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Abstract
Assessing the geographic structure of populations has relied heavily on Sewell 
Wright’s F‐statistics and their numerous analogues for many decades. However, it is 
well appreciated that, due to their nonlinear relationship with gene flow, F‐statistics 
frequently fail to reject the null model of panmixia in species with relatively high 
levels of gene flow and large population sizes. Coalescent genealogy samplers in-
stead allow a model‐selection approach to the characterization of population struc-
ture, thereby providing the opportunity for stronger inference. Here, we validate the 
use of coalescent samplers in a high gene flow context using simulations of a step-
ping‐stone model. In an example case study, we then re‐analyze genetic datasets 
from 41 marine species sampled from throughout the Hawaiian archipelago using 
coalescent model selection. Due to the archipelago’s linear nature, it is expected that 
most species will conform to some sort of stepping‐stone model (leading to an ex-
pected pattern of isolation by distance), but F‐statistics have only supported this in-
ference in ~10% of these datasets. Our simulation analysis shows that a coalescent 
sampler can make a correct inference of stepping‐stone gene flow in nearly 100% of 
cases where gene flow is ≤100 migrants per generation (equivalent to FST = 0.002), 
while F‐statistics had mixed results. Our re‐analysis of empirical datasets found that 
nearly 70% of datasets with an unambiguous result fit a stepping‐stone model with 
varying population sizes and rates of gene flow, although 37% of datasets yielded 
ambiguous results. Together, our results demonstrate that coalescent samplers hold 
great promise for detecting weak but meaningful population structure, and defining 
appropriate management units.
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1  | INTRODUC TION

The delineation of population genetic structure is a long‐standing 
problem in ecology and conservation of natural populations (Funk, 
McKay, Hohenlohe, & Allendorf, 2012; Hellberg, 2009; Palsbøll, 
Bérubé, & Allendorf, 2007; Selkoe, D’Aloia, et al., 2016; Waples, 
1998). Particularly in marine systems, large population sizes and 
relatively high rates of gene flow (via a planktonic larval stage) co-
incide to create high‐diversity datasets with low or nonexistent 
genetic structure as measured by traditional F‐statistics (Gagnaire 
et al., 2015; Riginos, Crandall, Liggins, Bongaerts, & Treml, 2016). 
This is chiefly because FST has a nonlinear relationship with gene 
flow such that flows greater than about 10 migrants per genera-
tion cannot be statistically distinguished from FST = 0 using real-
istic sample sizes (Waples, 1998). As a result, studies of species 
with large and variable population sizes and moderate gene flow 
are often unable to reject the null hypothesis that all sampled in-
dividuals are part of a single, randomly mating population (pan-
mixia), even when population samples are separated by hundreds 
of kilometers.

This problem is especially acute in the face of growing evidence 
that mean larval dispersal distances are typically <100 km (Almany 
et al., 2017; Cowen & Sponaugle, 2009; D’Aloia et al., 2015; Kinlan 
& Gaines, 2003; Schunter, Pascual, Garza, Raventos, & Macpherson, 
2014). We would thus expect population structure for marine species 
with larval dispersal to be governed by a model of isolation by dis-
tance (IBD; Wright, 1943), wherein nearby individuals are more likely 

to mate than distant individuals, or, more specifically, by a stepping‐
stone model, a special case of IBD wherein individuals are lumped 
into spatially discrete demes and dispersal occurs only between 
neighboring demes (Kimura & Weiss, 1964), such as would be ex-
pected in an island archipelago system. However, less than one third 
of marine population genetic studies to date have found a significant 
correlation between geographic distance and FST that is diagnostic of 
IBD (Selkoe & Toonen, 2011), probably due to (a) lack of sensitivity to 
weak structure in species with high gene flow and large population 
sizes discussed above, and (b) a lack of equilibrium between genetic 
drift and gene flow caused by population growth and range expan-
sions, especially those that followed the Last Glacial Maximum (LGM) 
(Crandall, Sbrocco, DeBoer, Barber, & Carpenter, 2012; Slatkin, 1993).

