egrat,ion: since it, reveals t,he int,eractions among dif- 
ferent. modalities. It t,hiis si1ggest.s an efficient. approach 
t,o t.rack mukiple cues, which will be presented in sec- 
tion 4. 

3 Monte Carlo Tracking. 
Sequent.ia1 hhnt.e Carlo met.hods for dynamic sys- 

t,ems are also st,iidied in the area of st,at,istics [9: 151. 
A set. of weight,ed random samples { ( s ( " ) , d " ) ) } , n ,  = 
1,. . . , N is properly weighted wit.h respect, t,o the dist,ri- 
biit,ion f (X) if for any int.egrable fiinction h(.):  

The est,imat.ion of the variational paramet 
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In this sense, the distribution f(X) is approximated 
by a set of discrete random samples s("): each having 
a probability proportional to its weight d"). 

Generally, closed-form solutions of dynamic systems 
are intractable. Monte Carlo methods offer a way t,o 
approximate the inference and to  characterize the evo- 
lution of dynamic systems. Since the posteriori density 
p ( X t & )  is represented by a set of weighted random 
samples { ( s in ) ,  rjn))}, such sample set will evolve into 
a new sample set {(si:\, ri:\)} representing t,he pos- 
terior p(Xt+l(&+,) at  time t + 1. 

When samples are drawn from the prediction prior 
P ( X ~ + ~  I&): and sample weights are proportional to 
t'he observat,ion likelihood p ( Z , + l  IXt+l), this sequen- 
tial Monte Carlo technique is called factored sam,plin,g, 
which is an important, part. of the CONDENSATION algo- 
rit.hm [12]. The robustness of RIont,e Carlo tracking is 
due to the maintenance of a pool of hypotheses. Gener- 
ally, the more the hypotheses, t,he more chances to get 
accurate tracking result,s but, the slower the tracking 
speed. Consequently, t,he number of samples becomes 
an important, factlor in factored sampling, since it, det,er- 
mines the tracking accuracy and speed. Unfortunat,ely, 
when the dimensionalit,y of the state space increases, 
the number of samples increases exponentially. 

This phenomenon has been observed and different 
methods have been t,aken to reduce the number of 
samples. A semi-parametric approach was taken in 
[ 5 ] ,  which retained only the modes (or peaks) of t,he 
probability density, and represented t,he local neigh- 
borhood surroiinding each mode as a Gaussian dis- 
t,ribution. This approach eliminated the need for a 
large number of samples for represent,ing the distribu- 
tion around each mode non-paramet,rically. Different 
sampling techniques were also investigated to reduce 
the number of samples. In [16]: a partitioned sampling 
scheme was proposed to track articulated object,s. It 
was basically a hierarchical method t,o generate the hy- 
potheses. In [8], an annealed particle filkring scheme 
was taken to search t,he global maximum of the poste- 
riori probabi1it.y densit,y. 

Im,portance sam,pling is another Monte Carlo t,ech- 
niques. In practice: it woiild be difficiilt t,o draw ran- 
dom samples from a dist,ribut,ion f (X), samples could 
be drawn from anot,her distribution g(X), but their 
weights should be adjiist,ed accordingly. This is the ba- 
sic idea of im,portance sam,pling. When samples dn) are 
drawn from g(X), but weighted by r(") = m?dn): 
it, can be proved t.hat, t,he sample set, { ( s ( " ) , r ( " ) ) }  is 
still properly weighted with respect to f(X). 

To approximat,e a posterior p(XtJZ,): instead of 
sampling directly from the prior p ( X t  lzt-1)7 samples 

dn) could be drawn from another source g t ( X t ) :  and 
t,he weight of each sample is: 

where f t (s i" ' )  = p(Xt = S:"'IZ~-~). We should no- 
tice here that in order t,o sample from g t ( X t )  instead 
of ft(Xt), both f t (s i" ' )  and g t ( s in ) )  should be evalu- 
atable. The im,portance .snm,pling t,echnique is an im- 
portant, part, in the proposed Co-inference trackl;n,,q in 
section 4. 

4 CO-inference Tracking 
The st,ructured variational analysis of t,he fact,orixed 

graphical model in section 2 suggest.s a way to uncouple 
t,he dynamics of the states. In t,his section, we present. 
an efficient algorithm to approxin1at.e t,he co-inference 
of t,he variational analysis based on sbatist,ical sampling 
and sequential R/lont,e Carlo t,echnique. 

