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RESEARCH Open Access

A coarse-grained model for synergistic action of
multiple enzymes on cellulose
Andrea Asztalos1,2,3, Marcus Daniels4, Anurag Sethi1,5, Tongye Shen1,5,6, Paul Langan7,8, Antonio Redondo5 and

Sandrasegaram Gnanakaran5*

Abstract

Background: Degradation of cellulose to glucose requires the cooperative action of three classes of enzymes,

collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends

by hydrolyzing β-1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in

a processive manner releasing cellobiose units. Then, β-glucosidases hydrolyze soluble cellobiose to glucose.

Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as

hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down.

As catalysis occurs on the surface of crystalline cellulose, several factors affect the overall hydrolysis. Therefore,

spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity,

which have been shown to lead to a reduction in hydrolysis rates.

Results: We present a coarse-grained stochastic model for capturing the key events associated with the enzymatic

degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a

single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The

quantitative description of cellulose degradation is calculated on a spatial model by including free and bound

states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent

bond cleavages) and corresponding reaction rates. The dynamical evolution of the system is simulated by including

physical interactions between cellulases and cellulose.

Conclusions: Our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases

by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme

crowding. Importantly, it captures the endo-exo synergism of cellulase enzyme cocktails. This model constitutes a

critical step towards testing hypotheses and understanding approaches for maximizing synergy and substrate

properties with a goal of cost effective enzymatic hydrolysis.

Keywords: Cellulose degradation, Synergy, Exo-cellulase, Endo-cellulase, Agent-based model, Spatial heterogeneity

Background
Biofuel production from lignocellulosic materials is con-
sidered to be a promising option to substantially reduce
the dependence on petroleum [1-3]. The conversion
of lignocellulosic biomass (agronomic residues, paper
wastes, energy crops) into ethanol consists of the extrac-
tion and pretreatment of cellulose from the biomass,
hydrolysis (the enzymatic breakdown of crystalline cel-
lulose fibers into monomer glucose) and finally the

fermentation of glucose to ethanol. Current approaches
mainly differ from one another in the method of pre-
treatment. Cost-competitive production of ethanol is
currently prevented by the low efficiency of converting
cellulose into glucose [4]. Greater efficiency may be
achievable through improvements in hydrolysis.
Enzymatic hydrolysis of cellulose is a complex reac-

tion. In the classical model, the heterogeneous catalytic
cleavage of the glycosidic bond takes place on a crystal-
line cellulose surface and requires the cooperative action
of three classes of aqueous enzymes, collectively known
as cellulases. These are (i) endoglucanases, (ii) exogluca-
nases or cellobiohydrolases and (iii) β-glucosidases.
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Recently, it has been proposed that oxidative enzymes
(monoxygenases) may also play a role in cleaving glyco-
sidic bonds, although this new mechanism may be
restricted to certain types of microbes [5]. It is widely
accepted that endoglucanases cleave β-1,4-D-glycosidic
bonds at random sites within both amorphous and crys-
talline polysaccharide chains, creating new chain ends
on the cellulose surface [6-11]. Exoglucanases prefer to
hydrolyze crystalline cellulose chains by acting on the
free chain ends and releasing cellobiose units in a proces-
sive manner. Soluble cellobiose units are then converted
into glucose by β-glucosidases. Consequently, these
enzymes display strong synergy [12-18].
The classical chemical kinetics assumption of uni-

formly mixed systems does not hold in the case
of enzymatic hydrolysis of cellulose fiber, as it is hetero-
geneous in nature. Such reactions are rather character-
ized by time-dependent rate constants and non-uniform
concentration variation of reacting species. Although
kinetic models [11,19-22] have been used to explain vari-
ous features of the enzymatic hydrolysis of cellulose, they
fail to account for spatial details of the cellulose substrate
as well as the specificity of binding sites. Recently,
Zhou and colleagues [23-25] proposed a “morphology-
plus-kinetics rate equation approach” that explicitly
captures the hydrolytic evolution of cellulose substrate.
In addition, a kinetic model was developed based on
population-balance equations in which a distribution of
chains with different chain-lengths was explored [26,27].
Yet, these models give little insight regarding the action
of cellulases at the molecular level.
It is imperative to develop spatial models of cellulose

degradation because spatial effects such as enzyme
crowding on the cellulose surface have been shown to
lead to a reduction in hydrolysis rates. In order to ac-
count for the spatial heterogeneity of the system during
cellulose hydrolysis, a cellular automata model [28] was
developed to study the effect of different parameters such
as enzyme binding and hydrolysis on the overall kinetics
of cellulose by the cellulases. Alternatively, all-atom mo-
lecular dynamics (MD) simulations can provide details
of molecular level events at high precision. Recent
MD simulation studies [29-32] have proven effective
for understanding enzyme-substrate binding, proces-
sivity and activity. However, because of length and
time scale limitations, it is not currently possible to
simulate the entire crystalline cellulose degradation
process using all-atom MD simulations.
We have developed a coarse-grained stochastic model

that captures the interaction of endo- and exo-cellulases
with crystalline cellulose at a mesoscopic level. This
model was specifically designed to improve our under-
standing of the molecular-level details of the enzymatic
hydrolysis of crystalline cellulose. This paper introduces

the basic framework and demonstrates how this model
can be an effective and easily modifiable testing platform
for new hypotheses based on experimental data on vari-
ous cellulase components and substrate characteristics.
By capturing the reactive nature of the cellulose sub-
strate and the activities of non-complexed cellulases at
the molecular level, this method forms a bridge between
all-atom MD studies and deterministic reaction-rate
approaches. To the best of our knowledge, it is the first
model that is able to relate the synergetic action of mul-
tiple enzymes to molecular level details such as the
hydrogen bond network of a cellulose substrate.