Coalescent genealogy samplers provide a promising alterna-
tive to methods based on F‐statistics (reviewed by Kuhner, 2009; 
Marko & Hart, 2011). When viewed backward in time, a metapop-
ulation’s genealogy will coalesce to nodes of common ancestry. By 
repeatedly evaluating genealogies and favoring those with high 
likelihood of describing the data in a Bayesian Markov chain Monte 
Carlo framework, coalescent samplers can obtain estimates of pop-
ulation genetic parameters, such as effective population size (Ne) 
and the proportion of migrants (m). By adding additional Markov 
chains with higher acceptance ratios that search most of parameter 
space (path sampling), these programs are also able to evaluate the 
marginal likelihood of alternative models of population structure 
(Beerli & Palczewski, 2010). In comparison with FST methods, co-
alescent methods use information from genealogy in addition to 

F I G U R E  1  Map of the Hawaiian archipelago, with names and abbreviations of sample sites
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information about allele frequency, and should be much better able 
to characterize gene flows higher than 10 migrants per generation 
so long as Ne is large and m is relatively small (the structured coales-
cent; Wakeley, 2004; Crandall, Treml, & Barber, 2012).

Extending almost linearly more than 2,500 km from the hotspot 
in the southeast to Kure Atoll in the northwest, the Hawaiian ar-
chipelago provides an excellent test of our ability to characterize 
population genetic structure in a linear stepping‐stone array of pop-
ulations (Figure 1). The archipelago supports coral reef habitat on 
every island and atoll and is isolated from the rest of the Indo‐Pacific 
region by more than 800 km of open ocean. Biophysical modeling 
demonstrates a clear expectation for IBD, with neighboring islands 
exchanging many more larvae than distant islands (Wren, Kobayashi, 
Jia, & Toonen, 2016). However, population genetic surveys of over 
40 marine species have yielded only four that show the predicted 
correlation between FST and geographic distance, with the major-
ity showing some form of genetic structure separating large pan-
mictic regions (regional structure), with smaller fractions showing 
“chaotic” population structure with no relationship to geography, or 
apparent panmixia across the entire archipelago (reviewed in Selkoe, 
Gaggiotti, Bowen, & Toonen, 2014; Toonen et al., 2011).

In this study, we re‐examine genetic datasets from 41 marine 
species in a model‐selection framework using a popular coalescent 
sampler: migrate‐n (Beerli & Felsenstein, 2001; Beerli & Palczewski, 
2010). We first validate the method through simulation of stepping‐
stone dispersal at the characteristically high effective population 
sizes and rates of gene flow that are expected for marine species. 
We then analyze each dataset, calculating the relative probability of 
a stepping‐stone model in comparison with panmixia, the n‐island 
model (equal gene flow exchanged between all populations; Wright, 
1931) and various hypotheses of regional structure to compare the 
model‐selection approach to direct interpretation of F‐statistics.

2  | METHODS

2.1 | Simulations

Using IBDsim 2.0 (Leblois, Estoup, & Rousset, 2009), we simu-
lated stepping‐stone dispersal among 10 equally sized demes in a 

Parameter set
Effective population size 
(Ne)

Proportion of 
migrants (m)

Effective number of 
migrants (Nem)

1 104 10−3 10

2 105 10−4 10

3 106 10−5 10

4 104 10−2 100

5 105 10−3 100

6 106 10−4 100

7 104 10−1 1,000

8 105 10−2 1,000

9 106 10−3 1,000

TA B L E  1  Parameter sets for 
simulations of stepping‐stone dispersal 
with equal levels of migration among 
equally sized demes using IBDsim. 100 
datasets were simulated per parameter 
set

F I G U R E  2  Migrate-n models that were evaluated for each 
dataset simulated in Table 1. Squares represent a single Θ 
parameter across all populations, and circles represent distinct 
parameters Θ for all populations. Gray lines represent a single 
m/μ parameter across all populations, while black lines represent 
distinct m/μ across all populations. (a) Panmixia, (b) five regional 
groups with a shared Θ and m/μ parameters, (c) five regional groups 
with a distinct Θ and m/μ parameters, (d) island model, (e) island 
model for five regional groups, (f) stepping‐stone model with shared 
values for Θ and m/μ parameters (the true model), (g) stepping‐
stone model with distinct parameters for Θ and m/μ parameters

