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Abstract. Coarse-grid correction is a key ingredient of scalable domain decomposition methods.
In this work we construct coarse-grid space using the low-frequency modes of the subdomain Dirichlet-
to-Neumann maps and apply the obtained two-level preconditioners to the extended or the original
linear system arising from an overlapping domain decomposition. Our method is suitable for parallel
implementation, and its efficiency is demonstrated by numerical examples on problems with large
heterogeneities for both manual and automatic partitionings.

Key words. domain decomposition, coarse grid, deflation, heterogeneous coefficients

AMS subject classifications. 65N55, 65F10, 65N30

DOI. 10.1137/100796376

Notation.

A coefficient matrix of the linear system Ax = b
M preconditioner for A
Z, Y full rank matrices which span the coarse-grid subspaces
E E = Y TAZ, Galerkin matrix or coarse-grid matrix
Ξ Ξ = ZE−1Y T , coarse-grid correction matrix in multigrid and do-

main decomposition methods
PD PD = I −AΞ = I −AZ(Y TAZ)−1Y T

QD QD = I − ΞA = I − Z(Y TAZ)−1Y TA
PBNN PBNN = QDM−1PD + ZE−1Y T

PADEF2 PADEF2 = QDM−1 + ZE−1ZT

1. Introduction. We consider the solution of the linear system Ax = b ∈ R
p

arising from the discretization of an elliptic boundary value problem (BVP) of the
type

(1.1)
ηu − div(κ∇u) = f in Ω,
B(u) = 0 on ∂Ω,

where Ω is a bounded domain of Rd (d = 2 or 3), B is a suitable boundary condition, κ
is a positive diffusion function which can be discontinuous, and η ≥ 0. When using an
iterative method in a one-level domain decomposition framework, one may encounter
a long stagnation or a slow convergence, especially when the number of subdomains is
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large. Even when κ ≡ 1, the convergence of a one-level domain decomposition method
(DDM) presents a long plateau of stagnation. Its length is related to the number of
subdomains of the decomposition in one direction. For example, we know that for the
problem divided into N subdomains in a one-way partitioning, convergence can never
be achieved in less than N − 1 iterations since the exchange of information between
the subdomains is reduced to their common interfaces. Thus, the global information
transfers from one subdomain only to its neighbors [13, 16]. One needs a two-level
method to have a scalable algorithm, i.e., an algorithm whose convergence rate is
weakly dependent on the number of subdomains; see [26] and references therein.

Two-level domain decomposition methods are closely related to multigrid (MG)
methods and deflation corrections; see [24] and references therein. These methods are
defined by two ingredients: a full rank matrix Z ∈ R

p×m with m ≪ p and an algebraic
formulation of the correction. These techniques imply solving a reduced-size problem
of order m×m, called a coarse-grid problem. The space spanned by the columns of
Z should ideally contain the vectors responsible for the stagnation of the one-level
method. We will come back later to the choice of Z in the framework of DDMs and
focus for now on the various algebraic ways to improve convergence by using a coarse
grid.

According to [24], for a DDM, a well-known coarse-grid correction preconditioner
is of the form I+ZE−1ZT , where E = ZTAZ is the coarse-grid matrix used to speed
up convergence. The abstract additive coarse-grid correction proposed in [18] isM−1+
ZE−1ZT , where M−1 is the additive Schwarz preconditioner, a sum of local solvers
in each subdomain, which can be implemented in parallel. The first term is a fine grid
solver, and the second term represents a coarse solver. Hence it is called the two-level
additive Schwarz preconditioner. The BPS preconditioner introduced by Bramble,
Pasciak, and Schatz [1] is of this type. In the context of DDMs, we mention the
balancing Neumann–Neumann preconditioner and the FETI (finite element tearing
interconnection) algorithm, which have been extensively investigated; see [26] and
references therein. For symmetric systems the balancing preconditioner was proposed
by Mandel [14]. The abstract balancing preconditioner [14] for nonsymmetric systems
reads [8]

(1.2) PBNN = QDM−1PD + ZE−1Y T .

For the preconditioner PBNN , if we choose the initial approximation x0 = Ξb, then
the action of PD is not required in practice; see [26, p. 48]. Note that the MG V(1,1)-
cycle preconditioner PMG is closely related to PBNN . Choosing the proper smoother
M in PBNN , we can ensure that PMG and PBNN are symmetric positive definite
(SPD), and PMGA and PBNNA have the same spectrum [25].

For an SPD system, by choosing Y = Z, the authors in [24] define

(1.3) PADEF2 = QDM−1 + ZE−1ZT ,

which is as robust as PBNN but usually less expensive [24]. The two-level hybrid
Schwarz preconditioner in [23, p. 48] has the same form as PADEF2. It is shown in
[24] that with a proper choice of the starting vector the preconditioners PADEF2 and
PBNN are equivalent.

Given the coarse-grid subspace, we can construct the two-level preconditoners
above. An effective two-level preconditioner is highly dependent on the choice of
the coarse-grid subspace. We will now focus on the choice of the coarse space Z
in the context of DDMs for problems of type (1.1) with heterogeneous coefficients.
In this case, the coarse space is made of vectors with support in one subdomain
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or one subdomain and its neighbors. When the jumps in the coefficients are inside
the subdomains (and not on the interface) or across the interface separating the
subregions, the use of a fixed number of vectors per subdomain in Z gives good
results; see [6, 15, 19, 20, 4, 5]. When the discontinuities are along the interfaces
between the subdomains, results are not so good.

