
 Open access Proceedings Article DOI:10.1109/SAMOS.2012.6404200

A co-simulation approach for system-level analysis of embedded control systems
— Source link

Michael Glass, Jürgen Teich, Liyuan Zhang

Institutions: University of Erlangen-Nuremberg

Published on: 16 Jul 2012 - International Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation

Topics: Real-time Control System, Networked control system, Instrumentation and control engineering,
Electronic system-level design and verification and Hierarchical control system

Related papers:

 Integrated Environment for Embedded Control Systems Design

 Virtual Development Applied to Practical Engine Control

 Design of Embedded Robust Control Systems Using MATLAB® / Simulink®

 Rapid prototyping environment for real-time control education

 Sequence-based specification of feedback control systems in Simulink®

Share this paper:

View more about this paper here: https://typeset.io/papers/a-co-simulation-approach-for-system-level-analysis-of-
29c6cjdjba

https://typeset.io/
https://www.doi.org/10.1109/SAMOS.2012.6404200
https://typeset.io/papers/a-co-simulation-approach-for-system-level-analysis-of-29c6cjdjba
https://typeset.io/authors/michael-glass-45jzti2dmi
https://typeset.io/authors/jurgen-teich-1og1afyx9v
https://typeset.io/authors/liyuan-zhang-150bilg4tf
https://typeset.io/institutions/university-of-erlangen-nuremberg-3tbb1h8m
https://typeset.io/conferences/international-conference-on-embedded-computer-systems-1ziiqcf8
https://typeset.io/topics/real-time-control-system-1ohf2cmp
https://typeset.io/topics/networked-control-system-3kbz1isn
https://typeset.io/topics/instrumentation-and-control-engineering-1dasu4bc
https://typeset.io/topics/electronic-system-level-design-and-verification-11p3rlt8
https://typeset.io/topics/hierarchical-control-system-37dwytp2
https://typeset.io/papers/integrated-environment-for-embedded-control-systems-design-1e5j2y1v40
https://typeset.io/papers/virtual-development-applied-to-practical-engine-control-3vbmqmv46z
https://typeset.io/papers/design-of-embedded-robust-control-systems-using-matlab-13zhkssbjs
https://typeset.io/papers/rapid-prototyping-environment-for-real-time-control-2jbdpvkwep
https://typeset.io/papers/sequence-based-specification-of-feedback-control-systems-in-1kw8x7c8md
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-co-simulation-approach-for-system-level-analysis-of-29c6cjdjba
https://twitter.com/intent/tweet?text=A%20co-simulation%20approach%20for%20system-level%20analysis%20of%20embedded%20control%20systems&url=https://typeset.io/papers/a-co-simulation-approach-for-system-level-analysis-of-29c6cjdjba
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-co-simulation-approach-for-system-level-analysis-of-29c6cjdjba
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-co-simulation-approach-for-system-level-analysis-of-29c6cjdjba
https://typeset.io/papers/a-co-simulation-approach-for-system-level-analysis-of-29c6cjdjba

A Co-simulation Approach for System-Level
Analysis of Embedded Control Systems

(Invited Paper)

Michael Glaß, Jürgen Teich, and Liyuan Zhang
Hardware/Software Co-Design, University of Erlangen-Nuremberg

Email: {glass, teich, liyuan.zhang}@cs.fau.de

Abstract—Control applications have become an integral part
of modern networked embedded systems. However, there often
exists a gap between control engineering and system design. The
control engineer has detailed knowledge about the algorithms but
is abstracting from the system architecture and implementation.
On the other hand, the system designer aims at achieving high-
quality implementations based on quality constraints specified
by the control engineer. This may result in either an overde-
signed system in case the specifications are pessimistic or an
unsafe system behavior when specifications are too optimistic.
Thus, future design automation approaches have to consider the
quality of control applications both as design objectives and
design constraints to achieve safe yet highly optimized system
implementations. The work at hand introduces an automatic
tool flow at the Electronic System Level (ESL) that enables
the optimization of a system implementation with quality of
control being introduced as a principal design objective, like
the maximum braking distance, while respecting constraints
like maximum slip to ensure maneuverability of a car. The
gap between mathematically well-defined models for system
synthesis and common analysis techniques for control quality
is bridged by co-simulation: A SystemC-based virtual prototype
of a distributed controller implementation is combined with high-
level models of the plants specified in Matlab/Simulink. Through
a model transformation, the traditional development process
of control applications is combined with state-of-the-art ESL
techniques, ensuring model consistency while enabling a high
degree of automation.

I. INTRODUCTION

In modern means of transport like the automotive and
avionics domain, many important control applications are
implemented on heterogeneous distributed embedded systems
that may consist of up to hundreds of Electronic Control Units
(ECUs) as well as various sensors, actuators, and field bus
systems. One important class of such applications are driver
assistance systems in modern cars that, e. g., automatically
keep a driver-specified speed of the car termed cruise control.
In recent years, such applications have become more and more
complex such that modern adaptive cruise control systems not
only adapt the speed according to the driver’s setting, but also
to the distance of cars running ahead and may even consider
the surrounding of the car to predict whether the driver may
overtake so to avoid needless braking. Another class are X-
by-Wire applications that substitute mechanical and hydraulic
systems for steering or braking. Here, the quality of the control
applications is one of the key factors that determine their
applicability with respect to (safety) constraints and the quality
perceived by the consumer.