(a) (b) (c)

(d) (e) (f) (g)
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one‐dimensional lattice with a fixed proportion of migrants moving 
between neighboring demes. We created nine simulated param-
eter sets that varied effective population size (Ne = {104, 105, 106}) 
and proportion of migrants (m = {10−1, 10−2, 10−3, 10−4, 10−5}) for all 
combinations where Nem was equal to 10, 100, or 1,000 migrants 
per generation, as well as a panmictic dataset that was simulated 
as a single population with Ne = 106 that was then subdivided into 
10 demes (Table 1). Because the Hawaiian marine populations are 
thought to have undergone demographic expansion following sea 
level rise after the LGM which ended 14–20 thousand years ago 
(Baums, Godwin, Franklin, Carlon, & Toonen, 2013), we simulated 
an order of magnitude increase in effective population size for each 
deme to reach the final, given value for Ne. This population expan-
sion occurred 10,000 generations ago, approximating the end of the 
LGM (many of the study species have a generation time of ~2 years). 
We sampled 20 post‐dispersal individuals from each population, 
with a simulated sequence of 500 bp of haploid DNA evolving under 
the HKY85 model (transition/transversion ratio = 9.0, base frequen-
cies set to default), with a per‐base mutation rate of 10% per million 
generations (i.e., mitochondrial DNA, see Crandall, Sbrocco, et al., 
2012). We simulated 100 replicate datasets of each parameter set.

For each replicate simulated dataset, we calculated pairwise 
ΦST (Excoffier, Smouse, & Quattro, 1992) and θ (Weir & Cockerham, 
1984) with the StrataG package for R (Archer, Adams, & Schneiders, 
2017), and then assessed the significance of the relationship be-
tween pairwise genetic distance and geographic distance along the 
lattice (i.e., IBD) using a Mantel test as implemented in the adegenet 

package for R (Jombart & Ahmed, 2011). For 10 replicate datasets 
from each parameter set, we also estimated the marginal likelihood 
of seven different metapopulation models in migrate‐n (Figure 2): 
(a) a stepping‐stone model with freely varying m/μ and Θ = Neμ pa-
rameters (where Ne is the effective population size, m is the pro-
portion of individuals in the population that are migrants, and μ is 
mutation rate), (b) a stepping‐stone model with single estimated pa-
rameters for m/μ and Θ (the true model), (c) a stepping‐stone model 
between five lumped pairs of demes with freely varying parameters 
or (d) single estimated parameters for m/μ and Θ (models 3 and 4 
representing regional structure), (e) an island model with 10 demes 
(migration between all possible demes pairs with a single estimated 
parameter for m/μ and Θ) (f) an island model with five demes, and 
(g) a model of panmixia. Migrate‐n was run with the same priors, 
and other parameter file settings as are described below for the 
empirical datasets.

2.2 | Migrate‐n analysis of empirical data

Empirical datasets comprised mitochondrial data from 41 species 
sampled during NOAA expeditions throughout the main Hawaiian 
archipelago and Northwestern Hawaiian Islands from 2005 to 
2012 (Figure 1, Supporting Information Table S1; Selkoe et al., 
2014; Selkoe, Gaggiotti, et al., 2016; Toonen et al., 2011). Locality 
samples were grouped by island, and each dataset was converted 
from Arlequin format to Nexus and migrate‐n formats in batch via 
PGDSpider 2.0.5.1 (version 2.0.5.1; Lischer & Excoffier, 2012). An 

F I G U R E  3  Migrate-n models that were evaluated for each empirical dataset. Squares represent a single Θ parameter across all 
populations and circles represent distinct parameters Θ for all populations. Gray arrows represent a single m/μ parameter across all 
populations, while black arrows represent distinct m/μ across all populations. High islands are shaded dark gray, while atolls and reefs are 
shaded light gray. Panmictic populations are enclosed in ellipses. (a) Panmixia, (b) regional structure between the main Hawaiian islands and 
the Northwestern Hawaiian Islands, (c) regional structure due to a current passing between French Frigate Shoals and Gardner Pinnacles, (d) 
regional structure due to the current in C, and another current between Lisianski Atoll and Pearl and Hermes Atoll, (e) an island model, (f) a 
stepping‐stone model with shared values for Θ and m/μ parameters, (g) a stepping‐stone model with independent values for Θ and m/μ
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optimal HKY model of molecular evolution for each dataset was se-
lected with jModelTest (Darriba, Taboada, Doallo, & Posada, 2012).