Here, we propose constructing a coarse subspace such that the two-level method
is robust with respect to heterogeneous coefficients for an arbitrary domain decom-
position. Even if the discontinuities are along the interface, as in the case with lay-
ered coefficients and a one-way decomposition in the orthogonal direction (see section
4.1), the iteration counts are very stable with respect to jumps of the coefficients.
Our method is based on the low-frequency modes associated with the Dirichlet-to-
Neumann (DtN) map on each subdomain. After obtaining the eigenvectors associated
with the small eigenvalues of DtN, we use the harmonic extension to the whole sub-
domain. It is efficient even for problems with large discontinuities in the coefficients.
Moreover, it is suitable for parallel implementation. We apply such a two-level pre-
conditioner to the original linear system (2.1) and to the extended one (2.2) arising
from the DDM.

The paper is organized as follows. In section 2, we introduce the two-level precon-
ditioners: the additive Schwarz (AS), the restricted additive Schwarz (RAS), and the
Jacobi–Schwarz (JS) with the coarse-grid correction. The construction of coarse-grid
spaces is presented in section 3. In section 4, numerical tests on the model prob-
lem demonstrate the efficiency of our method. Some concluding remarks are given in
section 5.

2. Algebraic DDMs. Without loss of generality, we consider here a decompo-
sition of a domain Ω into two overlapping subdomains Ω1 and Ω2. The overlap is

denoted by O := Ω1 ∩Ω2. This yields a partition of the domain: Ω̄ = Ω̄
(1)
I ∪ Ō∪ Ω̄

(2)
I ,

where Ω
(i)
I := Ωi\Ō, i = 1, 2. At the algebraic level this corresponds to a partition of

the set of indices N into three sets: N
(1)
I , NO, and N

(2)
I ; see Figure 2.1.

After the discretization of the BVP (1.1) defined in domain Ω, we obtain a linear
system of the following form:

A u :=

⎡

⎢

⎢

⎣

A
(1)
II A

(1)
IO

A
(1)
OI AOO A

(2)
OI

A
(2)
IO A

(2)
II

⎤

⎥

⎥

⎦

⎡

⎢

⎣

u
(1)
I

uO

u
(2)
I

⎤

⎥

⎦
=

⎡

⎢

⎣

f
(1)
I

fO

f
(2)
I

⎤

⎥

⎦
.(2.1)

u
O

u
O

(1)

u
O

(2)

u
I

(1)
u

I

(2)

Ω
1

Ω
2

Fig. 2.1. Decomposition into two overlapping subdomains.
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We can also define the extended linear system by considering twice the variables
located in the overlapping region,

Ã ũ :=

⎡

⎢

⎢

⎢

⎢

⎣

A
(1)
II A

(1)
IO

A
(1)
OI AOO A

(2)
OI

A
(1)
OI AOO A

(2)
OI

A
(2)
IO A

(2)
II

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

u
(1)
I

u
(1)
O

u
(2)
O

u
(2)
I

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

f
(1)
I

fO
fO

f
(2)
I

⎤

⎥

⎥

⎦

,(2.2)

where the subscript “O” stands for “overlap,” u
(i)
O are the duplicated variables in the

overlapping domain O, and u
(i)
I are variables in the subdomain Ωi

I . It is easy to check
that if AOO is invertible, there is an equivalence between problems (2.1) and (2.2).

Classical preconditioners for problem (2.1) are the AS and the RAS methods; see
[2] or [26] and references therein. Let Rj be the rectangular restriction matrix to
subdomain Ωj, j = 1, 2. Let Dj , j = 1, 2, be diagonal matrices which correspond to
a partition of unity in the sense that

RT
1 D1R1 +RT

2 D2R2 = I .

By defining R̃j := DjRj , we have

R̃T
1 R1 + R̃T

2 R2 = I .

Then the AS preconditioner reads

(2.3) M−1
AS := RT

1 A
−1
1 R1 +RT

2 A
−1
2 R2,

and the RAS method reads

(2.4) un+1 = un + (R̃T
1 A

−1
1 R1 + R̃T

2 A
−1
2 R2)(f − Aun),

where Ai := RiAR
T
i , i = 1, 2. From the iterative scheme (2.4), we can define the

preconditioner

M−1
RAS := R̃T

1 A
−1
1 R1 + R̃T

2 A
−1
2 R2.

Note that the RAS preconditioner is nonsymmetric. It leads to an iterative method
that is identical to the discretization of the continuous JS method; see [7].

An illustration of the RAS method is given in Figure 2.2 for a three-subdomain
decomposition, where Ωi are overlapping subdomains and Ω∗

i are nonoverlapping sub-
domains. If we take Di to have zero entries for nodes in the region Ωi \Ω∗

i , we define

R̃T
1 =

⎡

⎣

IΩ∗

1

0
0

⎤

⎦ , R̃T
2 =

⎡

⎣

0
IΩ∗

2

0

⎤

⎦ , R̃T
3 =

⎡

⎣

0
0
IΩ∗

3

⎤

⎦ ,

R1 =
[

IΩ1
0 0

]

, R2 =
[

0 IΩ2
0
]

, R3 =
[

0 0 IΩ3

]

,

where IΩi
is the identity matrix whose dimension equals the number of unknowns in

Ωi.
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Ω
1

*
Ω

2

*
Ω

3

*

Ω
2

Ω
1

Ω
3

Fig. 2.2. RAS (ndomain = 3, noverlap = 4−1, nxpt = 6; see section 4.1 for these parameters).
The circles and crosses stand for the unknowns in each subdomain.