Results and discussion

Model development

The overall efficiency of the heterogeneous catalysis that
occurs in the enzymatic hydrolysis of crystalline cellu-
lose depends on factors such as adsorption, desorption,
diffusion rates on the insoluble cellulose substrate, and
processivity. In our model, catalysis is broken down into
distinct parts related to different kinetic events (chemical
reactions) performed by individual particles (enzymes).
Specifically, we include the following reactive events: ad-
sorption of cellulases on the solid cellulose substrate,
inter-chain hydrogen bond breaking, hydrolysis of glyco-
sidic bonds, and desorption of cellulases from cellulose.
These reactions constitute the main elements of this
model, and their realization is achieved by following and
updating the state (based on certain predefined rules dis-
cussed below) of each individual particle in the system
as it evolves in time. The actions of cellulases are mod-
eled based on the most abundant endoglucanase (EG I)
and the two cellobiohydrolases (CBH I and CBH II)
secreted by the filamentous fungus Trichoderma reesei

[33], as these three enzymes have been widely studied
[10,11,34-36] and have been the target for improvement/
design for efficient biodegradation [37,38].

Model of cellulose substrate

The cellulose surface layer (Figure 1) is modeled as a two-
dimensional grid, consisting of multiple glucan chains,
each of them having the same number of monomers, i.e.,
the degree of polymerization of glucan chains is the same.
Glucose molecules are linked to each other through intra-
chain covalent glycosidic bonds, while links between inter-
chain glucose molecules correspond to multiple hydrogen
bonds. In this representation, all chains are oriented such
that the left side corresponds to the nonreducing end and
the right side to the reducing end of the glucan chains.
This chosen orientation represents the most commonly
found form of crystalline cellulose in nature, cellulose Iβ
[39]. The state of each glucose unit is defined by a set of
seven binary parameters, P1, P2, . . .,P7, listed in Table 1.
Each row corresponds to one of the seven parameters
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characterizing one glucose unit. The values of the binary
parameters (0 and 1) represent various conditions of one
glucose unit.
The first parameter, P1 informs whether the glucose

unit belongs to the cellulose substrate (‘nonsoluble’) or
is in the aqueous phase (‘soluble’). Initially, all glucose
molecules are part of the cellulose surface (P1= 0), and
as the simulation progresses, they become soluble
(P1= 1) in the form of simple sugars: glucose, cellobiose
or cellotriose. The length of the soluble oligomers can
be easily modified.
The second parameter, P2 specifies whether the glu-

cose unit constitutes the nonreducing end (NE) or the
reducing end (RE) of a glucan chain. Also, when a glyco-
sidic bond in the middle of a chain is hydrolyzed, two
new ends are created, one new NE and one new RE.
Parameter P3 informs whether an endo-cellulase cov-

ers the glucose unit. Similarly, the values of parameters
P4 and P5 indicate whether an exo-cellulase hydrolyzing
from the reducing end (exo-R) or an exo-cellulase
hydrolyzing from the nonreducing end (exo-N) covers
the glucose unit. At any time, only one cellulase is

allowed to cover a specific glucose, during which glyco-
sidic and hydrogen bonds may be cleaved or broken. A
glucose unit, which is not covered by any cellulases, may
become locked by a processive cellulase, exo-R or exo-N.
This is specified by parameters P6 and P7, respectively. A
locked glucose unit only facilitates the binding of the
locking exo-R (exo-N); it does not constitute an available
binding site for any other cellulases, nor can its glyco-
sidic or hydrogen bonds be cleaved or broken, until the
locking cellulase binds directly to it.