Parameter input files for migrate‐n were constructed using a 
custom script in R. All models had identical, windowed exponential 
priors on Θ (lower bound: 1 × 10−5, upper bound: 1 × 10−1, mean: 
0.01) and m/μ (lower bound: 1 × 10−4, upper bound: 1 × 106, mean: 
1 × 105) parameters. Assuming a mutation rate of 10% per million 
years, these priors represent the belief that each island population’s 
effective size is <1 million (Hare et al., 2011), and the proportion of 
migrants is <10% of that (i.e., <100,000 migrants/generation; Wren 
et al., 2016). We used four heated chains with temperatures of 1, 
1.5, 3, and 1 × 105 to ensure a thorough search of parameter space, 
thereby enabling an estimate of model marginal likelihood via path 
sampling (Beerli & Palczewski, 2010). Migrate‐n was set to optimize 
on the m/μ parameter rather than the joint parameter Nem, and with 
an inheritance scalar that reflected the haploid, uniparental trans-
mission of mtDNA. For each model, the coolest chain explored five 
million genealogies, sampling every 100 iterations, and discarding 
the first two million genealogies as burn‐in. Parameter files for each 
species and each model are available in the Github repository.

For each species’ dataset, we created seven or eight meta-
population models to compare in a model‐selection framework 
(Figure 3). We first modeled panmixia as all samples belonging to a 
single deme (K = 1, 1 Θ parameter). We modeled regional structure 
as two panmictic demes (K = 2, 2 Θ parameters, 2 m/μ parameters), 
with a barrier to gene flow occurring (a) between the MHI and the 
NWHI (high–low hypothesis), (b) between French Frigate Shoals and 
Gardner Pinnacles due to a current that bisects the archipelago there 
(Wren et al., 2016), (c) regional structure as three panmictic demes 

with two barriers based on currents that run between French Frigate 
Shoals and Gardner Pinnacles, and between Lisianski Atoll and Pearl 
and Hermes Atoll (two‐currents hypothesis, K = 3, 3 Θ parameters, 
6 m/μ parameters). We modeled the island model as migration at a 
single rate between all n sampled populations, which have a single 
shared population size (K = n, 1 Θ parameter, 1 m/μ parameter). We 
modeled stepping‐stone migration between neighboring islands by 
either fixing Θ and m/μ each to a single estimated parameter (step-
ping‐stone two‐parameter hypothesis, K = n, 1 Θ parameter, 1 m/μ 
parameter), or allowing each parameter to vary freely (stepping‐
stone hypothesis, K = n, n Θ parameters, [2n − 2] m/μ parameters). 
Finally, for some species where Selkoe et al. (2014) had inferred re-
gional structure that departs from the models specified above, we 
modeled the observed empirical structure for that species.

Three replicates of each metapopulation model were run using 
migrate‐n version 3.6.9 prior to estimation of the marginal likeli-
hood via path sampling. We used the Bezier‐corrected estimate in 
each case as it provides a good approximation to a marginal like-
lihood calculated from a large number of heated chains (Beerli & 
Palczewski, 2010). We then reran all models for all species two 
more times for a total of nine replicate runs of each model, yielding 
three estimates of marginal likelihood. All model runs were per-
formed on the University of Hawaii high‐performance computing 
(HPC) cluster.