For our extended linear system (2.2), a natural preconditioner can be built by
using its diagonal blocks. For the two-subdomain case (2.2), the block diagonal pre-
conditioner MJS is

MJS :=

⎡

⎢

⎢

⎢

⎢

⎣

A
(1)
II A

(1)
IO

A
(1)
OI AOO

AOO A
(2)
OI

A
(2)
IO A

(2)
II

⎤

⎥

⎥

⎥

⎥

⎦

,(2.5)

and one can easily notice thatM−1
JS can be computed in parallel. The resulting method

will be referred to as the JS method. When used in a Richardson algorithm such as in
(2.4), it was proved in [3] that MJS applied to (2.2) and MRAS applied to (2.1) lead
to equivalent algorithms. But, as we shall see from numerical experiments, two-level
methods applied to (2.2) or to (2.1) are not necessarily equivalent.

Note that even though the original matrix A is symmetric, the extended one Ã
is not. As for the preconditioners, MAS and MJS are symmetric but MRAS is not.
As a result, the only case where we have both a symmetric matrix and a symmetric
preconditioner is when MAS applies to the original matrix A. In this case, the Krylov
method that we use is the CG algorithm. In the other two cases (namely, MJS applied
to the extended matrix and MRAS applied to the original system), we use GMRES
[22].

Using preconditioners MAS , MJS , or MRAS , we can remove the influence of very
large eigenvalues of the coefficient matrix, which correspond to high-frequency modes.
But the small eigenvalues still exist and hamper the convergence. These small eigen-
values correspond to low-frequency modes and represent certain global information.
We need a suitable coarse-grid space to efficiently deal with them.

3. The coarse-grid space construction. A key problem is the choice of the
coarse subspace. Ideally, we can choose the deflation subspace Z which consists of
the eigenvectors associated with the small eigenvalues of the preconditioned operator.
But the lower part of the spectrum of a matrix is costly to obtain. The cost is in
any case larger than the cost of solving a linear system. Thus, there is a need to

D
o

w
n
lo

ad
ed

 0
9
/1

1
/1

3
 t

o
 1

3
0
.1

5
9
.1

0
4
.1

4
4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1628 F. NATAF, H. XIANG, V. DOLEAN, AND N. SPILLANE

choose the coarse space a priori. For instance, in [17], Nicolaides defines the deflation
subspace Z as

(zj)i =

{

1 if i ∈ Ω∗
j ,

0 otherwise ,

whose matrix form is

(3.1) Z =

⎡

⎣

1Ω∗

1
0 0

0 1Ω∗

2
0

0 0 1Ω∗

3

⎤

⎦ ,

where 1Ω∗

i
is a vector of all ones, and its length equals the number of unknowns in

Ω∗
i . Recall that the subdomains Ω∗

i are nonoverlapping as shown in Figure 2.2.
In [27, 28], the projection vectors zi are chosen in a similar but more complicated

way. Definition (3.1) is also used as the aggregation-based coarse level operator in
[9]. Originally (3.1) was used for disjoint sets but not for the overlapping case. In
the following, we use it in the overlapping case as well. This coarse space performs
well in the constant coefficient case. But when there are jumps in the coefficients, it
cannot prevent stagnation in the convergence.

We now propose a construction of the coarse space that will be suitable for parallel
implementation and efficient for accelerating the convergence for problems with highly
heterogeneous coefficients and arbitrary domain decompositions. For both the original
system (2.1) and the extended one (2.2), we still choose Z such that it has the form

(3.2) Z =

⎡

⎢

⎢

⎢

⎢

⎣

W 1 0 · · · 0
... W 2 · · · 0
...

... · · ·
...

0 0 · · · WN

⎤

⎥

⎥

⎥

⎥

⎦

,

where N is the number of overlapping subdomains. However, W i is now a rectangu-
lar matrix whose columns are based on the harmonic extensions of the eigenvectors
corresponding to small eigenvalues of the DtN map in each subdomain Ωi. Note that
the sparsity of the coarse operator E = ZTAZ is a result of the sparsity of Z. The
nonzero components of E correspond to adjacent subdomains.

More precisely, let us consider first at the continuous level the DtN map DtNΩi
.