Model of cellulase with endo-activity

Cellulases with endo-activity (referred to as endo-
cellulases or simply endo) are modeled through a set of
interactions between the cellulose surface and among
themselves. A detailed description of the actions of
adsorbed endo-cellulases is presented in Figure 2, while
Table 2 lists the parameters that determine their overall
activity. Additionally, a state parameter is used to specify
whether the cellulase is adsorbed to the substrate or is
in solution. In the future, we plan to incorporate another
state parameter to describe a decrystallization step that
“prepares” the substrate for productive binding.
Endo-cellulases, once adsorbed to the cellulose surface,

can break inter-chain hydrogen bonds, hydrolyze glyco-
sidic bonds and desorb from the substrate into solution.
Each of these chemical reactions is essentially a Poisson
process that takes place at a specific, constant rate defined
by the propensity function of that reaction [40].
Each endo-cellulase adsorbs to a randomly chosen

available site. A site is a set of glucose units, as pre-
sented in Figure 3a, consisting of nine consecutive glu-
cose units in three neighboring chains, for a total of 27
adjacent glucose units [35]. However, we assume that
just a length of 4 glucose units in the middle chain is
enough for it to form a productive complex. This choice
was motivated by the empirical studies of Claeyssens
et al. [41] and Biely et al. [42] who argued that the sub-
strate binding site of EG I is an extended one, consisting
of four sugar binding subsites with a catalytic group
located in the middle. A site is available if all monomers
in the middle glucan chain belong to the cellulose sub-
strate and none of the twelve monomers is covered by
another enzyme nor are they locked. Desorption of the
cellulase might take place at any time. If the glycosidic
bond in the catalytic region is already hydrolyzed, the
cellulase desorbs into solution within an exponentially
distributed time interval with rate parameter kofffast (see
Figure 2). The catalytic region of an endo-cellulase is
considered to be the glycosidic bond between the second
and third glucose units in the middle chain covered by
the enzyme, shown in Figure 3c. The hydrolysis of the
glycosidic bond can only take place after all inter-chain
hydrogen bonds between the covered glucose units are

Gluc
i

Reducing end Nonreducing end 

Glycosidic bond 

Hydrogen bond 

Figure 1 Model for the cellulose surface composed of glucose.

At each time step, the stochastic simulation stores the intra- and

inter-chain neighbors of each glucose unit. Additionally, each unit is

characterized by a set of Pm parameters, 1≤m≤ 7, listed in Table 1.

Table 1 State variables of a glucose unita

P/Value 0 1

P1 nonsoluble soluble

P2 N.E. R.E.

P3 uncovered covered by endo

P4 uncovered covered by exo-R

P5 uncovered covered by exo-N

P6 not locked locked by exo-R

P7 not locked locked by exo-N
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broken (Figure 3b). The time it takes to break the hydro-
gen bonds is proportional to the number of bonds that
need to be broken, denoted by ‘nrHB’ in Figure 2. If
there is at least one hydrogen bond that needs to be
broken, the cellulase breaks it or desorbs into solution.
Similarly, if all hydrogen bonds have already been
broken, as shown in Figure 3b, the cellulase either
hydrolyzes the glycosidic bond at the catalytic region or
desorbs into solution. These decisions are implemented
using Gillespie’s algorithm [40]. Hydrolysis of a glyco-
sidic bond is always followed by desorption of the cellu-
lase within an exponentially distributed time with rate
parameter koff.

Models for cellulases with exo-activity

Cellulases with exo-activity can be of two types: cellu-
lases hydrolyzing the glucan chain from its reducing end
(referred to as exo-R cellulase or simply exo-R), and
cellulases hydrolyzing the glucan chain from its non-
reducing end (referred to as exo-N cellulase or simply
exo-N). The interactions between adsorbed exo-

cellulases and the cellulose surface are shown in
Figure 4, while Table 3 lists the relevant parameters
that determine the overall activity of exo-cellulases.
Additionally, a state parameter is used to specify
whether the cellulase is adsorbed to the substrate or is
in solution. Again, we intend to consider an additional
state parameter to describe the decrystallization step in
future models.
Exo-cellulases, once adsorbed to the cellulose surface,

can break hydrogen bonds, hydrolyze glycosidic bonds,
slide along a chain, and desorb from the cellulose into
solution. For simplicity, in the following description we
restrict ourselves to actions carried out by an exo-R cel-
lulase. The ones carried out by an exo-N cellulase are
essentially the same.
The adsorption site of an exo-R cellulase consists of

nine consecutive glucose units in three neighboring
chains, for a total of 27 adjacent glucose units (shown in
Figure 5a), subject to the condition that the middle glu-
can chain has a reducing end. This choice has been
motivated by the three-dimensional structure of the
catalytic domain of CBH I from T. reesei [34,43]. This
catalytic site resides within a relatively long (~50 Å) cel-
lulose binding tunnel holding ten glucose molecules, out
of which three—near the outlet—form the product bind-
ing sites. As cellobiose is the main product released by
CBH I [16,44], the exo-cellulase in our model has only
two product binding sites, which, for the substrate,
translates into a total of nine sugar binding sites. The
adsorption site for an exo-cellulase is considered to be

Figure 2 Flowchart presenting the actions of an endo-cellulase. The actions are: adsorption onto the cellulose surface (ADSORB), breaking

hydrogen bonds (BREAK H. Bs.), hydrolyzing the glycosidic bond (CLEAVE Glyc. B.), and desorption from the cellulose (DESORB). Green rectangles

denote chemical reactions (events) and orange ellipses denote branching points. Abbreviations: ‘Glyc. B.’ covalent glycosidic bond; ‘H. Bs.’

hydrogen bonds; ‘nrHB’ number of hydrogen bonds present between the monomers covered by the cellulase.