Model runs did not always yield the same marginal likelihood, but 
were usually similar (within ~10 points of log‐likelihood; Supporting 
Information Figure S1), so we took the mean marginal likelihood 
values across the three replicate runs. To accommodate variance in 
estimated log‐likelihood across replicates, we tested for significance 

F I G U R E  4  Proportion of simulated 
datasets showing a significant relationship 
between lattice distance and ΦST or Weir 
and Cockerham's θ
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of the best model by comparing the mean marginal likelihood to the 
second‐best model for each species using a permutation t test exe-
cuted in the R‐package perm (Fay & Shaw, 2010). Species with a per-
mutation t test p‐value > 0.05 were considered to have significant 
ambiguity in their top‐ranked metapopulation model.

For species that had a non‐ambiguous inference of a full step-
ping‐stone model, we tested for a significant relationship between 
area of shallow ocean habitat <10 fathoms deep in square kilometers 
(Rohmann, Hayes, Newhall, Monaco, & Grigg, 2005) and the natural 
log of Θ = Ne. We also tested for a significant relationship between 
approximate census size of each island (as estimated from densities 
reported in McCoy et al. (2017)) and the natural log of Θ. We did this 
by evaluating the slope for 10,000 linear models created by match-
ing the area or census size of each sampled island with a random 
draw from the posterior distribution of Θ for that island. A significant 

relationship between island size and Θ was determined for any spe-
cies that had a positive slope in at least 95% of the linear models.

Finally, we asked whether life history traits were predictive of 
metapopulation model (e.g., Does a long pelagic larval duration lead 
to inference of panmixia?). We used the suite of life history traits 
assembled by Selkoe et al. (2014, Supporting Information Table S1), 
which included pelagic larval duration, depth range, adult length, hab-
itat specialist, attached eggs, herbivore, fish, and endemic, with the 
first three predictors being log transformed and the last five coded as 
logical values. We created a multinomial regression model using the 
nnet package in R (Venables & Ripley, 2002), and treating our expec-
tation of a stepping‐stone model as the reference level, with the other 
three levels being regional structure, n‐island, and panmixia. The sig-
nificance of each predictor was tested using a z test with the test 
statistic calculated as the model coefficient divided by its standard 

F I G U R E  5  Relative probability for 
each of seven models evaluated with 
migrate‐n (depicted in Figure 2) for each 
simulated dataset in Table 1. Probabilities 
are averaged across 10 replicate simulated 
datasets for each combination of effective 
population size (Ne) and proportion of 
migrants (m)
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error. All R code, and infiles for IBDsim and migrate‐n are available on 
the GitHub repository linked in the data archiving statement.

3  | RESULTS

3.1 | Simulations

The two estimators of FST (ΦST and θ) had markedly different abil-
ity to recover a significant correlation with distance along the lat-
tice in different simulated scenarios (Figure 4). In particular, when 
Ne = 106, ΦST was more likely to be significant with distance at 
Nem = 10, while θ was more likely to be significant with distance 
when Nem = 1,000. ΦST ranged from 18% to 86% of datasets with 
a significant relationship to distance while θ ranged from 12% 
to 98%. Neither statistic showed any evidence of false‐positives 
when evaluating the panmictic dataset.

Migrate‐n chose the true model (Stepping‐stone two parame-
ter) for all 10 datasets for each parameter set where Nem = 10 with 
one exception (Figure 5). In one of ten datasets for Ne = 104, the 
full 28‐parameter stepping‐stone model was selected. Similarly, 
for parameter sets where Nem = 100, migrate‐n selected the true 
model in every case except when Ne was 10

4. For this parame-
ter set, it chose some version of a regional model (five stepping‐
stone populations) in six out of 10 datasets. For datasets where 
Nem = 1,000, migrate‐n never recovered the true model, inferring 
mostly panmixia for Ne of 10

5 and 106, and a variety of models for 
Ne of 10

4. When the true model was panmixia, migrate‐n selected 
panmixia for five of the replicates and the n‐island model for the 
other five.

