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ABSTRACT 
This paper proposes a novel application-specific hybrid coarse-

grained reconfigurable architecture with a flexible network on 

chip (NoC) mechanism. Architecture supports variable block 

size motion estimation (VBSME) with much less resources than 

ASIC based and coarse grained reconfigurable architectures. 

The intelligent NoC router supports full search motion 

estimation algorithm as well as other fast search algorithms like 

diamond, hexagon, big hexagon and spiral. Our model is a 

hierarchical hybrid processing element based 2D architecture 

which supports reuse of reference frame blocks between the 

processing elements through NoC routers. This reduces the 

transactions from/to the main memory.  Proposed architecture is 

designed with Verilog-HDL description and synthesized by 90 

nm CMOS standard cell library. Results show that our 

architecture reduces the gate count by 7x compared to its ASIC 

counterpart that only supports full search method.  Moreover, 

the proposed architecture operates at a frequency comparable to 

ASIC based implementation to sustain 30fps.  Our approach is 

based on a simple design which utilizes a high-level of 

parallelism with an intensive data reuse. Therefore, proposed 

architecture supports run-time reconfiguration for any block size 

and for any search pattern depending on the application 

requirement.  

1. INTRODUCTION 
There is an increasing demand for multimedia processing 

solutions through flexible and highly parallel architectures. 

H.264 [1] video compression standard plays an important role in 

today’s consumer market. Motion estimation (ME) is a key 

technique in most algorithms for video compression. It is one of 

the most compute intensive subroutines of H.264. Compared to 

fixed block-size ME (FBSME), H.264 supports VBSME [2] 

which provides better estimation of small and irregular motion 

fields and allows better adaptation of motion boundaries 

resulting in a reduced number of bits required for coding 

prediction. In motion estimation, each frame of a video sequence 

is divided into fixed number of non-overlapping square blocks. 

For each block in current frame, best matching block is searched 

within the previous frame. In most block matching algorithms, 

the sum of absolute differences (SAD) is used as the main 

metric. VBSME requires support for 7 block patterns: 16x16, 

16x8, 8x8, 8x4, 4x8, 4x4. Supporting this feature is a 

challenging task in terms of resource utilization when 

implementing the application on hardware. Due to its highly 

parallel nature and algorithm’s demand for a flexible solution, a 

reconfigurable architecture poses as an ideal candidate to 

respond to this compute intensive routine.  

Based on the historical perspective, implementation of motion 

estimation has evolved through general purpose 

processors[3][4][5], ASIC[5][6][7][8][9], FPGA[10], and 

coarse grained reconfigurable architectures [11] [12] [13]  [14]. 

Existing architectures either only support FBSME or implement 

VBSME with redundant hardware. While new processor 

advances including VLIW, SIMD, and out of order execution, 

have provided some advances in exploiting parallelism within 

applications, the processor’s inherently sequential and generic 

architecture limits the ability to efficiently exploit potential 

parallelism within highly concurrent types of algorithms. 

Alternatively, application specific instruction set processors 

(ASIPs) allow designers to custom the microprocessor by 

adding custom instructions and execution units within the 

processor. However, such extensions are similar to VLIW or 

SIMD approaches and are still limited to the data access through 

the processor’s register file.  

Several ASIC based approaches have been proposed for variable 

block size block matching algorithms to reduce computational 

complexities. However some of these architectures [5] [6] [7] 

are not capable of processing all the block sizes specified by the 

H.264. As an alternative, Yap [8] promises to support all block 

sizes. Architecture is formed of 16 processing elements (PEs) 

interconnected as a 1D systolic array where each PE computes a 

4x4 SAD. As an improvement, Ou [9] introduces a hierarchical 

1D systolic architecture that employs partial SAD computation 

technique.  Additionally in [9], a “VBSME processor”, based on 

an adder tree structure, supports all block sizes. In overall, [9] 

achieves lower latencies with higher throughput compared to 

existing VBSME architectures. However partial SAD 

computation requires delay registers and extra accumulators; 

and “VBSME processor” consists of a fixed set of redundant 

adders. Therefore this architecture has high area overhead which 

can be improved by using a flexible routing architecture. 