Let, sin) = (s;""), s i "n ) )  denote t,he n,-t,h sample of 
the targetj's st,at,e at t,ime t :  where and $(") rep- 
resent, shape stat,e and color stat,e of a sample, respec- 
t,ively. r;""), rt"n), and ri") den0t.e t,he sample weight. 
based on shape observation, color observation and a 
conibinat,ion of shape and color observation, respec- 
tively. At, t,ime t ,  we have a set, of samples associat,ed 

1,. . . , N } .  To generate t,he samples for time t + 1; i.e.: 

erative procedure is shown in Figure 3. 
The basic idea behind the above iteration is t,hat 

one modalit,y receives priors from ot,her modalities such 
that, t,he co-trahing among all the modalities will tend 
t,o maximize t'he likelihood. Specifically, at. first shape 
samples are drawn according t,o color measiirement,s 
based on import.ance sampling, i.e., shape samples are 
drawn from g s  - { ( s ~ ~ ( ~ n ) , n ~ ~ ( n ) ) }  instead of js - 
{ ( s t  , rTTt )}. Since t.he cliitt,er could also incur high 
shape measurement,s: sampling only from shape mea- 
surenients is difficult t,o handle clutter backgrounds, es- 
pecially when a generic shape represenhion is t,aken. 
However, sampling according to color measurements 
woiild largely ease t,his difficulty, since t,he samples wit,h 
higher color measiirement,s woiild have higher probabil- 
ity t,o propagate. Weight, corrections are: 

wit,h weight,s { (s ; : (n ) ,  st '(n), ,::(") ,Tt' ..(.) J p ) , n ,  = 

{(s";'"' t + l  , sc,(rd t+l , r.t";r~', r $ ) , r ~ ~ ~ ) , n ,  = I , .  . . , N I ;  an it,- 

s;(..) .s,(.) 

N 

k= 1 
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Symniet,rically, color samples are then drawn ac- 
cording tjo shape measurement,s based on import,ance 
sampling, i.e., color samples are drawn from gc - 
s k p  would let, color samples with higher shape mea- 
siirement,s t.o have bet,t.er chances t,o propagat.e t,o the 
next, t.ime step. 

{ ( s ; : ( n )  ,r t '  ..(n) )} instead of fc - { ( S ; ' ( ~ ) , T ~ ' ' ~ ) ) } .  This 

N 
fc(sc'(n)) = T;y)p(x; = s;An)/x;-l = s,"<:)) 

k= 1 

The above t.wo st,eps could approximate the co- 
h ference .  The iterat,ion woiild increase the likeli- 
hood of observat,ions. For simplicit,y, we let xin) = 
7r i ' (n )7r ; ' (n ) :  and t,he estimates of the shape and color 
st,at,es are given by: 

N N 

n = l  n = l  

Oiir approach is different from the ICONDENSATION 
algorithm in [13]. Their method assumes a fixed color 
distribution and color is used as an extra prior. while 
oiir approach could track both shape and color due to 

the co-inference between them. If color dynamics is 
fixed, our approach would similar to their method. 

The above algorit,hm takes the top-down approach 
for both shape and color by generating samples in the 
joint shape and color state space. However, we notice 
that it, would be more efficient to combine the top-down 
and hottom,-up approaches, since color state could be 
estimated by taking a bottom-up method. The basic 
idea is t,hat we generate shape samples but train a color 
model of t,he target, based the color data collected ac- 
cording to shape samples in an EM framework. The 
Eh4 it,erat,ion would end up with a color model t,hat 
maximizes the likelihood of color observation. 

At, t.ime t: we have {(S~'(~),~T~''~), T ~ " " ' , T ~ " ' ) }  and 
a color model &It. The procedure for generating t,he 
samples at. t,ime t + 1 is shown in Figure 4. 

//St,ep(2): Shape observation 
,.A.) ( t+ l )  =Shape-Obsrv(si$;)); 

//St,ep(3): Collecting of init,ial color observations 
~ $ 2 ~  =Color-Collect (s::;)); f i ( 0 )  = hlt; 

//St,ep(4): Re-t,raining of color model 
f o r  k = 0 : K - 1 

// E-step 

// M-step 
A2(k+1) =M (Z:$l, T:?) > ; 

7Tc ' ( ' )  ( k )  =E(Z,(;),, & ! ( k ) ) i  

end 

Mt+l = 

Figure 4: Cc-inference tracking algorithm 11: combining 
top-down, and bottom,-up. 