Parameter estimates for Nem and Ne were consistently about 
one twentieth to one half of the true simulated value (Supporting 
Information Figure S2). We attribute this outcome to the 

F I G U R E  6  Relative probability for each of eight models evaluated with migrate‐n (depicted in Figure 3) for each empirical dataset. 
Probabilities are averaged across three replicate migrate-n runs. Species names for which the best model was unambiguous are printed in 
boldface
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order‐of‐magnitude population growth experienced by each popula-
tion, as migrate‐n estimates of Θ are expected to be downwardly bi-
ased in the case of such population growth (Beerli, 2009). Saturation 
is also likely to play a role when Ne = 1 million, as these datasets had 
over 60% variable sites. Migrate’s estimates of gene flow are also 
known to be downwardly biased when true migration is high, due to 
the need to truncate the number of migration events to avoid mem-
ory overflow (Beerli & Felsenstein, 1999).

3.2 | Empirical data

Migrate‐n inferred some form of stepping‐stone model for 18 of 
26 species for which the model was unambiguous (69%; Figure 6). 
Regional structure was inferred for three species, the sergeant major 
Abedefduf abdominalis, spinner dolphin Stenella longirostris, and yel-
lowstripe goatfish, Mulloidichthys flavolineatus. For all three of these 
species, migrate‐n analysis confirmed inferences based on FST of re-
gional structure, regional structure, and chaotic structure, respec-
tively (Selkoe et al., 2014). An island model was selected for the spiny 
lobster, Panulirus marginatus, and panmixia was the best model for 
four species: two with Indo‐Pacific distributions: Bluestripe snapper 
(Lutjanus kasmira) and Zebra hermit crab (Calcinus seurati), and two 
Hawaiian endemics: Bluestripe Butterflyfish (Chaetodon fremblii) 
and Hawaiian grouper (Epinephelus quernus).

There was no clear pattern in the 15 species that did not yield 
a single best model over three replicates. Five species had the full 
stepping‐stone model at an average posterior probability over 50%, 
while four species had the same for panmixia and one for the n‐is-
land model. The other five had no majority model. A logistic regres-
sion found that haplotype diversity and ΦST were not predictive of 
whether a dataset gave ambiguous results or not.

For the species that yielded a single unambiguous model, poste-
rior distributions for Θ, m/μ, and their product Nem all had effective 
sample sizes greater than 200 (with the exception of some parame-
ters for Etelis marshii). However, while Θ posteriors converged, many 
m/μ posteriors did not converge well, as indicated by multimodal 
distributions (Supporting Information Figure S3) and scale reduction 
factors >1.2. For this reason, we focus only on the minimum and max-
imum values (upper and lower bounds of 95% highest posterior den-
sity intervals) estimated for these parameters. The lowest m/μ value 
that fell within the 95% highest posterior density for any species was 
3 × 10−4 (Cellana talcosa), and the highest was 9.9 × 105 (Chaetodon 
lunulatus). The lowest Θ value for any species was 2.9 × 10−6 (Cellana 
exarata), while the highest value was 4 × 10−1 (Gymnothorax flavimar‐
ginatus). For Nem, the lowest value for any species was 5.2 × 10−7 
(Cellana talcosa) and the highest value was 2.3 × 104 female migrants 
per generation (Chaetodon lunulatus).

The limpet Cellana exarata was the only species that showed 
a significant relationship between habitat size and log Θ (p = 0, 
Supporting Information Figure S4). No species showed a significant 
relationship between census size and log Θ. The only life history trait 
that was significantly correlated with our inferred models was her-
bivory, which was negatively correlated with panmixia (p = 0).

4  | DISCUSSION

Our analysis of 41 marine species sampled along the Hawaiian archi-
pelago with a coalescent genealogy sampler represents the largest and 
most thorough application of such a model testing framework to date. 
Out of the species for which we could select a model without significant 
ambiguity, we found that nearly 70% conformed to a stepping‐stone 
model of gene flow (Figure 6). This result should not be surprising given 
what we know about relatively short mean larval dispersal (D’Aloia et 
al., 2015; Treml et al., 2012) and the seascape of the Hawaiian archipel-
ago (Wren et al., 2016). Yet this finding represents a striking departure 
from inferences based on FST, which have only found evidence for IBD 
in about 10% of the species (Selkoe et al., 2014).