Coarse-grained reconfigurable architectures RaPiD[14], 

MATRIX[12], ChESS[13], RAW[11] have been introduced to 

overcome some of the drawbacks of lookup table based fine-

grained reconfigurable architectures, such as FPGAs. In general, 

coarse-grained reconfigurable fabrics are composed of high-

level processing elements (PEs) with generic reconfigurable 

interconnect network. While fewer configuration bits are needed 

for the PEs, fully utilizing the functionality of each PE is 

difficult, leading to significant under utilization of coarse-

grained fabrics. This can be avoided by tailoring the architecture 

to the computation characteristics of the algorithm with 

application specific hybrid grained processing elements 

interconnected through a tuned routing architecture.  



In sections 2 and 3 we give an overview of existing ASIC and 

coarse grained architectures and analyze their performance on 

VBSME with respect to processing power and resource 

utilization metrics. Section 4 introduces the new architecture, 

section 5 presents implementation results and section 6 outlines 

the conclusion. 

2. ASIC BASED APPROACHES 
ASIC based architectures can be broadly classified into different 

categories depending upon various metrics such as topology of 

processing elements and methodology for accumulation of 

SADs etc. Based on topology, the architecture can be classified 

as 1D and 2D systolic arrays. 1D architectures [8, 15, 16] 

consist of 1D systolic array of processing elements. They are 

simpler in structure but use a large number of registers for 

storing partial SADs and thus suffer in area and high latencies 

owing to the sequential computation and accumulation of SADs. 

2D architectures [6, 7] consist of processing elements connected 

in a mesh-based architecture and SAD computations are direct-

mapped. [6] does not support block sizes smaller than 8x8. This 

architecture uses a smaller 2D array. So, the partial SADs are 

calculated and added sequentially. This results in greater 

latencies. [7] does not support VBSME. It uses a large number 

of storage registers to store reference pixels. Also, loading of 

reference pixels in the propagation registers causes long 

latencies.  

Based on methodology for accumulation of SADs, the 

architectures can be classified as partial and parallel sum SADs. 

In partial sum SAD architectures [6], reference pixels are 

broadcasted and SAD computation for each 4x4 subblock is 

pipelined. In this architecture, each processing element 

computes one pixel difference, accumulates it to the previous 

partial SAD and sends the computed partial SAD to the next 

processing element. This kind of architecture uses large number 

of storage registers due to the accumulation of partial SADs in 

each processing element. In parallel sum SAD architectures, all 

pixel differences for a 4x4 sub-block are computed concurrently 

and thus added in one clock cycle. In this architecture, reference 

pixels are reused between different processing elements which 

decrease memory bandwidth requirements. The direction of data 

transfer among different processing elements depends on the 

search pattern adopted.  

In this paper, we discuss [9] in detail which promises to have 

lower latency and higher throughput over other existing 

VBSME architectures till date. [9] consists of 16 separate SAD 

“modules” (Figure 1a)  to process sixteen 4x4 motion vectors. It 

also consists of a chain of adders and comparators, (VBSME 

processor), to compute larger SADs. “PE array” (Figure 1b.) 

which forms the computation element of each SAD module is 

constructed by cascading four 1D arrays (Figure 1c). Each 1D 

array consists of a 1D systolic array of 4 PEs. Each PE computes 

1 pixel SAD. This circuit operates by scheduling the columns of 

the current 4x4 subblock “current_block_data_i” through a 

delay line, and broadcasting two sets of search block columns 

“block_strip_A” and “block_strip_B” on each clock cycle. Four 

block matching operations can be performed concurrently in one 

SAD module. The produced 4x4 SADs are then sent through a 

fixed series of adders and comparators to produce 4x4 motion 

vectors. The 4x4 SADs are also sent in parallel to four sets of 

adders and comparators to produce 4x8, 8x4 SADs. The two 8x4 

SADs are then again sent through a set of adders and 

comparators to form 8x8 SAD. 16x8, 8x16, and 16x16 SADs 

are computed similarly. This adder/comparator based chain of 

events form the adder tree structure.  

[9] has separate SAD modules for 4x4 subblock computations 

with separate input ports for loading current block and search 

region data. Thus, it does not support reuse of search data 

between modules. This increases the amount of data transactions 

from the memory. Also, the VBSME is supported by a fixed set 

of adders based on a large adder tree leading to resource 

wastage. An intelligent routing scheme that uses same set of 

adders to compute different motion vectors each time is needed 

to overcome the wastage. Also, this architecture does not 

support other fast search algorithms like diamond search, 

hexagonal search etc. 