Let u : Γi 	→ R,

DtNΩi
(u) = κ

∂v

∂ni

∣

∣

∣

∣

Γi

,

where v satisfies

(3.3)

{

L(v) := (η − div(κ∇))v = 0 in Ωi,

v = u on Γi,

and Γi is the interface boundary. If the subdomain is not a floating one (i.e., ∂Ωi ∩
∂Ω �= ∅), we use on the part of the global boundary the boundary condition from
the original problem B(u) = 0. To construct the coarse-grid subspace, we use the
low-frequency modes associated with the DtN operator:

(3.4) DtNΩi
(u) = λκu
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Ωi Ωi+1Ωi−1
e
n

i

e
n+1

i−1
e
n+1

i+1

Ωi Ωi+1Ωi−1 e
n

i

e
n+1

i−1 e
n+1

i+1

Fig. 3.1. Fast (left) or slow (right) convergence of the Schwarz algorithm.

with

(3.5) λ < 1/diam(Ωi),

where diam(Ωi) is the diameter of subdomain Ωi.
We first motivate our choice of a coarse space based on the DtN map. We write the

original Schwarz method at the continuous level, where the domain Ω is decomposed
in a one-way partitioning. The error eni between the current iterate at step n of the
algorithm and the solution u|Ωi

(eni := un
i − u|Ωi

) in subdomain Ωi at step n of the
algorithm satisfies

L(en+1
i ) = 0 in Ωi,

en+1
i =

∑

j �=i ξ
j
i e

n
j on Ω̄i ∩ ∂Ωj ,

where ξji is such that

∑

j �=i

ξji = 1∂Ωi
.

In the 1D (one-dimensional) example sketched in Figure 3.1, we see that the rate
of convergence of the algorithm is related to the decay of the harmonic functions eni in
the vicinity of ∂Ωi via the subdomain boundary condition (BC). Indeed, a small value
for this BC leads to a smaller error in the entire subdomain thanks to the maximum
principle.

Moreover, a fast decay for this value corresponds to a large eigenvalue of the
DtN map, whereas a slow decay corresponds to small eigenvalues of this map because
the DtN operator is related to the normal derivative at the interface and the overlap
is thin. Thus the small eigenvalues of the DtN map are responsible for the slow
convergence of the algorithm, and it is natural to incorporate them in the coarse-grid
space.

We now explain why we keep only eigenvectors with eigenvalues smaller than
1/diam(Ωi) in the coarse space. We start with the constant coefficient case κ = 1.
In this case, the smallest eigenvalue of the DtN map is zero and corresponds to the
constant function 1. For a shape regular subdomain, the first positive eigenvalue is
of order 1/diam(Ωi); see [10]. Keeping only the constant function 1 in the coarse
space leads to good numerical convergence; see Figure 4.2 below. In the case of high
contrasts in the coefficient κ, the smallest eigenvalue of the DtN map is still zero. But
due to the variation of the coefficients we may have positive eigenvalues smaller than
1/diam(Ωi). In order to have convergence behavior similar to that of the constant
coefficient case, it is natural to keep all eigenvectors with eigenvalues smaller than
1/diam(Ωi).

To obtain the discrete form of the DtN map, we consider the variational form of
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1630 F. NATAF, H. XIANG, V. DOLEAN, AND N. SPILLANE

(3.3). Let’s define the bilinear form ai : H
1(Ωi)×H1(Ωi) → R,

ai(w, v) :=

∫

Ωi

ηwv + κ∇w · ∇v.

With a finite element basis {φk}, the coefficient matrix of a Neumann BVP in
domain Ωi is

A
(i)
kl =

∫

Ωi

ηφkφl + κ∇φk · ∇φl.

Let I (resp., Γi) be the set of indices corresponding to the interior (resp., boundary)
degrees of freedom, and nΓi

:= #(Γi) the number of interface degrees of freedom.
Note that for the whole domain Ω the coefficient matrix is given by

Akl =

∫

Ω

ηφkφl + κ∇φk · ∇φl.

With block notation, we have

A
(i)
II = AII , A

(i)
ΓiI

= AΓiI , and A
(i)
IΓi

= AIΓi
.

But the matrix A
(i)
ΓiΓi

refers to the matrix prior to assembly with the neighboring
subdomains and thus cannot be simply extracted from the coefficient matrix A. In
problem (3.3), we use Dirichlet BCs. Let U ∈ R

nΓi and u :=
∑

k∈Γi
Uk φk. Let

v :=
∑

k∈I Vk φk +
∑

l∈Γi
Vl φl be the finite element approximation of the solution

of (3.3). Letting VI = (Vk)k∈I , we have with obvious notation

(3.6) AIIVI +AIΓi
U = 0.

A variational definition of the flux reads
∫

Γi

κ
∂v

∂n
φk =

∫

Ωi

ηvφk + κ∇v · ∇φk

for all φk, k ∈ Γi. So the variational formulation of the eigenvalue problem (3.4) reads

(3.7)

∫

Ωi

ηvφk + κ∇v · ∇φk = λ

∫

Γi

κv φk

for all φk, k ∈ Γi. Let Mκ,Γi
be the weighted mass matrix

(Mκ,Γi
)kl :=

∫

Γi

κφk φl ∀k, l ∈ Γi .

The compact form of (3.7) is

A
(i)
ΓiΓi

U +AΓiIVI = λMκ,Γi
U .

With (3.6), the discrete form of (3.4) is a generalized eigenvalue problem

(3.8) (A
(i)
ΓiΓi

−AΓiIA
−1
II AIΓi

)U = λMκ,Γi
U .

The step-by-step procedure for constructing the rectangular matrices W i in the coarse
space matrix Z (see (3.2)) is as follows.