The design of such distributed embedded systems has be-
come an extremely challenging task. Recently, Design Space
Exploration (DSE) approaches at the Electronic System Level
(ESL) have been developed, trying to assist the system de-
signer in this task. The approaches aim at automatically
investigating the tremendous design space and search for
system implementations that are optimized with respect to

several design objectives while meeting design constraints.
Typical design objectives are, e. g., monetary costs, power
consumption, or dependability. Design constraints are much
more specific to applications and the system and may be,
e. g., mounting space limitations, wiring capabilities, safety
requirements, or the stability of certain control applications.
From a system designer’s point of view, these objectives
and constraints are typically predefined. Given these, DSE
approaches assist the designer with an optimization loop
that performs system synthesis and evaluation: During system
synthesis, a candidate implementation of the system is derived
by selecting architecture components, binding of tasks onto
the components, routing of messages, and scheduling tasks
and messages. The evaluation is responsible for analyzing each
candidate implementation to quantify its design objectives and
check whether all constraints are satisfied.

However, the quality of a control application may not be
seamlessly translated into constraints like a maximum/average
end-to-end latency or jitter. In fact, it is well known that, e. g.,
the distribution of end-to-end delays may have a significant
impact on control quality [1]. In current practice, this existing
gap may be bridged by control engineers specifying rather
pessimistic design constraints. In such cases, the system im-
plementation delivered by the system engineer may be in fact
overdesigned which, of course, deteriorates design objectives.
Avoiding such an overdesign, the control engineer may specify
more optimistic design constraints that work fine for the
average case. However, the system may not be able to deliver
its correct service under all conditions, possibly resulting in
low service quality of the application or even unsafe behavior.

To close this gap, the quality of a controller has to be
considered directly during system design to avoid an inac-
curate approximation based on design constraints only. This
consideration is included in a controller synthesis with the
discipline being often referred to as Control-Scheduling-Co-
Design [2]. Existing approaches typically implement the con-
troller itself as a set of periodic tasks that communicate via
periodic messages, being mapped mostly to dedicated com-
ponents. However, in modern distributed embedded systems,
there is no dedicated subsystem per control application, but
the tasks of different applications have to share computation
as well as communication resources, causing varying end-to-
end latencies or even message loss. To achieve good control
performance, these effects that are a result of the mapping of
control applications to a distributed system with shared media
have to be taken into account. While several known approaches
take these effects into account, they typically assume a fixed
architecture platform and task mapping while taking into
account the effects of different scheduling strategies [3], [4]
only. When increasing the degree of freedom for the system
designer by enabling variation in architecture, task mapping,
routing, and scheduling, there exists a gap between the model

of the controller’s implementation and the required data for
the control performance analysis, i. e., a model of the plant.

The work at hand presents a possibility to close this gap
through co-simulation of an advanced system model including
the controller and an advanced plant model. As pointed out
in [5], classic system modeling languages like C are agnostic
of the system behavior and may only cover functional behavior
of a controller. As a remedy, the system model employed
here comprises of an actor-oriented behavioral model that,
combined with the current architecture, task mapping, message
routing, and scheduling forms a virtual prototype of the imple-
mentation. The plant itself is modeled by the control engineer
using a methodology that is well-established in his/her field
like Matlab/Simulink [6]. Through co-simulation, a complete
ESL design methodology is achieved that is capable of concur-
rently optimizing control quality as a principal design objective
together with classic design objectives. Moreover, it enables
to take design constraints like the stability of the control
application or application-specific constraints like maximum
braking distance into account. To further increase the degree of
automation, it is outlined how to (semi-)automatically translate
Matlab/Simulink models of sensors, actuators, and controllers
into an actor-oriented System Description Language (SDL), in
particular, SysteMoC [7]. This class of description languages
is typically employed at the ESL since it provides executable,
synthesizable, and often even verifiable system models. Par-
ticularly the aspect of translating a complete Matlab/Simulink
controller model to SysteMoC, setting up a virtual prototype,
and performing a co-simulation to determine control quality is
presented using Brake-by-Wire with anti-lock braking system
as a control application.

The rest of the paper is structured as follows: Section II
introduces related work from the area of control-scheduling-
co-design. Section III introduces ESL design fundamentals.
The modeling of control applications in an ESL design flow
is presented in Sec. IV. The proposed co-simulation approach
to evaluate control quality is outlined in Sec. V. A Brake-by-
Wire case study from the automotive domain is investigated
in Sec. VI before the paper is concluded in Sec. VII.

II. RELATED WORK

In recent years, several design tools have been developed
to help the designers to analyze and evaluate the control
performance under timing influence. These tools may be
coarsely divide into two groups, see [8] for a survey: Tools that
focus on the statistical analysis of how timing affects control
quality and tool flows that rely on system simulation.

Jitterbug is a widely used MATLAB-based toolbox that
allows the computation of a quadratic performance criterion
for a linear control system under various timing conditions [9].
The tool helps the designer to quickly evaluate how sensitive
a control system is with respect to delay, jitter, lost samples,
etc. Jitterbug is used in several works: In [10], the authors
use Jitterbug to determine the cost function when considering
the problem of optimal static period assignment for multiple
independent control tasks executing on the same processor.
In [11], the authors propose a control-scheduling co-design
method that integrates controller design with both static and
priority-based scheduling of the tasks and messages. The de-
sign objective is to optimize the overall control quality. In [3],
[12], the authors present a methodology to consider delay
distributions and not just worst case delays while optimizing
the control performance. Limitations of Jitterbug include: (a)
seamless applicability for linear systems only; (b) performance
analysis is restricted to a single design objective, i. e., the

quadratic cost; and (c) the delay distributions in each control
application are assumed to be given and independent of each
other. Particularly, the delay distributions cannot be derived
from a behavioral model only since they are agnostic of
system behavior, e. g., timing variation caused by contention
on computation and communication resources shared between
several control tasks.