3. COARSE-GRAINED ARCHITECTURES 
In general, coarse-grained reconfigurable fabrics are composed 

of high-level functional blocks with generic reconfigurable 

interconnect network. In this section we provide a brief review 

and analysis of ChESS, RaPiD and MATRIX architectures for 

implementing motion estimation algorithm. We carefully chose 

these three architectures for an investigation based on 

granularity. They vary in granularity from 4-bit, 8-bit to 16- bit 

processing elements and buses and thus help in providing a 

                                                                                      
                   (a) SAD Modules                                            (b) PE Array                                               (c)  1D Array 

Figure 1: Hierarchical 1D systolic array architecture with 4 processing elements (PEs) forming 1D array and 4 1D arrays 

forming a module 

 



broad view about mapping of motion estimation algorithm on 

coarse-grained architectures. 

The ChESS [13] architecture is a reconfigurable arithmetic array 

targeted mainly for multimedia applications. The fundamental 

computation component is a 4-bit ALU with 16 instructions. 

The routing structure is based on 4-bit buses. Each ALU has a 

switchbox adjacent to it which serves as a crosspoint with 64 

connections.  Hence it needs about 64 bits to configure the 

switches and connections. Since each ALU has a corresponding 

switchbox associated with it the routing area consumes up to 

50% of the total area. If we map the motion estimation algorithm 

on the ChESS architecture and try to exploit full parallelism, 

SAD computation for a 16x16 array would require a 512 ALU 

ChESS array. 

MATRIX [12] is yet another coarse-grained reconfigurable 

computing architecture composed of 2D array of identical, 8-bit 

functional units overlaid with a configurable network. Each 

functional unit consists of an 8-bit ALU, memory and control 

logic. MATRIX also has a generic routing architecture. 

Mapping the motion estimation algorithm on the MATRIX 

architecture for a 16x16 block would require a 256 ALU 

MATRIX array. The MATRIX array with 8-bit functional units 

would require one functional unit for one pixel difference 

calculation. The performance result for motion estimation 

algorithm if mapped on a 256 ALU MATRIX array is [(M x 

0.8M)/256 x 17 x 17] clock cycles considering a frame size of M 

x 0.8M. Also, support for VBSME in these architectures would 

involve huge routing complexity which is difficult to implement 

owing to the generic nature of routing architecture. 

RaPiD [14] is a coarse-grained architecture mainly targeted for 

DSP applications. It consists of 1D array of functional units 

(ALUs, multipliers, Registers and RAMs). The complete RaPiD 

array contains 16 of these cells. The functional units (cells) in 

RaPiD are interconnected using a set of ten segmented buses 

that run the length of the datapath. The buses in different tracks 

are segmented into different lengths. The implementation result 

for motion estimation as provided in the paper for a block size 

of 8x8 is 272+32M+14.45M2 clock cycles considering a frame 

size of M x 0.8M. The implementation details show that the 

available parallelism in the system has not been exploited to the 

fullest extent. For a 16x16 SAD, only the row-wise differences 

are computed in parallel. The column wise differences are 

computed sequentially which decreases the performance to a 

great extent. This is because the linear array form of architecture 

fails to exploit this parallelism. Also there is huge 

underutilization of resources as one cell comprising of 3 ALUs 

is being used for computing just one difference per clock cycle. 

Though no such information has been provided in the paper, 

even if we assume that the second ALU is being used for adding 

the differences in a pipeline, the third ALU remains unutilized. 

Also, the ALUs are 16 bit, and the SAD computation involves 8 

bit operation, which again adds to underutilization. Also, the 

reference frames considered are 8x8. So, the architecture does 

not support SAD calculation for smaller block sizes. The 

algorithm does not require ten buses for routing. So it leads to 

underutilization of routing resources too. Also, the real time 

video performance on a standard 720 x 576 image is about 12 

frames per second using 100 MHz clock. So, the performance is 

quite poor with a huge dissipation of energy. The paper does not 

talk about supporting VBSME by the architecture.  