Algorithm 1. In parallel for all subdomains 1 ≤ i ≤ N , the following hold:
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1. Compute eigenpairs of (3.8), (U i
1, λ

i
1), (U

i
2, λ

i
2), . . . , (U

i
mi

, λi
mi

), such that

λi
1 ≤ · · · ≤ λi

mi
< 1/diam(Ωi) ≤ λi

mi+1
≤ · · · .

2. Compute their harmonic extensions,

V i
k := (−A−1

II AIΓi
U i
k, U

i
k)

T , 1 ≤ k ≤ mi .

3. The final formula for the rectangular matrix W i with mi columns depends on
the system to be solved:

If the extended system is solved (see (2.2)), then

W i = [V i
1 | . . . |V

i
mi

] .

If the original system is solved (see (2.1)), then

W i = [Di V
i
1 | . . . |Di V

i
mi

] .

We call this procedure the ZD2N method. We also use ZD2N to denote the coarse-
grid space constructed by this method. Its construction is fully parallel. Similarly,
we call ZNico the method of Nicolaides or the corresponding coarse-grid space. Let
us remark that when η = 0 and the subdomain does not touch the boundary of Ω,
the lowest eigenvalue of the DtN map is zero, and the corresponding eigenvector is a
constant vector. Thus, ZNico and ZD2N coincide. As we shall see in the next section,
when a subdomain has several jumps of the coefficient, taking ZNico is not efficient,
and it is necessary to take ZD2N with more than one vector per subdomain.

Note that when we work on the original system, the definition of the coarse space
involves a partition of unity via the matrices Di. Thus the vectors of the coarse space
are able to span the zero energy modes of the original problem if there are no Dirichlet
BCs. In the following numerical tests, we construct the diagonal matrices Di in the
spirit of the RAS method. Let fi : Ωi 	→ R be the characteristic function of Ω̄∗

i . We
define χi(x) as the P1 finite element interpolation of fi(x)/

∑

j fj(x). Then, we set
(with Matlab notation) Di := diag(χi).

4. Numerical results. From a practical point of view, it is more difficult to
work on the extended system (2.2) than on the original one (2.1). Indeed, when
working on (2.2), we have to create extra data structures. For this reason, we first
consider in section 4.1 a one-way decomposition of the domain. This enables us to
work both on the original system (2.1) and on the extended one (2.2). In section 4.2 an
arbitrary decomposition is considered; we will work only on the original system (2.1).
In all numerical results, the residual reduction factor to convergence is 10−6.

4.1. One-way domain decomposition. In order to illustrate numerically the
behavior of the coarse space, we first consider the following model problem:

L u :=

(

−
∂

∂x
c(y)

∂

∂x
−

∂

∂y
d(y)

∂

∂y
+ η(y)

)

u(x, y) = f(x, y) in (0, L)× (0, 1),

where the length L of the domain is proportional to the number of subdomains.
We use Neumann BCs on the top and the bottom, a Dirichlet BC on the left, and

(∂/∂n+ α)u = 0, α ≪ 1, on the right boundary; see Figure 4.1.
All the test cases are described in Table 4.1. We first consider the constant

coefficient case with c(y) = d(y) = 1.0 (CONST in Table 4.1). Afterward we will
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Ω
iu

=
0

∂u/∂n =0

(∂
/∂

n
+

α
)u

=
0

Γ
R

Γ
L

∂u/∂n =0

δδ

Fig. 4.1. Subdomains and boundary conditions.

Table 4.1

Test cases: b = 1, a = 100000.

Case Remarks
CONST c(y) = d(y) = 1.0, constant coefficients
HPL1 c(y) = d(y) = val[10 ∗ y], val = [b b b a a a a b b b]
HPL2 c(y) = d(y) = val[10 ∗ y], val = [b b a a b b a a b b]
HPL3 c(y) = d(y) = val[10 ∗ y], val = [a a b b a a b b a a]
HPL4 c(y) = d(y) = val[10 ∗ y], val = [a b b a b b a b b a]
HPL5 c(y) = d(y) = val[10 ∗ y], val = [b a b a b a b a b a]

test more difficult cases, with discontinuities in the coefficients, such as c(y) = d(y)
= val[10 ∗ y], where val is an array that defines the heterogeneity pattern and that
depends on two parameters a and b (e.g., in the case HPL3, val = [a a b b a a b b a
a] means that there are three high-permeability layers). In our tests we take a = 105,
b = 1, and η = 10−7.

In addition, we use the following parameters in our tests:
• ndomain represents the number of subdomains.
• noverlap stands for the overlap in the x-direction; correspondingly the width
of the overlap is δ = (noverlap + 1)h, where h is the mesh size.

• (nxpt + noverlap) is the number of grid points in the x-direction in one sub-
domain.

• nypt is the number of grid points in the y-direction.
These numerical tests are performed in Matlab. We compare the two coarse grids,
namely the Nicolaides one (3.1) and the one defined in Algorithm 1 (D2N), only for
the RAS and JS preconditioners. See section 4.2 for the RAS and AS methods. We
use full GMRES as the linear solver, together with the left preconditioner PADEF2,
which is constructed by taking Z equal to ZNico or to ZD2N , where ZD2N is of the
form (3.2). Please note that when using the left-preconditioned GMRES on Ax = b,
the residual ||b−Ax̄|| is returned for the approximate solution x̄ (see Figures 4.2–4.6).