TrueTime is a MATLAB/Simulink-based simulator for real-
time control systems. It enables the co-simulation of controller
task execution in real-time kernels, network transmissions,
and continuous plant dynamics [13]. TrueTime uses kernel
and network blocks to carry out the control tasks, which are
characterized by a number of attributes like deadlines, release
times, and priorities. Several existing works employ TrueTime
to simulate and evaluate control systems, see [14], [15], [16],
[17].

This work aims at overcoming the decoupling of delay
distributions, considering multiple control quality objectives,
and supporting ESL design for embedded control systems. The
methodology proposed in the following applies co-simulation
of a virtual prototype of the control application mapped to the
system architecture and the high-level model of the physical
environment. It is worth mentioning that recent works, see
for example [18], aim at avoiding intensive control quality
analysis by simulation or third-party tools and rely on formal
models that efficiently approximate the control quality instead.
This has the potential to significantly speed-up DSE.

III. ESL DESIGN FUNDAMENTALS

This work introduces the aspect of control quality into
system design by developing adequate models for controllers
and an evaluation of controllers and plants based on co-
simulation. Thus, the methodology is capable of introducing
classic control quality metrics and application-specific metrics
as both principal design objectives and design constraints and
into Electronic System Level (ESL) design. In this section, the
required fundamentals in ESL design of embedded systems
are outlined.

The vast majority of ESL design approaches, see [19] for
a survey, is inspired by the Y-chart approach as schematically
included in Fig. 1. The ESL design approach as employed here
starts with an executable specification, i. e., a behavioral model
of the functionality of the system. The models for available
system components, cf. Model of Architecture (MoA) see [19],
such as processors, buses, memory units, etc. are stored within
a component library. From this, a graph-based exploration
model is derived. The exploration model consists of an appli-
cation that models the functionality and an architecture that
models the available resources. During the phase of Design
Space Exploration (DSE), a set of high-quality system-level
implementations is delivered to the designer who chooses one
(or several) to be refined in the next lower level of abstraction.
The set of high-quality implementations results from the
presence of multiple, often conflicting objectives that makes
DSE a Multi-Objective Optimization Problem. During DSE,
implementations are obtained by mapping the application onto
the architecture in a process termed system synthesis. The
quality of each implementation with respect to given objectives
and its compliance with given design constraints is determined
in an evaluation step.

A. Executable Specification

In [7], a library for modeling and simulating actor-oriented
behavioral models termed SysteMoC is presented. SysteMoC is

executable
specification

component
library

application architecture

system
synthesis evaluation

system-level implementation

design space exploration

exploration model

Fig. 1. During system design at ESL, a behavioral model termed executable
specification and a component library are transformed to an exploration
model. This model is employed during Design Space Exploration (DSE) to
synthesize implementation candidates and evaluate them to quantify design
objectives and investigate design constraints. DSE delivers a set of high-
quality implementation candidates from which the designer choses the best
trade-off as the system-level implementation for subsequent design phases.

based on SystemC, a de facto standard for system-level mod-
eling, adding actor-oriented Models of Computation (MoC)
to develop an analyzable executable specification language.
In actor-oriented models, actors, which encapsulate the sys-
tem functionalities, are potentially executed concurrently and
communicate over dedicated abstract channels. Thereby, ac-
tors produce and consume data (so-called tokens), which are
transmitted by those channels. Actor-oriented models may be
represented as bipartite graphs, consisting of channels and
actors. An actor is a tuple a = (I,O, F,R) containing actor
ports partitioned into a set of actor input ports I and a set
of actor output ports O, the set of functions F and the Finite
State Machine (FSM) R. The functions encapsulated in an
actor are partitioned into actions and guards and are activated
during transition of a the finite state machine (FSM) R that
also represents the communication behavior of the actor (i. e.,
the number of tokens consumed and produced in each actor
activation). An action produces outputs, which are used by
the firing FSM to generate tokens for the FIFO channels
connected to the actor output ports. A guard (e. g. check in
Fig. 2) returns a Boolean value and the assignment of one or
several guards to the FSM implements the required control
flow. A channel is a tuple c = (I,O, n, d) containing channel
ports partitioned into a set of channel input ports I and a set of
channel output ports O, its buffer size n ∈ N∞ = {1, . . . ,∞},
and also a possibly empty sequence d ∈ D∗ of initial tokens,
where D∗ denotes the set of all possible finite sequences of
tokens. The basic SysteMoC model uses FIFO channels to
present unidirectional point-to-point connection between an
actor output port and an actor input port. Actors are only
permitted to communicate with each other via channels, to
which the actors are connected by ports. In a SysteMoC actor,
the communication behavior is separated from its functionality,
which is a collection of functions that can access data on
channels via ports. A graphical representation of a simple

Fig. 2. Visual representation of an actor, which sorts input data according
to its algebraic sign. The actor consists of one input port i1 and two output
ports o1 and o2. Transitions are depicted as directed edges. Each transition
is annotated with an activation pattern, a boolean expression which decides
if the transition can be taken, and an action (e. g. fpositive, fnegative) can be
executed if the transition is taken.