This analysis shows that existing generic coarse grained 

architectures are not capable of responding to the computation 

demands of the motion estimation algorithm. Hence, there is a 

need for application specific coarse grained architecture with 

intelligent NoC mechanism tuned for motion estimation 

algorithm. 

4. PROPOSED ARCHITECTURE 

4.1 Hybrid Architecture Overview 
We propose a 2D architecture formed of three types of 

processing elements (CPE, PE2 and PE3) as shown in figure 2. 

Architecture contains 16 “CPE”s, 4 “PE 2”s and 1 “PE 3”.  

Each “CPE” (figure 3) has a PE 1, Network Interface (NI) and a 

NoC router and each node is labeled as “CPE (x,y)” where (x,y) 

represents grid coordinates. Each PE2 is represented as “PE 

2(z)” where “z” identifies the processing element. A“CPE ” 

receives current and reference block from main memory through 

its 32-bit data input ports labeled as “current_data_(x,y)” and 

“reference_data_(x,y)” where x and y are [1,2,3 or 4].  

In ME, given a current frame (CF) and its reference frame (RF), 

CF is first divided into non-overlapping macroblocks of size 

16x16. Each macroblock associated with a search region in RF 

is then partitioned into 16 4x4 sub-blocks labeled as (x,y). “PE 

1” is responsible for block–matching operations (SADs) of a 

4x4 sub-block and its search region. “PE 1” generates a 4x4 

SAD which is then fed into PE2. PE2 is capable of generating 

4x8, 8x4 or 8x8 motion vectors based on the type of block size. 

Similarly PE3 is capable of generating 8x16, 16x8 and 16x16 

motion vectors. Architecture by default supports full search 

(data transfer between adjacent CPEs) with zigzag pattern 

(Figure 12). Other fast search algorithms like diamond or 

hexagonal pattern search require reference blocks to be 

transferred between adjacent/non-adjacent processing elements. 

Hence, NI packetizes reference block data forming a message 

and based on the search pattern inserts the routing information 

in header packet of the message. Then, NoC router transfers data 

from source PE to destination PE depending on the routing 

information. This data transfer takes place through bi-directional 

edges between “CPE”s. In the following section, we introduce 

hybrid PEs and routing mechanism and discuss their operation 

principles. In section 4.5 we detail the functionality of all the 

modules using examples. 

Memory Interface (MI): “CPE”s request “reference blocks” 

from main memory through MI. MI computes memory addresses 

of those blocks based on the search pattern. It also holds 

memory address of sixteen “current frames” that are already in 

the CPEs.  MI receives “data_load_control” (16 bits) and 

“reference_block_id” (5 bits) signals where data_load_control 

identifies the CPE and reference_block_id identifies the 

requested block. MI then feeds the Main Memory with the 

address of that requested block.  

4.2 Configurable Processing Element (CPE) 

4.2.1 PE 1 
Figure 3 shows the structure of PE1 (1,1). It is composed of 5 

hybrid adders, sixteen 8 bit subtracters, sixteen 8 bit current 

pixel registers (CPR) and sixteen 8 bit reference pixel registers 

(RPR). Subtracters calculate absolute difference between a 



search pixel and a current pixel. Adders then generate 4x4 SAD 

and comparator (COMP) checks whether the current or the 

previous SAD is smaller and produces 4x4 motion vector. If 

block size is larger than 4x4, then current SAD is sent to PE2. 

For full search, demultiplexers are used to load the data into the 

RPRs based on the direction of movement in the search window 

to support ziz-zag pattern.  For all other search patterns data is 

loaded through RPRs 1, 2, 3 and 4 and propagated through 16 

subtracters. 

4.2.2 Network Interface (NI):  

As shown in figure 3, NI contains packetization, depacketization 

and control units. This unit performs the following three tasks: 

• If PE1 has completed operating on a reference block, NI 

receives the block and inserts header information to that 

(specifying direction of movement, number of hops in the 

specified direction and size of the data) forming a message 

through packetization unit. NI first generates a “request” 

signal (1 bit) and sends it to the NoC router. When 

“acknowledgment” is received by NI then it sends the message 

to the router. Each packet is formed of 4 pixel data (32 bits) 

and 32 bits is reserved for header packet.  