Although our result agrees with intuition, such a striking reversal 
requires some skepticism. What if our coalescent approach is some-
how biased toward stepping‐stone models, or what if there is simply 
not enough information in mitochondrial datasets to make a reliable 
inference? For this reason, we conducted extensive simulations in 
the large population size and high gene flow region of population 
genetic parameter space that is occupied by most marine species 
(Gagnaire et al., 2015; Waples, 1998). We found that migrate‐n is 
able to return a correct inference of some form of stepping‐stone 
model (including regional structure) in 100% of cases where gene 
flow is 100 effective migrants per generation or less (Figure 5). This 
compares quite favorably to two analogs of FST which had variable 
success that hovered around 75% (Figure 4) for gene flows of 100 
migrants per generation or less. Moreover, migrate‐n and FST meth-
ods both have low false‐positive rates, never inferring a stepping‐
stone model when the true model was panmixia (although migrate‐n 
did infer an island model 50% of the time).

When dealing with “real‐world” mitochondrial datasets, the suc-
cess rate of both coalescent (69%) and FST‐based (10%) methods is 
apparently lower than the simulations would predict (perhaps due 
in part to natural selection on the mitochondrial genome; Ballard & 
Whitlock, 2004; Crandall, Sbrocco, et al., 2012, Teske et al., 2018), if 
we assume that some sort of isolation‐by‐distance model is correct 
in most marine species with larval dispersal. Indeed, IBD it is only 
detected in about 33% of studies globally (Selkoe & Toonen, 2011). 
Mitochondrial DNA data in particular are viewed as being problem-
atic in this application (Teske et al., 2018). However, it may not be 
the data that are failing so much as the analytical approach: Given 
that F‐statistics remain the primary method by which marine popu-
lation structure is diagnosed (Selkoe, D’Aloia, et al., 2016), the 10% 
success rate of FST methods in the Hawaiian archipelago (Selkoe et 
al., 2014; Toonen et al., 2011) and ~33% success rate globally (Selkoe 
& Toonen, 2011) are conspicuously low. Our combined simulation 
and empirical results suggest that coalescent samplers can detect 
population genetic structure even when FST or Mantel’s R are not 
significantly different from zero, because FST and its analogues are 
simply not sensitive enough to detect it given realistic limitations to 
sampling designs for marine populations.

Coalescent methods provide a powerful complement to FST for 
the analysis of marine population genetic data (Marko & Hart, 2011). 
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Large marine population sizes slow the effects of genetic drift and 
frequently create very low values of FST (Whitlock & McCauley, 1999). 
However, the fraction of migrants (m) that successfully disperse more 
than ~100 km (or in our specific case, the fraction that disperse be-
tween islands) is probably quite low, but still appreciably higher than 
the mutation rate. This fraction of migrants also scales with the size 
of the source population (Treml et al., 2012), meaning that marine 
populations are an excellent approximation of the structured coales-
cent model (Wakeley, 2004). In this case where Ne >> Nem >> μ we 
have shown that migrate‐n can successfully identify a stepping‐stone 
structure with Nem up to 100 migrants per generation (i.e., Ne at about 
10,000 times larger than Nem, which is still up to 10,000 times larger 
than μ), even with relatively coarse mitochondrial datasets. This level 
of sensitivity is analogous to successfully resolving IBD using signif-
icant FST values of around 0.002, something that is generally only 
possible with sample sizes well over 100 (Waples, 1998) and with nu-
merous limiting assumptions (Whitlock & McCauley, 1999). It is worth 
noting that migrate‐n actually estimated Nem as greater than 100 
migrants per generation in every species in our dataset (Figure S3). 
We posit that reason for these higher estimated values is twofold: (a) 
because migrate‐n assumes that shared alleles are due to gene flow 
rather than recent divergence and (b) because some larvae disperse 
further than the neighboring island (Wren et al., 2016), meaning that 
the true model departs from a pure stepping‐stone model. However, 
with the current single‐locus datasets, migrate‐n was not able to dis-
tinguish between models that allowed single versus multi‐island dis-
persal, so we did not include these here (data not shown).