SysteMoC actor is given in Fig. 2 which sorts input data
according to its algebraic sign.

B. Exploration Model

For the DSE, an exploration model termed specification
defines the available hardware components as well as the
processing tasks that need to be distributed in the system.
This graph-based specification (see Fig. 3(c)) consists of the
plattform architecture, the application, and a relation between
these two views, the mapping constraints:

• The architecture is modeled by a graph ga(R,Ea) and
represents all available interconnected components, i. e.,
hardware resources. The vertices r ∈ R represent the
resources, e. g., ECUs, buses, sensors or actuators. The
edges Ea model available communication links between
resources.

• The application is modeled by an application graph gt(T∪
C,Et) that represents the behavior of the system. The
vertices t ∈ T denote processing tasks and the vertices
c ∈ C communication tasks. The directed edges e ∈ Et ⊆
(T × C) ∪ (C × T) denote data dependencies between
tasks, respectively actors.

• The relation between architecture and application is given
by a set of mapping edges Em. Each mapping edge m ∈
Em is a directed edge from a task to a resource, with a
mapping m = (t, r) ∈ Em indicating that a specific task
t can be mapped to hardware resource r.

C. System Synthesis

From the specification of the system that implicitly includes
all design alternatives, a system level implementation has to
be deduced, respectively synthesized. This implementation
corresponds to the hardware/software system that will be
implemented. The synthesis thereby involves the following
steps:

• The allocation α ⊆ R denotes the subset of the available
resources that are actually used and implemented in the
embedded system.

• The binding β ⊆ Em is a subset of the mapping edges
in which each processing task is bound to a hardware
resource that executes this task at runtime.

• The routing γ ⊆ R of each communication task is a
subset of resources over which a communication task is
routed.

• The schedule φ can be either static (with predefined start
times of the tasks) or dynamic (with assigned periods or
deadlines to the tasks).

Thus, an implementation is given by a tuple (α, β, γ, φ).

IV. CONTROLLER MODELING FOR ESL DESIGN

Introducing a novel design objective (design constraint)
requires (a) an adequate modeling and consideration during
system synthesis and (b) providing an evaluation technique to
quantify the design objective (to check for compliance with the
design constraint). This section introduces the proposed system
modeling approach. The employed control quality analysis
technique based on co-simulation is presented in the next
section. The overall modeling flow is depicted in Fig. 3.

A. Controller and Executable Specification

Control systems with feedback possess multiple advantages
in comparison to open-loop systems. The structure of a quite
general feedback control system is as follows, see Fig. 3(a):
The current state of the system x is sampled by a sensor and
a controller computes the new control signal which is send to
an actuator. The actuator generates the control vector u which
affects the behavior of the physical system that is also called
plant.

For the modeling of complex controllers and plants, control
engineers typically employ rich tool boxes, Matlab/Simulink
being one of the most prominent ones. The latter uses time-
based block diagrams to present functional units that exchange
data via signals (lines). Hence, there exists a significant simi-
larity between Matlab/Simulink modeling and actor-oriented
models as employed in ESL design that is the base of
an automatic transformation pattern to derive an actor-based
executable specification from Matlab/Simulink code: For every
(non-hierarchical) block in Matlab/Simulink, a corresponding
SysteMoC actor is stored in an actor library. Thus, every
basic block that appears in a complex controller model can
directly be transformed one-to-one to a SysteMoC actor. Each
signal is (a) directly transformed to a SysteMoC channel with
either FIFO or register semantics if it has only one sender
and one receiver or (b) transformed to multiple channels with
broadcasting if it has one sender and multiple receivers. In case
the control engineer specified an S-function block, an empty
actor stub with correct channels is created and has to be filled
manually. Note that the detailed transformation procedure has
to take into account different data types etc. and may have to
be adapted to the respective SDL used.

B. Control Application Exploration Model

To take into account feedback control systems during DSE,
the control applications are transformed to graphs gt(T ∪
C,Et). In case of a multi feedback controller design problem,
a system specification consists of a set P of plants. The
application graph gt of such a system is defined as:

gt =
⋃

p∈P

ap (1)

Here, each plant p is controlled by a separate control appli-
cation, modeled as a control application graph ap. Looking
at a single control application, the control application graph
ap has to represent the control application of its state space
model according to Fig. 3. Each control application graph
ap describes the part of the feedback control system that is
subsequently implemented: the sensor sampling the state xp

of plant p and preprocessing this data; the controller computing

the control vector; and the actuator generating the control
signal up. This leads to the following definition of a control
application graph ap of a feedback controller design problem
for a plant p:

• The set of sensor tasks Sp models the sensors monitoring
plant p. Each element s ∈ Sp is a vertex, denoting one
single sensor task.

• The set of controller tasks Hp where each element hp ∈
Hp is a vertex, denoting a processing task computing a
part of the control vector.

• The set of actuator tasks Up where each element up ∈ Up

is a vertex, denoting a processing task to generate one
control signal for plant p.

• The set of communication tasks Cp where each element
cp ∈ Cp is a vertex, represents a data transfer.

• The directed edges ep ∈ Ep ⊆ (Sp×Hp)∪ (Hp×Hp)∪
(Hp × Up) model data dependencies between the tasks.