• If PE1 is the destination node, NI receives the message from 

NoC router and extracts reference block from incoming 

message through its depacketization unit and sends this data to 

PE1. 

• If the reference block required by PE1 is not residing in any 

another PE1, then NI generates the “data_load_control” (1 bit) 

and “reference_block_id” (5 bits) signals through its “Control 

Unit” and feeds them to MI in order to request the data from 

Main Memory.  

4.2.3 NoC Router 
• If PE1 has completed operating on a reference block, after the 

handshaking mechanism described earlier in NI section, NoC 

router receives the packetized message through 32 bit 5-1 

“input multiplexer” from NI. The packets are then stored in 

ring buffer. A “ring buffer” is used instead of a FIFO as data 

can be accessed from it in only one clock cycle irrespective of 

buffer size. To accomplish this, we use two pointers as shown 

in figure 3. The pointer first_index shows where the first data 

that comes in is stored. Thus data pointed to by first_index 

should be the first data that comes out of buffer. The pointer 

last_index shows where the last data that came in buffer is 

stored. Thus the location where next data that comes in is 

stored is last_index + 1. Suppose first packet is stored at 

location 1 and last packet is stored at location 5. The next 

packet that comes in after that will be stored at location 0 and 

the next packet that goes out will be the packet at location 1. 

Buffer sends first packet of message to “header decoder”. 

“Header decoder” follows x-y routing protocol and extracts 

the direction of data transfer from header packet. It also 

updates header packet with remaining “number of hops in the 

direction of data transfer”. Based on the required direction of 

data transfer, message is forwarded to an adjacent router 

through 32 bit 1-5 “output de-multiplexer”.  

• When an adjacent router “B” has to send message to router 

“A”, “output controller” of “B” first sends a “request” signal 

(1 bit) to “input controller” of “A”. If “A” is not busy 

communicating with any other routers, then “input controller” 

of “A” checks available space in the buffer and sends an 

acknowledgement signal “ack” to “output controller” of  “B”. 

After receiving “ack”, “B” starts sending message to “A” 

through 32 bit 5-1 “input multiplexer” of “A”. The packets are 

then stored in “ring buffer” and forwarded to “header 

decoder” where the following actions are taken: 

� If the message has reached destination node, it is 

sent to depacketization unit of NI through “output 

de-multiplexer”. 

� If the message has to be transferred to an adjacent 

router “C” (“A” is an intermediate hop), “output 

controller” of “A” sends a “request” signal (1 bit) 

to “input controller” of “C”. After receiving “ack”  

 
Figure 2.  Proposed architecture: composed of 16 CPEs, 4 PE2s and 1 PE3. CPEs receive data from main memory through 

Memory Interface (MI) where MI computes memory address of the reference blocks 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 10. Data Transfer 

Patterns for Small Diamond 

search 

 

  Figure 9. Coordinate conventions 

Table 1 Data load schedule for PE1(1,1), 

PE1(1,3) for diamond search 

Figure 4.    Processing element of type 2, PE2 (1) 

Figure 3.  CPE comprising of PE1 at the corner of the 

architecture, Network Interface (NI), NoC Router 

Figure 6. Data Transfer Patterns for Diamond 

search: direction and order of data transfer 

follows the numbering scheme                                         

Figure 5. Current 48x48 Frame, and highlighted 

region(16x16 macroblock from current frame) 

Figure 7. Reference Frames for PE1(1,1) and 

PE1(1,3), For Px
y: x represents PE(1,x) and y 

represents order of data transfer 

Figure 8. Data Reuse between PE1s where 

numbers represent cycles from Table 1 



from “C”, “A” starts sending message to “C” through its 

32 bit 1-5 “output de- multiplexer”. 

4.3 PE 2 and PE 3 
Figure 4 shows processing element “PE 2”. It consists of 3 

adders, 2 multiplexers (mux), 2 demultiplexers (demux), 5 

comparators and 5 registers. In PE 2, muxes “s1” and “s2” select 

the computation of either 4x8 or 8x4 motion vectors. Demuxes 

“s3” and “s4” direct 4x8 or 8x4 SADs to their corresponding 

comparators and registers. After computing either 4x8 or 8x4 

SADs, 8x8 SAD is generated which is sent to PE 3 to process 

larger block SADs. PE 3 is similar to PE 2 with differences in 

granularity of adders. In PE 3, muxes “s1” and “s2” (Figure 4) 

select computation of either 8x16 or 16x8 motion vectors. 