The Est,ep calculates t,he observation probabilit,y 
for color model hypot,heses wit,h respect, t.o t.he cur- 
rent color model &I(k) at, different. posit,ions and wit.h 
different shapes. The VI-step trains a new color model 
A 4 ( k + l )  based on such observations. The EM it,era- 
tion in t,he algorithm basically is a bottom,-u.p rout,ine 
to learn a new color model based on the old one and a 
set, of training data obtained from shape model. It. is 
similar to the trnndirctiwe leo,rni,ng approach for color 
t,racking in [23]. 
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5 Implementation 
Section 4 proposed a framework for tracking and in- 

tegrat,ing multiple cues based on importance sampling 
t,echniqiie. The remainder of t,his paper presents a spe- 
cific implement,at>ion of a real-t.ime tracker. 
5.1 Shape Representation 

Instead of using a detailed shape model by B-splines, 
we employ conics model for a general purpose, since it, 
is more flexible. The conics model is suit,able for certain 
specific applications, such as tracking hiiman heads or 
fingertips. We t,ake a generic form of t,he conics, i.e., 
X'AX' + 2 B X  + C = 0. 

A shape temp1at.e is initialised by conics fit&ing. The 
deformation of t,he shape is governed by an affine t,rans- 
format,ion, Y = AX + t, which charact,erixes t.he shape 
space S .  Thus: t8he dimensionalit,y of t,he shape space S 
is 6. A conic shape is determined when given t,he t,em- 
plat,e and an affine t,ransformat,ion. The shape samples 
in oiir algorit,hms are drawn in t,he shape space, i.e., 

5.2 Shape Observation 
It, is criicial to have an accurat,e shape observat,ion in 

t,racking. Oiir implemerht ion takes a similar approach 
used in [3]. Edge det,ection is performed in 1-D along 
t,he normal lines of t,he hypot.liesized shapes, shown in 
Figure 5. Thus, observai,,ion rediices to a set of scalar 
posit.ions z = (21,. . . , z,j,f): due t.o the presence of cliit- 
t,er. The t.riie observat,ion i coiild be any one of them. 
SO.  

X" = (All ,  A12, ,421, A22, t l  I t 2 ) .  

&I 

p(z1z)  = yp(zlclutt,er) + p ( z ~ z , ,  2 = s , ~ ) P ( z  = z m )  
m= 1 

where z is the point on t,he shape cont'oiir and q = 
1 - cm P(Z = zm) .  When we assiime t,hat any t,rue 
ohservat,ion is unbiased and normally dist~ribnt,ed with 
st,andard deviat.ion 0; P(Z = 2,) = p for all 2,: and 
t,he chitter is a Poisson process wit,h density A: t,hen. 

Figure 5:  Shape observation and measurement. 

5.3 Color Representation 
We t,ake a parametric color representation in 

normalized-RGB color space. If the object. is uniform 
in color, a Gaussian distribution is t,aken to model 
the color distribution. For simplicity, we represent, 
t,he color st&e by Xc = ( p ~ , p g , p ~ , ~ ~ , u g , q ) .  If t,he 
target has two salient colors, a mixtiire of two Gaus- 
s ims  could model such dist,ribution. To keep the di- 
msnsiona1it.y small, we represent, the color s t eak  by 

We also t.ake a non-parametric represent,ation by 2D 
color histogram, which uses two normalized colors snch 
as ? and S with N bins. We set N = 3 for our approach 
I and N = 8 for approach 11. 

5.4 Color Observation 
A set, of color pixels is collected inside the shape con- 

toiir. If the parametric approach is hken ,  a parametric 
color model will be est,imat,ed based on t.hese color pix- 

and the Mahalanohis distance is used to measure 
t.he simi1arit.y of t,he t.wo dist,ributions. 

If non-paraniet.ric approach is t,aken, a color his- 
t,ograni will be bnilt. based on these color pixels, and t,he 
hist,ogram int,ersect,ion [l, 191 is compiit,ed between the 
hypothesis color model X" and the observed hist.ogram 
I, : 

X" = (P;,P;,P;,P;,P;,P;). 

6 Experiments 
The t,racking performances of bot,h signal. cue and 

multiple cues are examined in t.his sect,ion. 
6.1 Single Cue 

When t.he t.arget, is solely represented by its shape, a 
conic in our case, the t,racking algorit,hm works well in 
simple backgrounds and where strong edges could be 
observed. However, when the background is chittered, 
t,ha tracking o fkn  fails became some hypotheses with 
high probability might. be distract,ors in t,erms of shape. 
In Figure 6, many hypot,hcses have high probabilit,y on 
keyboard (Figure G(a)) and bookshelf (Figure G(b)). 