Thus, a control application graph ap is defined as ap((Sp ∪
Hp ∪ Up ∪ Cp), Ep). Note that this definition allows multiple
sensor, controller, and actuator tasks that may be required to
control a single plant.

The proposed exploration model may, in case the behavioral
model can or shall not be derived as an intermediate step, be
directly derived from the state-space model of the controller.
If the executable specification is given as proposed here, the
transformation from the executable specification to the respec-
tive exploration model can be performed fully automatically,
following a transformation pattern presented in [20].

V. CONTROL QUALITY EVALUATION BY CO-SIMULATION

In this section, a co-simulation approach for control quality
evaluation is presented. First, the used performance estimation
technique based on virtual prototyping of the system imple-
mentation is introduced. By co-simulating a Matlab/Simulink-
based plant model and the virtual prototype of the system,
i. e., sensors, controllers, and actuators mapped to architecture
components, see [21], application-specific metrics such as the
braking distance can be used to reflect control quality.

A. Performance Simulation by Virtual Prototyping

A key aspect of the evaluation phase addressed in this work
is performance simulation. The goal is to evaluate the system
behavior, i. e., the behavior of tasks and their communication
when mapped to system components. The work at hand
employs a SystemC-based performance simulation to form a
Virtual Prototype VP of the system. In general, the VP consists
of an application enriched with architecture information.

To execute a performance simulation for a VP, the concept
of Virtual Processing Components (VPCs) [22] is used, a
custom library for performance simulation of SystemC models.
VPC has to be configured with the implementation deter-
mined by the system synthesis. A VPC model consists of
three components: (1) the resources in the system, (2) the
mapping of the tasks to the resources, and (3) the routing
that specifies the communication paths. Each node in the
architecture graph ga represents a resource modeled in the
VPC library. Resources include communication as well as
computation resources. To allow execution of multiple tasks
running on one VPC resource, a scheduling policy for each
VPC resource is determined from the implementation. Each
node from the application graph gt is mapped to one VPC
resource. This mapping is given by the implementation.

For a proper timing simulation, the computation delay is
determined by the mapping. This delay depends on attributes

(c) exploration model (b) executable specification (a) controller

plant controller

actuator

sensor
x

u

s1 out

in(1)&out(1) / sense

...

out[0] = data;

sense

s1 in

out

in(1) / control

...

out[0] = data;

sense

s2

...

out[0] = data;

control

out(1)

s1
in

in(1)&out(1) / act

...

out[0] = data;

act

in

out

ts

tc

ta

csc

cca

rsen1 rsen2

rcpu1 rcpu2

ract

application architecture

Fig. 3. Shown is (a) a typical controller in the state space model. Its proposed transformation into an executable specification, see (b), is depicted by dotted
edges. From the executable specification, the desired exploration model, see (c), can automatically be derived as well. The resulting application consists of
three tasks with a sensor task ts modeling the sensor, a control task tc modeling the controller including the input vector, and an actuator task ta modeling
the actuator. A platform architecture graph is depicted in the exploration model as well, consisting of two different sensors suitable to carry out the sensor
task, two CPUs suitable to execute the control task, and an actuator to implement the actuator task. The possible mapping of tasks to resources is depicted
by the dashed edges.

of the resources like the operations executed per second and of
the task like the number of instructions. The communication
between the tasks mapped to the resources has to be defined
also for VPC. For each communication task c ∈ C, a route is
specified by hops across VPC resources. For each hop, some
parameters can be defined such as a message priority.

The virtual prototyping approach based on VPCs extends
the standard SystemC simulator; for the sake of comprehensive
introduction of the co-simulation, the complete VPC-based
virtual prototyping approach is termed SystemC simulator in
the following.

B. Co-Simulation

Complex control applications often consist of multiple con-
trol loops that interact with each other to a large extend.
The kind of interaction may even be situation-dependent as
known from driver assistance systems that, e. g., may adapt to
changing environment. In these cases, the quality of a single
control loop can hardly capture the control quality of the
whole application or system. In fact, application-specific con-
trol quality metrics may become both comprehensive design
objectives such as the braking distance and valuable design
constraints such as the maximum slip of a wheel to ensure
maneuverability of a car. These metrics, however, vary from
application to application and their outcome may significantly
depend on the use case.

As outlined before, Matlab/Simulink offers a rich toolbox
to model complex and multiple plants but cannot consider
varying sensor to actuator delays. On the other hand, the
proposed performance estimation reflects the system behavior
of several complex controllers that interact with each other

but has serious drawbacks modeling complex plant behavior.
To derive the described application-specific control quality
metrics, a co-simulation approach is implemented in which the
control application including sensors and actuators is modeled
in SystemMoC while the plant is modeled in Matlab/Simulink.
The sensor actor in the VP reads the actual state x of the
plant periodically. The sampling times that are denoted as
τ1, . . . , τi, . . . τn with τ s = τi+1 − τi, ∀i being the sampling
interval. After sampling the state x(τi) at sampling time τi,
the implementation of the controller computes the control
vector u(τi). The delay from sensor from controller to actuator
caused by computation, scheduling, and resource contention is
defined as di. This delay di is determined during the discrete-
event-simulation of the VP. This means, after sampling the
sensor value at τi, the control vector u(τi) is updated at
τi + di

1. Hence, the plant has to be updated with respect to
the delay. Therefore, the control vector at an arbitrary time τ
is given as follows:

u(τ) =

{

u(τi−1), τi ≤ τ < τi + di
u(τi), τi + di ≤ τ < τi+1

(2)

Given both simulations run in parallel, synchronization mech-
anisms are necessary. The complete synchronization during
the co-simulation process is controlled by a co-simulation
interface, implemented as a Matlab/Simulink S-function. Fig. 4
schematically depicts the proposed coupling. The main tasks

1For FIFO-based channels in the actor-oriented model, the delay has to
be always smaller than the sampling interval, i. e., ∀i : di < τs. For
register-based channels, this assumption becomes obsolete. Just as in real-
world controller implementations, the actuator may then skip some control
vectors since these are updated and overwritten by a subsequent control vector.