Table 2 Rate constants characterizing endo-cellulases

Nomenclature

kon adsorption rate constant

koff desorption rate constant

kofffast a higher desorption rate constant than koff

khbbreak rate constant for breaking a single hydrogen bond

kgly rate constant for hydrolyzing a glycosidic bond
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available if all monomers in the middle glucan chain be-
long to the cellulose substrate and none of the 27 mono-
mers is covered by another enzyme nor are they locked.
During adsorption, the inter-chain hydrogen bonds of

the glucose units beneath the cellulase are instantly
broken (Figure 5a). Similar to an endo-cellulase, desorp-
tion of an exo-cellulase from the cellulose sheet can take
place at any time. If any of the glycosidic bonds between

the glucose units covered by the cellulase in the middle
glucan chain is already hydrolyzed, the cellulase desorbs
from the surface within an exponentially distributed
time interval with rate parameter kofffast. This assump-
tion was built into the model in order to account for the
continuity of the chain entering the tunnel of CBH I.
The frequency of cellulase dissociations from the sub-
strate is set by a probability α. Results of high speed
AFM measurements [45] indicate that once the cellulase
is adsorbed to a free end, it continues to process the
chain until it reaches the end of the chain. In this light,

Broken hydrogen bond 

Cleaved glycosidic bond 
Adsorption 

(a) 

Complexation 

(b) 

Cleaving glycosidic bond 

(c) 

Figure 3 Interactions between endo-cellulase and cellulose crystals. Schematic representation of (a) an endo-cellulase adsorbed onto the

cellulose surface, (b) hydrogen bonds breaking between the monomers covered by the enzyme and (c) hydrolysis of the glycosidic bond.

Figure 4 Flowchart presenting the actions of an exo-cellulase

after adsorption to the cellulose surface. Chemical reactions are

denoted by green rectangles; orange ellipses denote branching

points. Abbreviations are the same as used in Figure 2. Additionally,

r is a uniformly, distributed random variable between 0 and 1.

Table 3 Rate constants and relevant parameters for

characterizing and exo-cellulase

Nomenclature

kon adsorption rate constant

koff desorption rate constant

kofffast a higher desorption rate constant than koff

α probability for the exo-cellulase to desorb
from cellulose

thbbreak time for an exo-cellulase to break a single
inter-chain hydrogen bond

tmove time for an exo-cellulase to hydrolyze a
glycosidic bond and slide one cellobiose
unit along the glucan chain

tstay time for an exo-cellulase to remain at a
certain location
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α is usually set to a relatively low value. The ‘Spatial
Conditions’ branching point in Figure 4 checks whether
the cellulase can further hydrolyze the glucan chain.
When another cellulase obstructs its diffusion, it may
stay in place for a time of length tstay. It may also desorb
within an exponentially distributed time with parameter
koff, if glucose units are missing from the middle chain
or if it has reached the nonreducing end of the chain
(and similarly for the exo-N).
The processive movement of exo-cellulases is modeled

as a two-step process: (i) the cellulase hydrolyzes the
glycosidic bond positioned at the active site, followed by
(ii) its sliding along the processed chain by one cello-
biose unit, instantly breaking inter-chain hydrogen
bonds [34] (Figure 5b). The active site of an exo-R is
considered to be the glycosidic bond between the second
and third glucose unit from the reducing end of the
middle, processed glucan chain. If the two glucose units
in front of the cellulase belong to the substrate, and
none of the six glucose units in front of the cellulase
(two consecutive ones in three chains) are occupied by
any other cellulases, these six monomers become locked,
implying that they could be covered by the exo-cellulase.
Locked glucose units are not considered available bind-
ing sites for endo– or exo–cellulases. The processing
time of exo–cellulases is calculated as tprocess= tmove+

thbbreak*nrHb, where tmove specifies the time during
which the cellulase hydrolyzes the glycosidic bond at the
active site and slides along the middle glucan chain by
one cellobiose unit. Here nrHb is the number of present
hydrogen bonds between the six locked monomers. The
same strategy is employed for exo-N except that the
processivity is along the opposite direction towards the

left-hand side. Furthermore, an exo-cellulase is never
allowed to productively bind to chains in the middle of
the cellulose surface. The exo-R cellulases are only
allowed to productively bind to a free reducing end,

(a) 

(b) 

Broken hydrogen bond 

Cleaved glycosidic bond 

Adsorption and Complexation

Processive degradation of one glucan chain 

Figure 5 Interactions between exo-cellulase and cellulose crystal. Schematic representation of (a) an exo-R cellulase adsorbed to the

cellulose surface followed immediately by the breaking of hydrogen bonds between the monomers covered by the cellulase and (b) the

processivity of the glucan chain by an exo-R cellulase; it comprises the hydrolysis of the glycosidic bond and cellulase directed movement along

the chain.

Figure 6 Simulation timeline. Here an ‘EVENT’ may refer to any

chemical reaction that involves a cellulase (adsorption, desorption)

or is catalyzed by a cellulase (e.g., inter-chain hydrogen bond

breaking, hydrolysis of glycosidic bond).
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while the exo-N cellulases are only allowed to product-
ively bind to a free non-reducing end.