Thereafter, demuxes “s3” and “s4” direct 8x16 or 16x8 SADs to 

their corresponding comparators and registers. Then, 16x16 

SAD is computed from either 8x16 or 16x8 SADs. Now, we will 

discuss the routing patterns for different search algorithms.  

4.4 Fast Search Algorithms and Case Study 
Fast search algorithms like diamond, hexagon, big hexagon and 

spiral have been introduced to reduce the computation 

complexity of motion estimation by operating on reduced 

number of reference blocks. Number of reference blocks for 

diamond and hexagon searches are shown in figures 6 and 11. 

Diamond search requires (9+5n+4) reference blocks [17] and 

hexagon search requires (7+3n+4) [18] reference blocks where 

“n” is the number of execution iterations. 

Diamond Search: As shown in figure 6, pattern consists of nine 

candidate search points (reference blocks) in first iteration. 

Numbers in this figure represent the order of processing the 

reference frames. Directed edges are labeled with data 

transmission equations derived for diamond search pattern based 

on the data dependencies. The grid co-ordinates followed for 

data transfer is shown in fig 9. An equation is represented with 

(+/-nx) and (+/-ny) where (+ or -) denotes the direction of data 

transfer on the x and y axis and n denotes the number of hops in 

that direction. Also, load indicates that reference block is loaded 

from the main memory. 

We now explain SAD computation using diamond search 

pattern for a 16 x 16 current block on the proposed architecture. 

Figure 5 represents the current frame which is divided into 

blocks of size 4 x 4.  Sixteen 4x4 current blocks 53, 54, 55, 56, 

65, 66, 67, 68, 77, 78, 79, 80, 89, 90, 91, 92 are loaded into 

CPE  (1,1), CPE  (1,2), CPE  (1,3), CPE  (1,4), CPE  (2,1), CPE  

(2,2), CPE  (2,3), CPE  (2,4), CPE  (3,1), CPE  (3,2), CPE  

(3,3), CPE  (3,4), CPE  (4,1), CPE  (4,2), CPE  (4,3), CPE  (4,4) 

respectively. Each PE1 of the CPEs with a current block 

processes SAD on 9 reference blocks. PE1 (1,1) computes SAD 

for current block 53 against reference blocks 29’, 40’, 42’, 55’, 

53’, 51’, 64’, 66’, 77’.  

Figure 7 shows data dependencies and data transfer patterns for 

PE1(1,1) and PE1(1,3). Solid squares represent intersecting 

search points between the two and solid circles represent the 

other search points. Table 1 shows the reference block to be 

loaded in PE1s at different clock cycles. At clock cycle one, first 

search points (reference blocks P1
1 and P3

1) are loaded into both 

processing elements from main memory through MI. For this, 

NIs of CPE(1,1)) and CPE(1,3) set  respective 

“data_load_control” signals to “high” indicating the CPE ids 

and “reference_block_id” output  to 1 indicating the index of the 

search point on the diamond pattern (figure 7). Based on these 

inputs and address of the current frames, MI generates the 

addresses of the reference frames as per the search pattern and 

outputs it to the main memory. Main memory, then sends the 

requested data through corresponding “CPE” input ports. In this 

case first reference blocks for PE1(1,1) and PE1(1,3) are 29’ 

and 31’ respectively. Figure 7 shows that third search point (P1
3) 

required by PE1(1,1) is same as second search point (P3
2) of 

PE1(1,3). At clock cycle three, P3
2 is transmitted from 

PE1(1,3)’s router to PE1(1,1). The NI of PE1(1,3) packetizes 

the reference block according to data transmission equation 

(Figure 6, Equation: +1x+1y, arrow labeled from point 1 to 2) 

and sends the packets to the router. The router of PE1(1,2) 

receives the packets, decodes the header packet and following x-

y routing scheme, forwards the packets to the router of 

PE1(1,1). PE1(1,1) is the destination node hence its NI 

depacketizes the data to be processed within its PE1. Same 

events take place at cycles 5, 6 and 8 as shown in Figure 8.  The 

events illustrated with Figure 8 take place for all sixteen 4x4 

current blocks. The above data transfer pattern also dictates that 

at every clock cycle, every CPE is accessing a unique reference 

block. So, at no time slot, two CPEs compete for the same data 

and there is no case of resource conflict. 