Fig. 4. Control quality evaluation by co-simulation of Matlab/Simulink and a
SystemC-based virtual prototype. The coupling is achieved via an S-function
that synchronizes the simulations.

τi
simulation

step

1

simulation time in

Matlab/Simulink

simulation time

in SystemC

2 4

3

5 7

6 8

1’

5

2‘

τi+1

di

x(τi)
u(τi), di x(τi+1)

u(τi-1)
u(τi)

c
o

-s
im

u
la

ti
o

n

in
te

r
fa

c
e

Fig. 5. A schematic view of the proposed co-simulation which follows the
generic continuous/discrete synchronization model introduced in [23]. The
Matlab/Simulink simulator solves the plant model at each simulation step. For
each sampling time τi, the Matlab/Simulink simulation delivers the system
state x(τi) and forwards it to the virtual prototype simulated in SystemC. The
virtual prototype updates the control vector u(τi) and determines the delay
di which are forwarded back to the Matlab/Simulink simulation.

of the co-simulation interface are (a) synchronizing the Mat-
lab/Simulink simulator and SystemC simulator and (b) ex-
changing data between simulators via shared memory (or via
sockets if these two simulators are not on the same computer).
Matlab/Simulink uses numerical techniques to simulate the
behavior of continuous dynamic systems. It uses a configurable
sampling rate to determine how often a Matlab/Simulink block
is evaluated. During simulation, the output of a block is,
hence, only updated at so-called simulation steps. In the co-
simulation approach proposed here, the co-simulation interface
has to control the size of simulation step, cf. also Fig. 5,
to consider the sampling times and update of the control
vector correctly. Although it seems that both simulators run in
parallel, however, the actual co-simulation process is in parts
serialized. The process of co-simulation for one sampling time
τi is depicted in Fig. 5.

1) At each sampling time τi, the Matlab/Simulink simulator
computes the current state of a plant model x(τi), passes
it to the co-simulation interface, and is then suspended.

2) The SystemC simulator is invoked by the co-simulation
interface and reads x(τi).

3) The SystemC simulator computes the control vector
u(τi).

4) The SystemC simulator sends u(τi) back to the co-
simulation interface together with the calculated delay
di.

5) The co-simulation interface invokes the Simulink sim-
ulation while at the same time, the SystemC simulator
advances its simulation time to the beginning of the next

Fig. 6. A simplified vehicle model based on the Quarter Car Model [24]
is used here as the plant. This model assumes the vehicle has four identical
wheels and the surface conditions of road stay static. The co-simulation begins
with 50m/s as the initial velocity of the vehicle, followed by a full brake.
The vehicle runs on wet road surface.

sampling time τi+1 and is suspended by the co-simulation
interface.

6) The Matlab/Simulink simulator continues its simulation
using the old control vector u(τi−1) due to the delay di.

7) After the delay di has passed, the co-simulation interface
updates the control vector in the plant with the value of
u(τi) by invoking the Matlab/Simulink simulation engine.

8) The Matlab/Simulink simulator continues its simulation
with the updated control vector u(τi).

VI. CASE STUDY: BRAKE-BY-WIRE

As a case study, a Brake-by-Wire (BbW) system from the au-
tomotive domain shall serve as an example where application-
specific control quality measures may serve as comprehensive
design objectives and constraints. The complete system includ-
ing both controller application (BbW), the plant, and the co-
simulation interface, see Fig. 6, is modeled in Matlab/Simulink
first. Then, the ABS braking controller is transformed into a
SysteMoC behavioral model with the outlined transformation
scheme. The BbW system contains several networked ECUs
that communicate over a field bus to control the braking
process on the four wheels, see Fig. 7. A simplified vehicle
model based on the Quarter Car Model [24] is used here as
the plant. The system behavior in terms of braking distance
are considered as the application-based performance metrics in
this test case and are measured during co-simulation of plant
and controller. To highlight the behavior of the controller, the
wheel rotational speed is observed as well, depicting when the
ABS functionality comes into play. As a design constraint, the
slip is investigated with a slip of 1 corresponding to sliding
wheels and, hence, the requirement for a maneuverable vehicle
is violated.

The upper and lower threshold for slip are set to 0.2 and
0.04 so the controller is applicable on icy road as well. The
ABS controller monitors the deceleration of the four wheels.
Right before a wheel locks up (slip = 1), the controller will
release the brake. Because the inertia of the vehicle, wheel
rotational speed raises up temporally. If the ABS controller
detects the acceleration of the wheel, full brake starts again.
The key is that the controller tries to keep the wheel slows

Fig. 7. The executable actor-based specification of the brake-by-wire system.
The two main actors M1, M2 (redundant modeling) are responsible for
computing candidate brake force and force feedback values, respectively. The
final values applied to the four individual wheels are selected by a voter V
actor. The four wheel actors RL, RR, FL, FR compute corrected brake forces
to satisfy the ABS functionality. Sensors S1-S4 monitor wheel speeds and
actuators A1-A4 apply brake forces to the wheels. The force applied to the
brake pedal and its position are sampled via P1, P2. Actuator F applies the
feedback force to the brake pedal.