( a) (b) 

Figure 6: Shape alone. many hypotheses were generated 
on chitter. (a) Tracking hand, (b) Tracking head 
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When the target, is solely represented by its color 
distribution: tracking often fails when t.he background 
has similar colors to t,he targets. Figure 7(a) shows the 
case when the wooden color is similar t,o skin tone such 
that, false hypotlieses are generated. In Figure 7(b), t.he 
light,ing conditions change dramat,ically, which makes it 
difficult to track the shoulder of the person. 

(4 (b) 

Figure 7: Color alone: color distractors and non-stationary 
lighting make tracking difficult. (a) Face, (b) Shoiilder 

6.2 Multiple Cues 
Our hacking algorithm has been applied t,o a variety 

of environmenh and tracking t.asks. Our experimenh 
show that, t,he t.racking algorit.hm with miiltiple cues 
performs very robiist,ly. The tracking algorit.hni rims 
on a 1-processor PI11 850MHx PC at. around 30Hz ,'. 

Some results are shown in Figure 8. In Figure 8(a), a 
hand is moving and rot,ating in a cliit,tered background. 
If txacking is solely based on shape and edge, it. will be 
lost. when the hand leaves the keyboard area. However, 
our algorithm, which t,racks bot,h color and shape can 
overcome this difficulty: due to t.he reinforcement. from 
mult.iple cues. 

Figure 8(b) shows the result of our algorithm to 
t,rack a head in an office '. The siibject, even t,iirns her 
head around which makes non-stationary color changes 
of the visible side of t,he head. Our algorit,hm tracks 
t,he head very accurat,ely, even when she moves in front, 
of the wooden door. 

Figure 8(c)  shows t.he case of a lecture room where 
t.he lighting changes dramat,ically due to  an  overhead 
project,or. The color of t.he spearker's head varies in 
a wide range of int,ensit,ies. Our algorithm t,racks the 
speaker's head pret,t,y robustly, although it. will fail rea- 
sonably due t,o large movements of the camera and 
speakerk uncertain movemenk in very dark light,s. 

Figure 8(d) shows t.he tracking scenario in a large 
virt,iial environment; which has four displays on three 
sides and floor. The camera is mount,ed on t,he ceil- 
ing. It, i s  of interest t,o est.imate t,he user's posit.ion and 

'Some demo sequences of oiir algorithm could be ob- 

2Thanks Dr. Birchfield for this sequence obtained from 
tained from http: / / w w u .  ifp . uiuc . edu/-yinguu 

http://robotics.stanford.edu/-birch/headtracker. 

orient,at,ion by t,racking his head and shoiilder. The dif- 
ficult,y is that  t.he displays will diffuse a 1a.rge amount. 
of light,ing in the environments. Tracking t,he shoulder 
is even harder than tracking head: since t.he shoulder 
deforms more and it, does not produce st,rong edges as 
the head does. Oiir algorithm works robustly when 
paramet.ers are properly set. 

Figure 8(e )  shows a good example of onr algorithm 
to handle occlusion. The reason behind t,his example 
is that. t,he occluding object, (the boy) has a different. 
size from t,he target, (the girl): which avoids generating 
too many hypotheses on the occluding object. 

7 Conclusions 
In this paper we have presented a co-inference a p  

proach for integrat,ing and t,racking mult,iple ciies. This 
approach is based on t,he struct,iired va,ria.t.ional analy- 
sis of a fact,orized graphical model, which siiggests t,hat, 
t,he inference in a higher dimensional s t a k  space can 
be fact,orized by several lower dimensional st,ate spaces 
in an iterat.ive fashion. We call this co-in,feren,ce. A 
seqiiential h,Iont,e Carlo tracking algorit,hm: based on 
iniport,ance sampling t,echnique, is proposed to approx- 
imat.e the co-in,feren,ce process among different. motlal- 
it,ies. Our t,racking algorit,hm is robust. in dealing wit,h 
t.arget deformat,ion and color variations, since a richer 
represent,at,ion of the t,arget, is taken. 

The co-in$eren,ce problem is very inkresting since it 
involves t,he inforniation exchanges bet,ween different. 
modalit,ies. We will ext,end our work to the case of 
tracking niiikiple objects and art,iciilat.ed objects in the 
fiitiire. 
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