For every successive iteration, nine SADs are computed in each 

PE1. If the computed SAD minima is located at one of the 

vertices  (1,4,6, and 9) or edges (2,3,7,8)  of the diamond 

(Figure 6) , a new diamond pattern is formed with the minima as 

the new center for the next iteration. This again requires 

computation of SADs for next nine reference frames in the same 

order as in figure 7. But in this case, minima at the vertex leads 

to only 5 new reference frames and the minima at the edges lead 

to only 3 new reference frames for one iteration. In the last 

iteration, the minima is the center point (5). In that case, a small 

diamond is formed around the minima with 4 reference frames. 

The order of reference frames for loading the data for this case 

and the data transmission equations are shown in figure 10. Data 

transmission equations for hexagon, big hexagon and spiral 

search patterns are shown in figure 11. The spiral search is more 

compute-intensive compared to other fast search patterns. The 

width of the spiral search determines the number of reference 

frames to be compared. In this example, we carry out a 5x5 

spiral search as shown in figure 11(c). So, the number of 

reference frames is 25. 

Full Search: Now, we illustrate the functionality of the 

proposed architecture for full search. Table 2 shows “data load 

schedule” for PE1(1,1). As shown in table 2(a), at cycle one, 

four pixels of 4x4 current block are loaded into CPR registers 1, 

2, 3, 4 through current_data_(1,1) port. At cycle two, these four 

pixels are shifted to CPR registers 5, 6, 7, 8 and next four pixels 

are loaded into CPR registers 1, 2, 3, 4. This continues for 4 

cycles till a 4x4 current block is completely loaded into PE 

1(1,1) as shown in table 2(b). Similarly, a 4x4 reference block is 

loaded into RPR registers of PE 1(1,1) in four cycles through 

reference_data_(1,1) port. All the PE1s are loaded with 

corresponding current and reference blocks in a similar fashion. 

At the end of the fifth clock cycle, 4x4 SADs are computed and 

sent to PE 2(1) (Table 3). Control signals to PE 2(1) select 

between computation of 4x8 SAD or 8x4 SAD at the end of 

sixth cycle. At the end of seventh cycle, 8x8 SAD is computed. 

Similarly, four 8x8 SADs are then sent to PE 3. In PE 3, control 

signals select between computation of 8x16 SAD or 16x8 SAD  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

at the end of eighth cycle. At the end of ninth cycle, 16x16 SAD 
is computed (Table 4). Now, we present the performance results 

of our architecture and compare it with the ASIC based 

approach [9]. 

5. RESULTS 
Proposed architecture was designed with Verilog-HDL 

description and synthesized by 90 nm CMOS standard cell 

library. Design contains about 82K gates. As shown in Table 5, 

resource usage (technology independent gate count) of our 

architecture is about one-seventh of its counterpart [9]. While 

[9] follows partial sum SAD approach and takes 4 cycles for 

producing the first 4x4 SAD, our architecture requires 5 cycles 

including 4 cycles of the “data load schedule” phase. Rest of the 

computations in our architecture and [9] are pipelined. Thus, [9] 

requires 265 cycles to produce a 16x16 motion vector for full 

search while our architecture requires 266 cycles. Table 6 shows 

the minimum clock rate that is required to sustain 30fps and 

60fps frame rates by the proposed architecture and its 

counterpart [9]. As shown in table 6, for QCIF format, ASIC 

approach [9] needs to operate at 0.76 MHz to sustain the 30fps 

requirement, whereas our design needs a little faster clock. This 

is because the number of cycles required to compute 16x16 

motion vector is larger in our design, (266 cycles) vs. [9](265 

cycles).  For clock rates slower than 0.8 MHz, our design won’t 

be able to sustain 30fps.  As shown in table 6, for all frame 

sizes, our clock rate is comparable with [9]. As expected, while 

the frame size gets larger, the clock rate needs to increase to 

respond to the more number of computations with the 30fps or 

60 fps constraint.  