Algorithm for time evolution

The outline of the overall simulation is sketched in
Figure 6. Time is measured in seconds and is advanced
in a continuous and asynchronous manner. The simula-
tion starts with the adsorption of an individual cellulase
(endo or exo) and it proceeds following the flowcharts
presented in Figure 2 (for endo-cellulase) or Figure 4
(for exo-cellulase). Each individually adsorbed cellulase
is followed separately over the course of the simulation.
While in solution, they all compete with each other for
adsorption, and once adsorbed, the selection of the
chemical reactions they are involved in follows a well-
defined, rule-based schematic (see below) that finally
leads to the hydrolysis of the entire cellulose substrate.
However, Gillespie’s algorithm [40,46,47] plays a crucial
part in the simulation, as many chemical reactions, once
selected by the rule-based scheme, are modeled as Pois-
son processes and therefore are implemented using this
algorithm. Gillespie’s algorithm is a Monte Carlo tech-
nique that allows one to sample the ensemble of trajec-
tories for a set of biochemical reactions. It models
chemical reactions as a stochastic process and remains
valid for low copy numbers of reactants. Here we imple-
ment the direct version of this method [46].
Chemical reactions that involve endo-cellulases (ad-

sorption, desorption) or are catalyzed by endo-cellulases
(inter-chain hydrogen bond breaking, hydrolysis of
glycosidic bond) are modeled as Poisson processes. This
choice has been motivated by the knowledge of the spe-
cific reaction rate constants.
A different modeling approach is taken in the case of

exo-cellulases. While adsorption of exo-cellulases to the
cellulose substrate is modeled as a Poisson process, each
adsorbing event is combined with an instantaneous
structural transformation of the surface as hydrogen
bonds below the cellulase are assumed to break at the
very moment of adsorption. The processivity of exo-
cellulases is defined through specific rules: when certain
spatial conditions are met, the cellulase slides along the
glucan chain by one cellobiose unit leaving behind a sol-
uble cellobiose and instantly changing the cellulose sur-
face (breaking intact hydrogen bonds) beneath itself. We
assume that each exo-cellulase has the same, constant
processing velocity so the only difference in processing
times of one exo-cellulase from another originates in the
number of intact hydrogen bonds covered by respective
cellulases. Finally, desorption of exo-cellulases is also
modeled as a Poisson process with a constant rate
parameter.
Each chemical reaction is modeled as a discrete event

occurring instantaneously while the state of the system

remains unchanged between two consecutive events.
The events associated with each of the adsorbed cellu-
lases are stored in a priority queue, here referred to as
the master queue of events (Figure 6). They are sorted by
the simulated time at which they should occur. The
simulation runs until the surface degrades to a specific
degradation threshold, which is usually set to 100%, or
the point at which the substrate is not able to adsorb
more enzyme particles.

Simulation parameters

The values of the kinetic parameters we employed are
listed in Table 4. The values of kon and koff were deter-
mined based on the adsorption equilibrium constants,
which for both types of cellulases were equal to 103M-1.
The fast desorption rate constant (kofffast) was always one
order of magnitude larger than koff. The values of the hy-
drolysis rate constants for both endo- and exo-cellulases
(kgly) were the ones estimated by Zhang and Lynd [22]
and accordingly, the rate constant for endo-cellulases
was set at fivefold that used for exo-cellulases [11,48].
From there we obtain tmove= 12 s; tstay was set to the
same value. The probability α was set to 0.1 and the time
to break a hydrogen bond to 10-12 s [49]. In the results
presented in the next section, we did not include hydro-
gen bond reformation, but this is a reaction that can eas-
ily be included in this model.
Table 4 also includes the molecular weights of EG I and

CBH I used in the simulation. The molecular weights of
glucose (μ=180.15588 g/mol) and anhydroglucose
(μ=162.1406 g/mol) molecules are essential in the calcula-
tion of the soluble sugar concentration. The cellulose sub-
strate is composed of five glucan chains, each of them
having 4000–5000 glucose monomers. The area of a cel-
lobiose unit [11] was set to AG2=5.512×10

-19m2. The
initial (molar) enzyme concentration was calculated from
the number of cellulases present in the system and the
volume of the system, V=Sd, where S is the cellulose sur-
face area in m2 and d is of the order of μm. In most of
the runs the initial enzyme concentration was set to be
[E]0=2 μM. In the following section, unless stated other-
wise, we used the parameter values listed in Table 4 and
the above enumerated initial conditions.