4.1.1. The original vs. extended system. We first compare the effect of the
coarse-grid correction when applied to the original system (2.1) (RAS method) or to
the extended system (2.2) (JS method). We begin with the Nicolaides coarse-grid
space. As expected when there is no coarse-grid correction, RAS and JS perform
similarly and have a plateau in the convergence curve.

For the constant case in Figure 4.2, the piecewise coarse-grid space of Nicolaides
is quite good for both the extended system and the original system. It works better
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Fig. 4.2. Case CONST for JS and RAS using coarse grids. ndomain = 32, noverlap = 1,
nxpt = 8, nypt = 16. Both ZNico and ZD2N work well for the constant case.
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Fig. 4.3. Case HPL2 for JS and RAS with coarse-grid correction. ndomain = 64, noverlap = 1,
nxpt = 8, nypt = 16. ZNico does not work well, while ZD2N gives fast convergence.

on the extended system (2.2) (JS method) than on the original system (2.1) using
RAS (22 versus 36 iterations).

For the case with discontinuities, ZNico is not good. For this kind of problem,
ZD2N gives a much faster convergence; see Figure 4.3. Note that for the case HPL2,
the number of small eigenvalues determined by (3.5) is 2, which is equal to the number
of high-permeability layers; see [27].

We can see that our ZD2N method works well on both the extended system and
the original system, but it gives better convergence on the extended system. It seems
to us that this is due to the fact that for JS we do not need a partition of unity. For
RAS this partition of unity is necessary for the method to be able to span the zero
energy modes of the original problem. But then, the local harmonicity of the coarse
space components is lost. This is the reason why we will further investigate our ZD2N

method on the extended system.

4.1.2. The robustness of the ZD2N method. In the following we test the
robustness of the approach with respect to the various parameters of the problem:
jumps of the coefficients, number of subdomains, mesh size, and size of the overlap.
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Fig. 4.4. Case HPL3 with various number of subdomains. ndomain = 128 (crosses), 64 (cir-
cles), 32 (triangles), noverlap = 1, nypt = 16. ZD2N : dotted lines, JS: solid lines.

Table 4.2

Case HPL2 with the ZD2N coarse space for jumps in the coefficients ranging from 1 to 106.
ndomain = 32, noverlap = 3, nxpt = 8, nypt = 16.

Jumps in coefficient 1 10 102 103 104 105 106

Iteration counts 15 24 10 10 10 11 11
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Fig. 4.5. Case HPL3 with various mesh sizes: 1/64 (crosses), 1/32 (circles), and 1/16 (trian-
gles); noverlap = 1, ndomain = 16. ZD2N : dotted lines, JS: solid lines.

Figure 4.4 shows that, when we use a coarse space, the iteration numbers are
almost constant as the number of subdomains increases. The three convergence curves
with ZD2N are difficult to distinguish.

We also consider the robustness with respect to the size of the jumps. We take
as an example in Table 4.2 the case HPL2 with a ranging from 1 to 106. Using the
criterion (3.5), in each subdomain two small eigenvectors are chosen to construct the
ZD2N coarse space. We see that the iteration counts are almost constant as the size
of the jump in the coefficients increases by six orders of magnitude.

In Figure 4.5, we plot the convergence curves for three successive refinements of
the mesh. We see an increase in the number of iterations, which can be related to the
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Fig. 4.6. HPL1 with various overlaps: h (crosses), 2h (circles), and 3h (triangles); ndomain =
32, nxpt = nypt = 16. ZD2N : dotted lines, JS: solid lines.

0 1 2 3 4 5 6 7 8
−4

−2

0

2

4
x 10

−14 eig(A)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1

0

1

2
x 10

−14 eig(M
JS

−1
A)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1
x 10

−11 eig(P
ADEF2

A )

Fig. 4.7. Spectra of CONST case. ndomain = 16, noverlap = 1, nxpt = 8, nypt = 16. The
third row is the result of the ZD2N method with one small eigenvector of the DtN map taken into
account in each subdomain.

fact that the convergence rate of the Schwarz method depends on the physical size of
the overlap. Here, we have a two element overlap, and thus the physical size of the
overlap decreases as the mesh is refined.

In Figure 4.6, we consider the test HPL1 with various sizes of overlap, h, 2h, and
3h, solved with the ZD2N coarse space or without any coarse space (JS). For both
methods, the iteration counts are improved as the overlap is increased. This is in
agreement with the theory of the Schwarz method.

From the residual curves, we see that our method is very efficient and robust.

4.1.3. Spectral analysis of the preconditioned system. In Figures 4.7
and 4.8, we display the spectra of the CONST and HPL5 cases, respectively, for
the original system, the one-level method, and the two-level method with the D2N
coarse grid using PADEF2. The spectrum of the preconditioned matrices has three
characteristics:

• the eigenvalues are between 0 and 2;
• the spectrum is more clustered;
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Fig. 4.8. Spectra of the HPL5 case. ndomain = 16, noverlap = 1, nxpt = 8, nypt = 16. The
third row is the result of the ZD2N method with five small eigenvectors of the DtN map taken into
account in each subdomain. The number of small eigenvalues is determined by (3.5).

Table 4.3

The minimum real part of the eigenvalues. Ã is the coefficient matrix of the extended system
(2.2), and MJS is the JS preconditioner. ndomain = 16, noverlap = 1, nxpt = 8, nypt = 16. The
test cases are defined in Table 4.1.