Fewer number of search points for fast search algorithms 

overcomes the “router” cycles overhead and requires even lesser 

number of cycles than full search. Router’s critical path 

consumes 6 cycles. Total data transmission cycles are the sum of 

router cycles and total number of hops. Since average number of 

hops for fast search patterns is 2, the routing cycle’s overhead is 

8 cycles per search point. Also, worst case number of reference 

blocks accounts from n=4 and best case comes from n=0 on a 

32x32 search region. So, the best case and worst case number of 

search points are 13 and 33 for diamond search. Including the 

Table 2 (a) Data load schedule for PE1 

Table 2 (b) Data load schedule for PE1 

Table 3 Data flow for calculation of 8x8 SAD 

Table 4 Data flow for calculation of 16x16 SAD 

    Figure 12.   Zig-Zag Search Pattern 

 Table 5 Resource usage comparison of the proposed  

 architecture and its counterpart [9] 

 Table 6 Required clock rates of the proposed  

 architecture and its counterpart [9] for various  

 frame sizes and frame rates using full search 

 

Table 7 Required clock rate of the proposed architecture                         

using diamond search(DS), hexagon search(HS),  big 

hexagon search(BHS) and spiral search(SS)  for various 

frame sizes and frame rates 

Figure 11. (a) Hexagon Data 

Transfer Pattern 

(b) Big Hexagon Data 

Transfer Pattern 
(c) Spiral Data 

Transfer Pattern 



routing overhead, diamond search takes 104 cycles and 264 

cycles for best case and worst case scenarios respectively which 

is less than 266 cycles of full search. Similarly, the worst case 

and best case number of search points are 23 and 11 for 

hexagonal search and thus it takes 184 and 88 cycles 

respectively to produce a 16x16 motion vector. The worst case 

and best case number of search points are 33 and 21 for big 

hexagonal search and thus it takes 264 and 168 cycles 

respectively to produce a 16x16 motion vector. Also, the 

number of search points is constant for all the cases of a spiral 

search. For a 5x5 spiral search (Figure 11(c)), the number of 

search points is 25 and thus it takes 200 cycles to produce a 

16x16 motion vector.  Therefore, architecture supports fast 

search algorithms with operational frequencies less than the full 

search algorithm (table 6) as shown in Table 7. For QCIF 

format, our architecture operates at 0.8MHz for full search. 

Whereas, as shown in Table 7, for DS, HS, BHS and SS, it 

operates at 0.78, 0.55, 0.78, 0.59 MHz correspondingly for 

worst case scenarios. Since the number of search points for fast 

search types decrease significantly, our architecture can now 

operate at a slower clock rate even for the worst case scenarios 

to sustain the 30fps. Further, this pattern is observable for all 

frame sizes.  

Thus, the clock rate of the proposed architecture is comparable 

to ASIC implementation for both full search and fast search 

algorithms with much lesser resources. Therefore, the frame size 

and frame rate supported by the circuit can be substantially 

extended subject to this clock rate constraint for high definition. 

6. CONCLUSION 
This paper proposed a new application specific reconfigurable 

hybrid coarse-grained architecture with intelligent NoC scheme. 

Existing coarse-grained architectures have generic processing 

elements and routing structure and therefore suffer in 

performance and resource utilization for motion estimation 

algorithm as compared to our architecture. The intelligent NoC 

scheme in our architecture supports VBSME for different types 

of fast search patterns like diamond search, hexagonal search 

etc. Hybrid grained processing elements support variable block 

sizes in motion estimation. Simplicity and highly parallel nature 

of the architecture with an excellent degree of data reuse makes 

our design suitable for run time reconfiguration. Architecture 

can easily be configured to run any fast search or full search   

algorithm with block size variations to respond to the video 

quality and/or timing constraints. Our 2D architecture supports 

huge reuse of search data between processing elements and thus 

reduces the memory transaction requirement which is missing in 

existing state of the art approaches. Proposed architecture uses 

hybrid grained processing elements to compute 4x8 or 8x4 and 

8x16 or 16x8 motion vectors dynamically depending on the 

control signals supplied. Our architecture is highly flexible as it 

supports any block size for any search type which is a 

challenging problem from ASIC perspective. 
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