E
C

U
2

E

C
U

3

E
C

U
4

E

C
U

5

E
C

U
6

E

C
U

7

E
C

U
1

S1 RL A1

P1

S2 FL A2

S3 RR A3

S4 FR A4

F
le

x
R

a
y

E
C

U
2

E
C

U
3

E
C

U
4

E

C
U

5

E
C

U
1

S1 A1

P2

F

S2 A2

S3 A3

S4 A4

RL FL RR FR

P1

M1

M2

M1

M2

V

F V

P2

C
A

N

Fig. 8. The Brake-by-Wire system is mapped to two different architectures
comprising of a FlexRay bus and seven ECUs or a CAN bus and five ECUs.

down nearly at the same rate as the vehicle. This process
repeats multiple times until the vehicle stops.

The braking controller has been simulated with different
architectures and sampling intervals, see Fig. 8 and Tab. I.
For the CAN field bus with lower bandwidth (1 Mbit/s), the
redundant main control actors are executed on a single ECU
and an overall of five ECUs is used. The high bandwidth
of the FlexRay bus (10 Mbit/s, single channel) enables to
employ seven ECUs and higher sampling intervals, such that
an improved control quality and dependability at increased
cost may be expected. Note that not only the higher bandwidth,
but the distributed mapping of the computation-intensive Main
nodes shortens the end-to-end delay.

The co-simulation results of five implementations found
during DSE are depicted in Fig. 9 and Fig. 10. Comparing
VP 1, VP 2, and VP 3, reducing sampling interval results
in decreased braking distance and, hence, improved control
quality but consumes more bandwidth. With respect to braking
distance, see Fig. 10, VP 4 and VP 5 do not have a significant
improvement in comparison to VP 1-3. However, by using

TABLE I
SELECTED SYSTEM IMPLEMENTATIONS FOR THE BRAKE-BY-WIRE USE CASE.

bus sampling interval τ s bandwidth delay di

1 CAN 100ms 1.02% 1.07ms
2 CAN 50ms 2.05% 1.07ms
3 CAN 10ms 10.24% 1.07ms
4 FlexRay 10ms 1.73% 0.499ms
5 FlexRay 1ms 17.28% 0.499ms

0 5 10 15 20

0

50

100

150

simulation time [s]

w
h

ee
l

ro
ta

ti
o

n
al

sp
ee

d
[r
a
d
/
s]

VP 1
VP 2
VP 3
VP 4
VP 5

Fig. 9. Evaluation of the wheel rotational speed over time [s] using co-
simulation to highlight the ABS functionality.

a redundant main computation node, the dependability and
safety of the system is improved. Furthermore, investigating
the slip, there is a change between VP 4 and VP 5, with the
latter keeping the slip always in the specified optimal range,
see Fig. 11. With the slip value in VP 5 being always in the
optimal range between 0.04 and 0.2, the ABS functionality is
perfectly guaranteed according to the specification. Thus, the
advantage of using a smaller sampling interval is still present,
but it does not affect braking distance and whether the driver
is affected or not may be subject to further investigations.
However, this maybe not noticeable improvement is bought
by consuming ten times more bandwidth (from 1.73% to
17.28%).

VII. CONCLUSION

The quality of control in the sense of application-specific
properties like braking distance or maneuverability of a car
are becoming design objectives and constraints of utmost
importance for future (distributed) embedded control systems.
This must be considered by design automation approaches
to achieve safe system implementations of high quality. This
work presents a tool flow at the Electronic System Level (ESL)
that enables the modeling, analysis, and optimization of a
distributed controller systems with quality of control being
considered as principal design objectives and constraints. The
existing gap between actor-oriented models for system design
and common analysis techniques for control quality is bridged
by a co-simulation of a SystemC-based virtual prototype
of the distributed controllers and plant models written in

0 5 10 15 20

0

200

400

simulation time [s]

b
ra

k
in

g
d

is
ta

n
ce

[m
]

VP 1
VP 2
VP 3
VP 4
VP 5

Fig. 10. Evaluation of the application-specific control quality metric braking
distance over time [s] using co-simulation.

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

simulation time [s]

sl
ip

VP 4
VP 5
slip threshold 0.2
slip threshold 0.04

Fig. 11. Evaluation of the application-specific constraint slip over time [s]
using co-simulation.

Matlab/Simulink. This co-simulation not only allows to de-
termine metrics from the control theory domain like quadratic
cost or stability but also application-specific control quality
metrics like the maximum braking distance. A presented model
transformation combines the traditional development process
of control applications with state-of-the-art ESL techniques,
ensuring model consistency while enabling a high degree
of automation. The design flow is implemented and tested
here for a Brake-by-Wire control application from the auto-
motive domain. The results of different architecture variants
highlight the various trade-offs that exist between different
design objectives as well as the fact that some improvements
within the controller may not significantly influence principal
application-specific design objectives like the braking distance.

REFERENCES

[1] B. Wittenmark, J. Nilsson, and M. Törngren, “Timing problems in
real-time control systems,” in In Proceedings of the American Control
Conference, 1995, pp. 2000–2004.