Case CONST HPL1 HPL2 HPL3 HPL4 HPL5
Nsmeig 1 1 2 3 4 5

M−1
JS

Ã 2.67e-6 2.67e-6 2.67e-6 2.67e-6 2.67e-6 2.67e-6

PADEF2Ã 0.23 0.40 0.40 0.40 0.40 0.40

• for ZD2N the smallest eigenvalue is well separated from the origin.
Since the small eigenvalues near the origin have a negative influence on the fast con-
vergence, we check the minimum real part of eigenvalues of six cases (see Table 4.3).

4.2. General decompositions. We now solve the model problem (1.1) on the
domain Ω = (0, 1)2 discretized by a P1 finite element method. The diffusion κ is
a function of x and y. The BCs are zero-Dirichlet on the entire boundary. The
corresponding discretizations and data structures were obtained by using the software
FreeFem++ [21] in connection with a Metis partitioner [11]. In the following we will
compare the AS and RAS preconditioners with and without Nicolaides coarse space
to the new preconditioner based on the harmonic extension of the eigenvectors of the
local DtN operators.

We test the method on overlapping decompositions into rectangular N ×N do-
mains and on decompositions into N×N irregular domains obtained via Metis. These
overlapping decompositions are built by adding layers to nonoverlapping ones. The
general nonoverlapping decompositions can be generated, for example, by using the
Metis partitioner.

4.2.1. Homogeneous viscosity. In this case we have κ = 1 in the whole do-
main. As in the case of a one-way decomposition, the two preconditioning methods
based on Nicolaides coarse grid and DtN eigenvectors behave in quite a similar way
whether AS or RAS are used when the viscosity is constant in the whole domain.
Here we have chosen a 4 × 4 regular subdomain decomposition. Each subdomain has
40 nodes on each side, and the overlap equals 2 elements. As expected, using the
new algorithm, the number of eigenvectors contributed by each subdomain (which is
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Fig. 4.9. 4× 4 subdomains, uniform κ distribution, for AS (left) and RAS (right).

IsoValue
-52630.5
26316.8
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Fig. 4.10. Heterogeneous viscosity: alternating (left) and skyscraper (right) cases.

calculated automatically) is always 1. Figure 4.9 shows all three convergence curves
for both AS and RAS. This numerically asserts that in the constant coefficient case
the ZNico and ZD2N are almost identical. The small differences lie in the fact that
for ZNico the coarse space is defined analytically, whereas for ZD2N it is obtained via
a numerical procedure.

4.2.2. Highly heterogeneous viscosity. We will perform the same tests as
before on two different configurations of highly heterogeneous viscosity. We consider
the following situations:

• alternating viscosity: for y such that for [9y] ≡ 0(mod 2), κ = 106; and κ = 1
elsewhere. (See Figure 4.10(left).)

• skyscraper viscosity: for x and y such that for [9x] ≡ 0(mod 2) and [9y] ≡
0(mod 2), κ = 105 · ([9y] + 1); and κ = 1 elsewhere. (See Figure 4.10(right).)

Here the number of eigenvectors considered in the construction of the coarse space
is more important than in the homogeneous case (otherwise the global information
cannot be correctly captured), and it may vary as a function of the number of subdo-
mains. In the alternating case we used two or three modes per subdomain, whereas
for the skyscraper case we used between two and four eigenvectors per subdomain.
Note that for each subdomain the total number of eigenvalues is equal to the number
of nodes on the interface. In these cases, typical values are 2, 3, or 4. Table 4.4
shows that using the new method highly improves convergence whether a uniform or
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Table 4.4

Convergence results for the skyscraper and alternating test cases.

AS AS+Nico AS+D2N RAS RAS+Nico RAS+D2N
Alternating 65 76 29 51 57 16
Metis alt. 101 90 37 83 67 23
Skyscraper 344 360 18 185 183 10
Metis sky. 375 968 28 164 158 19

Fig. 4.11. 4 × 4 subdomains uniform (left) and Metis (right). This shows both the subdomain
boundaries and the jumps in κ for the “hard” test case.
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Fig. 4.12. 4×4 subdomains, uniform (left) and Metis (right)—RAS convergence for the “hard”
test case.

Metis partition is used in this highly heterogeneous coefficient case. The Nicolaides
preconditioner gives results comparable to those of the one-level method.

4.2.3. A hard test case with inclusions and channels. In order to compare
our method to existing codes we solve a test case with known difficulties: the diffusion
coefficient κ takes values between 1 and approximately 1.5×106, and the distribution
contains both inclusions and channels. The total number of nodes will always be
256 on each side of Ω. The decomposition will change, however: we will successively
consider a 2 × 2 decomposition, a 4 × 4 decomposition, and an 8× 8 decomposition.
noverlaps will always be equal to 2. As an illustration, we have chosen to present the
4× 4 case extensively both with and without using the Metis partitioner.

Figure 4.11 shows together the decomposition into subdomains and the jumps in
κ; Figure 4.12 shows the convergence curves for the three methods using RAS. We
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Table 4.5

Convergence results for the hard test case.