Waples (1998) astutely pointed out that even if a method is sen-
sitive enough to detect population structure, significant genetic 
structure may not be biologically meaningful. Waples and Gaggiotti 
(2006) identified several criteria for biological relevance. First, for 
populations to be evolutionarily distinct, Nem must be less than ~1 
– 25 migrants per generation. Second, for populations to be ecologi-
cally distinct (demographically independent) the fraction of migrants 
m must be less than 10% (Hastings, 1993). In terms of the first crite-
rion, our estimates for Nem were generally above 100, and no species 
was geographically reciprocally monophyletic, suggesting that most 
Hawaiian marine species comprise a single evolutionarily significant 
unit (ESU). However, given census sizes in the millions per island 
(McCoy et al., 2017), hundreds or even tens of thousands of effective 
migrants per generation will not be ecologically relevant for conserva-
tion and management. We suggest that species for which we inferred 
a stepping‐stone model with a prior limit on the fraction of migrants 
of 10% (assuming a mutation rate of 10%/million years) have island 
populations that are demographically independent of one another. 
Confirmation of this suggestion would require a study with more loci, 
but in general, our results support earlier suggestions that each is-
land should be treated as a distinct management unit (MU; Funk et al., 
2012; Moritz, 1994; Palsbøll et al., 2007; Toonen et al., 2011).

Although we did not find much correlation between Θ and habitat 
size or abundance, it is notable that our approach detected hetero-
geneous population sizes and migration rates in most species. Of the 
18 species for which migrate‐n inferred a stepping‐stone model, a full 

model where these parameters were free to vary was selected for all 
but two, for which a simplified two‐parameter stepping‐stone was 
selected (Figure 6). This is not a case of overfitting: In contrast to 
the empirical data, the simulations involved homogenous population 
sizes and migration rates, and migrate‐n almost always selected the 
corresponding two‐parameter model (Figure 5). Again, the inference 
of heterogeneous population sizes and migration rates is not surpris-
ing from a biological standpoint, but it marks an important improve-
ment on what is detectable with traditional F‐statistics. Indeed, it has 
been shown that this parameter heterogeneity is likely masking the 
expected correlation between pelagic larval duration and genetic 
structure (Faurby & Barber, 2012). We expect that parameter esti-
mates will improve with the addition of more loci (Felsenstein, 2006).

While migrate‐n did much better than FST with simulated data, 
and inferred structure more readily with the empirical data, it is 
also instructive to look at seven cases where migrate‐n did not 
detect IBD. Of the four species for which migrate‐n inferred pan-
mixia, we know that one of them, Lutjanus kasmira, is an alien 
invasive species recently introduced to the archipelago that has 
undergone rapid population growth indicative of the source 
population rather than geographic structure (Gaither, Toonen, 
& Bowen, 2012). As is often inferred in the literature for results 
where FST is not significantly different from zero, we do not be-
lieve that the other three species are truly panmictic, but that they 
simply have recent, non‐equilibrium gene flow throughout the ar-
chipelago that is substantially greater than 100 migrants per gen-
eration (resulting from, e.g., range expansions; Dawson, Grosberg, 
Stuart, & Sanford, 2010). In three cases when migrate‐n inferred 
regional structure, the inference was in complete agreement with 
that achieved by F‐statistics (Supporting Information Table S1). 
Again, we doubt that each region is fully panmictic, but rather that 
we are likely detecting hierarchical structure on top of weaker iso-
lation‐by‐distance processes.

Twenty years ago, when Waples (1998) first described the chal-
lenges inherent to describing population structure in marine species 
with genetic data, he highlighted a low signal‐to‐noise ratio in genetic 
data that has persisted through to today’s research (Selkoe, D’Aloia, 
et al., 2016). Here, we have shown that, using a model‐selection 
framework, coalescent genealogy samplers are able to distinguish 
demographically independent stocks, or management units (signal), 
in marine species with evolutionarily high levels of gene flow (noise) 
that overwhelm traditional F‐statistics. With the recent availability 
of data from thousands of loci, such as microhaplotypes (Baetscher, 
Clemento, Ng, Anderson, & Garza, 2018) or whole genome sequenc-
ing, we expect that our approach will be of great use when applied 
by marine ecologists and managers looking for more sensitive tools 
for stock delineation, and that this approach will help to define the 
appropriate geographic scale for management.
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