Table 4 Input parameters used in simulations unless

otherwise stated

Name Notation Endo Exo-R/Exo-N

Molecular weightb μ 52500 g/mol 63500 g/mol

Adsorption rate constant kon 100 (sM)-1 104 (sM)-1

Desorption rate constant koff 0.1 s-1 10 s-1

Higher desorption rate constant kofffast 1 s-1 100 s-1

Glycosidic bond hydrolysisc kgly 0.35 s-1 0.0846 s-1

Hydrogen bond breakingd khbbreak 1012 s-1 1012 s-1

Asztalos et al. Biotechnology for Biofuels 2012, 5:55 Page 7 of 15
http://www.biotechnologyforbiofuels.com/content/5/1/55



The output consists of the time evolution of the con-
centrations of glucose, cellobiose and cellotriose present
in the aqueous phase, the adsorption density, and the
number of available binding sites per gram of cellulose.
Results were averaged over 10 replicas of the system.
The conversion is quantified by counting the number of
all the soluble glucose molecules including those in cel-
lobiose and cellotriose and dividing that by the initial
number of glucose molecules.

Hydrolysis by endo-cellulases

First we simulate and analyze the hydrolysis of a crystal-
line cellulose layer solely by endo-cellulases. Figure 7a
shows the timeline of percent cellulose degradation.
After an initial slow hydrolysis phase, the simulation
results agree qualitatively with published experimental
results [50]. Using parameter values listed in Table 4,
our model reproduces well the observed experimental

hydrolysis time scales. As expected, the time it takes to
convert a given percent of the substrate decreases as kon
increases (Figure 7a inset). Similarly, the relative produc-
tion of soluble oligosaccharides shown in Figure 7b
agrees well with the experiments [11]. Cellobiose is the
major type of soluble sugar, both in experiments and in
our model. In our model, the final molar ratio between
glucose and cellobiose is close to 1:10, while the final
molar ratio between cellotriose and cellobiose is close
to 7:10. In experiments, the glucose concentration is
observed to be higher than the cellotriose concentration,
while our model shows the opposite. Our model assumes
that cellulose oligomers of length less than 4 enter solu-
tion and none of the modeled cellulases can digest them
after they enter solution phase. This simplified assump-
tion leads to disagreement with experiments.
The effect of varying the initial [E]0 cellulase concen-

tration upon conversion times is plotted in Figure 8a. As
the enzyme concentration increases, the gap between
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the time to convert 50% and 75% of the cellulose sub-
strate decreases. At high enzyme loading (> 22 μM), the
conversion time reaches a constant value as the sub-
strate is saturated by adsorbed enzymes: already bound
enzymes mutually obstruct the adsorption of additional
enzymes onto the surface. As the substrate is reduced
over time, the number of available binding sites also
decreases, thus fewer and fewer enzymes are able to
bind to the surface. This trend is captured in Figure 8b.
Cellulases quickly adsorb onto the surface at early times
in the hydrolysis process (not shown because of the
small time scale), after which their number follows a
Poisson decay, and desorption is modeled as a Poisson
process. The inset from Figure 8b shows the decrease in
bound enzyme percentage as the initial enzyme concen-
tration increases. Although this decrease is relatively
small, it underlines the finite size effect of the substrate,
which is consistent with Figure 8a.
Although the simulation results show good agreement

with the experiments, the lag phase observed in the hy-
drolysis curve (Figure 7a) is unexpected, as it was not
observed in any bulk measurements involving enzymatic
hydrolysis of cellulose. It was, however, observed during
acid hydrolysis of bacterial cellulose [51] and during an-
aerobic bacterial digestion of cellulose [52]. The possible
reasons behind the occurrence of the lag phase are vari-
ous. (i) At the beginning, the random glycosidic bond
cleavages are too far from each other to release glucose,
cellobiose or cellotriose, as this requires a finite amount
of time for cellulases to revisit the neighborhood of a
cleaved bond. (ii) The model used here does not take
into account enzyme diffusion [53], which could acceler-
ate the ability of the enzyme to locate the neighborhood
of a cleaved glycosidic bond. (iii) In contrast to a realistic
cellulose crystal surface with impurities and pre-existing
broken inter- and intra-chain bonds, the simulated initial
cellulose surface is perfectly regular and fully crystalline.
Already, with only 5% of bonds hydrolyzed, the substrate
becomes highly irregular (Shishir Chundawat, Personal
Communication). In order to observe the effect of these
irregularities, simulations were performed with an initial
percentage of broken glycosidic bonds. Figure 9 shows
how the initial slow hydrolysis phase diminishes as the
initial cellulose substrate becomes more and more
irregular.
Even though we obtain reasonable qualitative agree-

ment, it cannot be simply improved by just using a few
experimentally determined kinetic parameters. Since
our model is a detailed one, there are several other
parameters that need to be optimized as well to get
quantitative correspondence. For example, when we use
the experimentally determined rates for adsorption
(kon= 4.2 * 104 s-1- based on association constant
Ka= 1.4*10

6 M-1 s-1 [54] and koff [55]) and desorption

(koff= 0.03 M-1 s-1 [55]) for EG-I from cellulose crys-
tals, we observe that the enzyme hydrolyzes the cellu-
lose crystals completely in under 15 hours. Other
physical reasons may also contribute. One of the rea-
sons for the fast processing rate observed in the model
is because we only process two-dimensional crystals of
cellulose, while cellulose crystals are three-dimensional
in nature. In three-dimensional crystals, there are mul-
tiple layers of cellulose chains in the crystal, and not
all of the glycosidic bonds are available as substrate for
the enzyme to process from the beginning. Rather the
inner layers of the crystal are available as substrate only
after the layers above them are partially processed.
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Another reason could be that the rate constant for
decrystallization (or chain separation) of cellulose crys-
tals by the enzymes is based on the theoretical time-
scales for breaking of hydrogen bonds in an aqueous
environment, which is quite rapid.