AS AS+Nico AS+D2N RAS RAS+Nico RAS+D2N
2× 2 103 110 22 70 70 14

2× 2 with Metis 76 76 22 57 57 18
4× 4 603 722 26 169 165 15

4× 4 with Metis 483 425 36 148 142 23
8× 8 461 141 34 205 95 21

8× 8 with Metis 600 542 31 240 196 19

IsoValue
-31754.4
20877.2
55964.9
91052.6
126140
161228
196316
231404
266491
301579
336667
371754
406842
441930
477018
512105
547193
582281
617368
705088
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Fig. 4.13. Metis 4 × 4 subdomains—κ for the “continuous” test case (left) and convergence
history (right).

Table 4.6

Condition numbers for the continuous test case, 8× 8 decomposition with Metis.

Condition number Smallest eigenvalue Largest eigenvalue
AS 4.566043e+03 8.760321e-04 4.000000e+00

AS + Nicolaides 1.127232e+02 3.547273e-02 3.998598e+00
AS + D2N 1.469540e+01 2.717523e-01 3.993508e+00

used between one and four eigenvectors per subdomain because the heterogeneities
in κ impose that more global information on the solution be exchanged to avoid the
plateau phenomenon. The convergence curves show that this strategy is a success;
results are summarized in Table 4.5.

4.2.4. Continuous variations of the coefficient. This time we take an ana-
lytical function for κ which is chosen as

κ(x, y) = κM/3 sin(ω π (x+ y) + 0.1).

In our case κM = 106 and ω = 4. We chose a two node overlap and a total of 160
nodes per side of the global domain. We study the 4 × 4 and 8 × 8 decompositions
both with and without Metis. As an example, Figure 4.13 shows information for the
4 × 4 decomposition using Metis. Table 4.6 shows information on the approximate
condition numbers of the preconditioned operators in the Metis 8× 8 case. This was
achieved using the Ritz values during the CG iteration procedure when AS is used.
As expected for D2N, the smallest eigenvalue is larger than in the other cases, which
leads to a better condition number for the operator. Finally, Table 4.7 shows the
number of iterations needed to reach convergence for all three methods in all four
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Table 4.7

Convergence for the continuous test case.

AS AS+Nico AS+D2N RAS RAS+Nico RAS+D2N
4× 4 57 46 32 48 35 23

4× 4 with Metis 64 48 30 53 41 24
8× 8 461 141 34 205 95 21

8× 8 with Metis 600 542 31 240 196 19

IsoValue
-4.86701
-3.74453
-2.9962
-2.24787
-1.49955
-0.751221
-0.00289558
0.74543
1.49376
2.24208
2.99041
3.73873
4.48706
5.23539
5.98371
6.73204
7.48036
8.22869
8.97702
10.8478
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Fig. 4.14. log(κ) for the random test case (left) and convergence history (right) for AS with an
overlap of 2.

Table 4.8

Condition numbers for the random test case and overlap = 2.

Condition number Smallest eigenvalue Largest eigenvalue
AS 5.765809e+02 6.937447e-03 4.000000e+00

AS + Nicolaides 1.665329e+02 2.401928e-02 4.000000e+00
AS + D2N 1.635163e+01 2.445822e-01 3.999317e+00

cases. Again D2N performs significantly better.
In this section we propose a test with random coefficient. We use a log-normal

distribution for the parameter κ. This distribution is calculated using the Gaussian
random field generator available at [12]. We choose the exponential covariance family

with parameters θ2 = 1 and θ1 = e−
1
λ with λ = 4∆x in order for the correlation

r(l) between the values at two points separated by a distance l to be r(l) = e−
l

λ .
This gives us a normal distribution with mean value 0 of the random variable X at
each grid point. We then define X ′ = σX + µ in order to have a µ mean value and
a σ standard deviation. In our example, µ = 3 and σ = 2 (see Figure 4.14(left)).
Finally, we calculate κ = 10X

′

, giving us a log-normal random field with mean value
µκ = µln(10) and standard deviation σκ = σln(10).

4.2.5. Random κ distribution. The parameters of the test case are the fol-
lowing: 4 × 4 subdomains, 20 nodes per subdomain edge, using a Metis partition.
For these values λ = 4 ∗ 1

4×20 = 0.05. The size of the overlap will be successively 1,
2, and 3, and we will compare the RAS and AS methods. The size of the overlap
does not have a significant influence on the comparison between methods, as shown
in Table 4.9. In order to improve the condition number (Table 4.8) as many as 9 out
of 99 eigenvectors are used to build the coarse space, with success.
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Table 4.9

Convergence for the random test case (4× 4 decomposition with Metis).

AS AS+Nico AS+D2N RAS RAS+Nico RAS+D2N
Overlap = 1 89 82 30 79 78 22
Overlap = 2 59 57 27 50 52 33
Overlap = 3 45 46 22 36 40 24

5. Conclusions. We have considered the extended (2.2) and the original (2.1)
linear systems arising from the domain decomposition method with overlap. We
applied the two-level preconditioner using the Schwarz algorithm and the coarse-grid
correction. The coarse-grid space is based on the low-frequency modes of the local
DtN map. Its size automatically adapts to the difficulty of the problem. With this
coarse space, we can obtain fast convergence for problems with large discontinuities
(even along the interface) and arbitrary domain decompositions. The method has the
potential to be extended to other systems of equations like elasticity, but it requires
further investigation.
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