[2] K.-E. Årzén, A. Cervin, J. Eker, and L. Sha, “An introduction to control
and scheduling co-design,” in Proceedings of IEEE Conf. on Decision
and Control, vol. 5, 2002, pp. 4865–4870.

[3] S. Samii, A. Cervin, P. Eles, and Z. Peng, “Integrated scheduling and
synthesis of control applications on distributed embedded systems,” in
Proceedings of DATE ’09, 2009, pp. 57–62.

[4] H. Voit, R. Schneider, D. Goswami, A. Annaswamy, and S. Chakraborty,
“Optimizing hierarchical schedules for improved control performance,”
in Proceedings of SIES ’10, 2010.

[5] E. Lee, “Cyber physical systems: Design challenges,” in IEEE Interna-
tional Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), 2008, pp. 363–369.

[6] T. M. Inc., “Matlab/simulink.”
[7] J. Falk, C. Haubelt, and J. Teich, “Efficient Representation and Simula-

tion of Model-Based Designs in SystemC,” in IN PROC. FDL06, 2006,
pp. 129–134.

[8] K.-E. Årzén and A. Cervin, “Control and Embedded Computing: Survey
of Research Directions,” in Proc. 16th IFAC World Congress, Prague,
Czech Republic, Jul. 2005.

[9] B. Lincoln and A. Cervin, “Jitterbug: A tool for analysis of real-time
control performance,” in Proceedings of IEEE Conf. on Decision and
Control, Las Vegas, NV, Dec. 2002.

[10] E. Bini and A. Cervin, “Delay-aware period assignment in control
systems,” in Real-Time Systems Symposium, 2008, 30 2008-dec. 3 2008,
pp. 291 –300.

[11] S. Samii, A. Cervin, P. Eles, and Z. Peng, “Integrated scheduling and
synthesis of control applications on distributed embedded systems,” in
Design, Automation Test in Europe Conference Exhibition, 2009. DATE
’09., april 2009, pp. 57 –62.

[12] S. Samii, P. Eles, Z. Peng, and A. Cervin, “Quality-driven synthesis
of embedded multi-mode control systems,” in Proceedings of DAC ’09,
2009, pp. 864–869.

[13] A. Cervin, H. Dan, B. Lincoln, and Å. Karl-Erik, “Jitterbug and truetime:
Analysis tools for real-time control systems,” in Proceedings of 2nd
Workshop on Real-Time Tools, Copenhagen, Denmark, August 2002,
Copenhagen, Denmark, Aug. 2002.

[14] T. Yang, “Networked control system: a brief survey,” Control Theory
and Applications, IEE Proceedings -, vol. 153, no. 4, pp. 403 – 412,
july 2006.

[15] M.-M. Ben Gaid, A. Çela, and R. Kocik, “Distributed control of a car
suspension system,” in Proceedings of the 5th EUROSIM Congress on
Modeling and Simulation, Paris, France, September 2004.

[16] D. Simon, D. Robert, and O. Sename, “Robust control/scheduling co-
design: application to robot control,” in Real Time and Embedded
Technology and Applications Symposium, 2005. RTAS 2005. 11th IEEE,
march 2005, pp. 118 – 127.

[17] F. Xia, Z. Wang, and Y. Sun, “Simulation based performance analysis
of networked control systems with resource constraints,” in Industrial
Electronics Society, 2004. IECON 2004. 30th Annual Conference of
IEEE, vol. 3, nov. 2004, pp. 2946 – 2951 Vol. 3.

[18] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty, “Time-
triggered implementations of mixed-criticality automotive software,” in
Proceedings of the 15th Conference for Design, Automation and Test in
Europe (DATE), pp. 1227–1232.

[19] A. Gerstlauer, C. Haubelt, A. Pimentel, T. Stefanov, D. Gajski, and
J. Teich, “Electronic system-level synthesis methodologies,” IEEE Trans.
on CAD, vol. 28, no. 10, pp. 1517–1530, 2009.

[20] M. Lukasiewycz, M. Streubühr, M. Glaß, C. Haubelt, and J. Teich,
“Combined System Synthesis and Communication Architecture Explo-
ration for MPSoCs,” in Proceedings of Design, Automation and Test in
Europe. Nice, France: IEEE Computer Society, Apr. 2009, pp. 472–477.

[21] N. Mühleis, M. Glaß, L. Zhang, and J. Teich, “A co-simulation approach
for control performance analysis during design space exploration of
cyber-physical systems,” SIGBED Rev., vol. 8, pp. 23–26, 2011.

[22] M. Streubühr, J. Gladigau, C. Haubelt, and J. Teich, “Efficient
Approximately-Timed Performance Modeling for Architectural Explo-
ration of MPSoCs,” in Advances in Design Methods from Modeling
Languages for Embedded Systems and SoC’s. Springer Netherlands,
2010, vol. 63, pp. 59–72.

[23] F. Bouchhima, M. Briere, G. Nicolescu, M. Abid, and
E. Aboulhamid, “A SystemC/Simulink Co-Simulation Framework
for Continuous/Discrete-Events Simulation,” in Behavioral Modeling
and Simulation Workshop, Proceedings of the 2006 IEEE International,
sept. 2006, pp. 1 –6.

[24] A. Kruczek and A. Stribrsky, “A full-car model for active suspension -
some practical aspects,” in Mechatronics, 2004. ICM ’04. Proceedings
of the IEEE International Conference on, june 2004, pp. 41 – 45.