Hydrolysis by exo-cellulases

The hydrolysis profile produced by exo-cellulases is
shown in Figure 10. The cellulose conversion is constant
over time, a feature that has not been observed in
experiments [16,50]. As expected, the time it takes to
convert a given percent of the substrate decreases as kon
increases (Figure 10, inset).
The effect of varying the initial [E]0 enzyme concentra-

tion upon conversion times is plotted in Figure 11a. In
contrast to Figure 8a, the substrate becomes saturated
by exo-cellulases at lower enzyme concentrations than
we observed in the case of endo-cellulases. This is be-
cause the number of free chain ends always remains
small compared to the number of enzyme particles in

solution. Figure 11b shows that the only sugar produced
by exo-cellulases is cellobiose. Experimental results,
however, report the production of both glucose and cel-
lotriose along with cellobiose, although cellobiose is the
major product [16,50]. The relatively constant processive
speed of exo-R cellulases along the glucan chain explains
the constant hydrolysis rate observed in Figure 10 and
the non-decreasing gap between the two curves in
Figure 11a.
The relatively constant processing time of the exo-

cellulases is the result of using a simple coarse-grained
description of processing time for exo-cellaloses since
no rates have been measured for specific events asso-
ciated with processivity. Values in these calculations are
set such that kon, koff >> 1/tmove for exo-cellulases. Thus
the binding of the enzyme to the substrate is at equilib-
rium. These parameters can be easily adjusted to match
up with any forthcoming experimental observations. In
addition, the total concentration of the substrate (redu-
cing ends for exo-R or non-reducing ends for exo-N)
does not change with time until the whole chain is pro-
cessed. This ensures that the concentration of enzyme-
bound substrate remains nearly constant with time for
the exo-cellulases resulting in a nearly constant rate of
processing until the end. We expect these effects to be
reduced in three-dimensional crystals of cellulose in
which multiple layers of cellulose chains have to be pro-
cessed by the exo–cellulases as the chains get hydrolysed
in a staggered fashion in these crystals. It has also been
reported [56] that cellulose-binding modules bind to in-
soluble non-crystalline cellulose with a 10-20-fold
greater affinity than to cello-oligosaccharides and/or sol-
uble polysaccharides. Future expansion of this model
will incorporate a non-constant adsorption rate of
enzymes that would depend on the length of the cello-
oligosaccharides; this will bring further complexity to
the model. In addition, incorporation of stochasticity
in the processing of the cellulose chain by the exo-
cellulases and better estimates for rates of decrystalli-
zation of the cellulose crystal could lead to better
agreement with experimental hydrolysis rates.

Hydrolysis by endo- and exo-cellulases

In order to test whether our model reproduces the ex-
perimentally observed endo-exo synergy, we used ex-
perimental data reported by Eriksson and colleagues (see
Figure 1A [50]) and modified the kinetic rate constants
for both types of cellulases by fitting the model single
enzyme hydrolysis curves to the experimental data. The
initial enzyme concentration was set to [E]0= 1.5 μM

and the cellulose concentration to 10 g/L [50]. Numer-
ical results show the endo-exo synergy (Figure 12a) and
the time scale is the same as observed experimentally
[50]. It should be kept in mind that the substrate in that
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experimental work is steam-pretreated spruce (lignocel-
lulose), not pure cellulose. However, it is encouraging
that we do observe similar behavior. Sugar production is
higher when exo-R cellulases hydrolyze the cellulose sur-
face in the presence of endo-cellulases when compared
to the sum of their conversions achieved alone.

The increase of free chain ends produced by endo-
cellulases is the primary source of the endo-exo synergy
observed in the model. Figure 12b illustrates how this ef-
fect contributes to a large increase in the percentage of
adsorbed exo-cellulases. This percentage is constant
when exo-cellulases degrade the substrate alone, while
in the presence of endo-cellulases it grows to higher
values, contributing to a fast and efficient degradation of
the substrate.

Results regarding synergism between pure Tricho-

derma cellulases [14,57] showed that the endo-exo syn-
ergy depends on the ratio of the concentrations of the
individual enzymes. Here, we tested whether our model
qualitatively reproduces this observation by comparing
conversion times—the time to degrade 5%, 25%, 50% or
80% of the substrate—for various exo-R/endo ratios.
Using the hydrolysis rates listed in Table 4, we consider
two cases: i) the overall hydrolysis of cellulose by endo-
cellulases takes place at a slower rate than the overall
hydrolysis of cellulose by exo-cellulases (Figure 13a); ii)
the overall hydrolysis by exo-cellulases is set to be
slower than that by endo-cellulases (Figure 13b). As the
rate-limiting step in the model is the adsorption of cellu-
lases onto the substrate, we attain this by varying the kon
adsorption rate constant while fixing the equilibrium
constant of each of the cellulases. In both cases the sub-
strate conversion time has a minimum at a specific ratio
of the concentrations of the individual enzymes. For the
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first case (see Figure 13a) the optimal exo-R/endo ratio
is 2:1, while for the second case (see Figure 13b) this
ratio is 5:1. These minimum conversion times in both
cases are much smaller than the conversion times
obtained in single cellulase runs. These optimal ratios
were obtained for a perfectly regular cellulose substrate;
however, as pointed out earlier [14,57], the optimal ex-
perimental ratio is strongly dependent on the character-
istics of the substrate. For example, on filter paper [57]
the optimal exo-R/endo ratio was found to be 74:26
when the total enzyme concentration was 1 μM and
90:10 when the total enzyme concentration was 10 μM.

Sensitivity analysis

We have also carried out a sensitivity analysis to evaluate
the relative importance of some of the physical quan-
tities involved in the simulations. First, we studied the
volume dependence of the overall hydrolysis. The reac-
tion volume, V, determines the adsorption rate and
therefore it determines the amount of adsorbed cellu-
lases, affecting the rate of the overall hydrolysis. The
simulation behaves as expected: a smaller volume results
in higher adsorption rates, leading to faster hydrolysis
(Figure 14).
Next, the absolute size of cellulose surface was varied

to determine the effect of the size of the simulation cell
(Figure 15a). It is reassuring to see that the size of the
substrate does not have any effect on the oligomer distri-
bution. The amount of glucose, cellobiose and cellotriose
increases as the substrate becomes larger, but their rela-
tive concentrations are not affected by the substrate. A
larger substrate needs more time to be degraded by the
same amount of cellulases. The amount of adsorbed
endo-cellulases is plotted as function of time in
Figure 15b. The system size does not qualitatively
change the number of adsorbed cellulases, it only affects

the overall hydrolysis time, and as such the curves get
shifted towards larger time scales.

Conclusions
In an effort to complement both all-atom molecular dy-
namics and coarse-grained simulation tools, we have
developed a an agent-based the dynamical, functional
model capturing the surface chemical reaction of cellulose
hydrolysis by enzymes at the molecular level. This model
accounts for heterogeneous enzymatic hydrolysis reactions
occurring on the substrate surface (a reaction taking place
in dimensions less than three), and incorporates key fac-
tors controlling it that are different from those in an aque-
ous environment. The catalysis process is broken down
into distinct parts related to different kinetic events car-
ried out by individual particles. These events are essen-
tially chemical reactions taking place on the surface of
cellulose (adsorption, breaking inter-chain hydrogen
bonds, cleaving glycosidic bonds, desorption) and consti-
tute the main elements of this model. Reactions are moni-
tored by following and updating the state (based on a set
of predefined rules) of each individual particle in the
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system. Simulation results showed good qualitative agree-
ment with experimental data.
The agreement with experimental data can be improved

by obtaining better experimental estimates of the para-
meters in Table 4 and by extending the current model to
three dimensions. Initial experiments that can greatly
benefit the model are those that probe the kinetics of dif-
ferent steps for the individual domains of the cellulases
(Carbohydrate Binding Domain and Catalytic Domain)
separately. These experiments need to quantify the bind-
ing affinities, kon and koff. Then similar measurements on
the entire cellulases for binding of the same substrate will
help to verify the role of individual domains and provide a
measure of productive and non-productive binding. These
measurements need to be carried out for pure cellulose
substrates of different shapes morphology, degree of
polymerization (DP) and partially digested states.
Finally, our model only simulates the degradation of a

single cellulose crystal layer, a feature that should be
extended to capture the degradation of a whole cellulose
crystal. The major effect from a three-dimensional
model is expected to be that the substrate would not be
completely accessible at the same time for the cellulases
to digest. Also, such a three-dimensional model can cap-
ture the possibility that floating sheets of detached sub-
strate may slow cellulases from reaching a larger surface
where more efficient digestion is possible. The current
model does not account for surface diffusion, which is
likely to be important based on results reported by Jervis
and colleagues [53], who showed that diffusion does not
limit enzyme activity. Fortunately, these deficiencies are
not of a fundamental nature because our model is easily
extendable and can incorporate them as well as add-
itional properties of various cellulase systems on differ-
ent types of cellulose surfaces. Importantly, this
approach could be broadened to other classes of cellu-
lases and even to cellulosomes as additional experimen-
tal data becomes available. For this reason we believe
that this model constitutes a significant contribution to
the ability to simulate the complicated reactions
involved in cellulose degradation.

Endnotes
aEach row corresponds to one of the seven parameters

characterizing one monomer while the columns repre-
sent numerical values the parameters can take. Each
entry of the table denotes a distinct condition of a glu-
cose unit. For a detailed explanation, please see text.
bSee reference [50]. cSee reference [22]. dSee reference
[49].
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