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ABSTRACT In this paper, we introduce a modified Generalized Iterative Closest Point (GICP) algorithm

by presenting a coarse-to-fine strategy. Our contributions can be summarized as: Firstly, we use adaptively

a plane-to-plane probabilistic matching model by gradually reducing the neighborhood range for given

two point sets. It is an inner coarse-to-fine iteration process. Secondly, we use an outer coarse-to-fine

strategy to bridge the point-to-point and plane-to-plane registration for refining the matching. Thirdly, we use

the trimmed method to gradually eliminate the effects of incorrect correspondences, which improves the

robustness of the methods especially for the low overlap cases. Moreover, we also extend our method to

the scale registration case. Finally, we conduct extensive experiments to demonstrate that our method is

more reliable and robust in various situations, including missing points, noise and different scale factors.

Experimental results show that our approach outperforms several state-of-the-art registration methods.

INDEX TERMS Registration, modified GICP, trimmed method.

I. INTRODUCTION

In recent years, with the rapid development of artificial intel-

ligence and autonomous driving, the point set registration is

becoming more and more popular. The point set registration

problem aims to find the correspondence and transformation

between two point sets, and transform one point set to its

counterpart through accurate mapping [1]–[5].

Iterative Closest Point (ICP) [6], [7] is a classical point

set registration algorithm via alternate iteration to search

the correspondence and update the transformation. ICP algo-

rithms of point-to-point and point-to-plane versions are both

widely used for their simplicity and effectiveness. In prac-

tical applications, however, ICP still has many limitations.

The prominent problem is the uncertain correspondence and

the failure often induced by sampling, occlusion, outliers,

missing or noisy data.

To overcome this shortcoming, many methods have been

developed. Zhang proposed an outlier rejection strategy for

the correspondence via the distance threshold [8]. It can tick

out some unmatched point pairs and outside overlap regions

induced by obstructing, missing and outliers. Meanwhile, it is

hard to solve the uncertain corresponding problem caused

by discretized sampling via the point-to-point based method.

The associate editor coordinating the review of this manuscript and

approving it for publication was Guitao Cao .

So some point-to-plane and plane-to-plane based methods

were introduced [1], [7], [9]. Among these, Generalized-ICP

(GICP) [1] proposed a framework by minimizing the plane-

to-plane distance. In addition, the point-to-point based and

point-to-plane ICP algorithm can also be viewed as a special

case of the GICP framework. Intuitively, they assume that the

data are locally planar; thus the searching regions to the clos-

est correspondences are wider than that of the standard point-

to-point ICP. So, plane-to-plane ICP obviously improves the

robustness against measurement noise.

Then, many modified plane-to-plane ICP methods have

been widely used for point cloud data alignment. Visual fea-

tures and descriptors are introduced into the plane-to-plane

error metric [10], [11]. Han et al. proposed a hierarchical

searching scheme for multi-resolution data to improve the

robustness with respect to the local minimum [12], [13].

However, GICP took the trade-off between the accuracy

and the robustness for measurement noise. We observe that

the final plane-to-plane distance cannot reach as low as the

point-to-point ICP. Secondly, GICP is also sensitive to the ini-

tial position and thus only achieves local minimum. Thirdly,

noise, occlusion andmissing points will often make GICP fail

to align.

Compared with GICP [1], the principal component anal-

ysis (PCA) pays more attention to global distribution. PCA

uses the Singular Value Decomposition (SVD) method [14]
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FIGURE 1. Flowchart of the proposed coarse-to-fine framework. This is
an inner and outer combined coarse-to-fine algorithm to balance the
tradeoff between the accuracy and the robustness to noise.

to obtain several principal axes of two point sets, then aligns

the centers and their principal axes [15]. This process can give

a better initial rigid transformation, even scalemapping. It can

be viewed as the roughest registration strategy.

To solve the problem of the local minimum caused by

missing and noise degeneration, Trimmed ICP (TrICP) [16]

was proposed, which ticks out outliers and then conducts ICP

byminimizing the Trimmed Squared Distance (TSD). On this

base, improved TrICP algorithms appeared by introducing

an objective function to estimate the overlap rate [17], [18].

Then, Peng et al. [19], Dong et al. [20] extended this trimmed

strategy to the nonrigid transformation. Du et al. [21], [22]

proposed an ICP algorithm based on the probability or cor-

rentropy for precise registration with outliers and noise.

Empirically, these methods can significantly improve the

performance in a variety of noise degenerations. However,

these methods only concern the point-to-point registration

problem.

In this paper, we use a coarse-to-fine algorithm combining

the inner and outer method to balance the trade-off between

the accuracy and the robustness to noise. The inner coarse-

to-fine GICP algorithm starts with a wide range of plane-

to-plane matching, and the range decreases gradually during

each iteration, which is less sensitive to the initial posi-

tion and more robust to measurement noise, while the outer

coarse-to-fine strategy bridges the point-to-point and plane-

to-plane registration for refining the matching, which can

further improve the accuracy. Moreover, we also propose an

adaptive pruning to reject incorrect correspondence in this

process, which can avoid the local minimum at the low over-

lap case caused by missing points and outliers. Finally, we

also consider extending the GICP from the rigid to the scale

transformation. The basic framework is illustrated in Fig. 1.

This paper is organized as follows. In Section II we intro-

duce the related work, which includes GICP algorithm and

the trimmed strategy. Then, we describe ourmethodology and

algorithm in Section III. In Section IV, we introduce the scale

stretch version of our method. Experiments and analysis are

shown in Section V. Section VI concludes the paper.

II. RELATED WORKS

Given two point sets, the source set X = {xi|i = 1, . . . ,m}

and the target set Y = {yj|j = 1, . . . , l}, our aim is to find the

best transformation T matching X to Y .

A. GICP ALGORITHM

The GICP algorithm proposed a plane-to-plane registration

method based on the Mahalanobis distance, i.e.,

T ∗ = argmin
T

M∑

i=1

d⊤
i Mid i (1)

where

d i = T · xi − yc(i)

Mi = (CY
n,c(i) + RCX

n,iR
⊤)−1.

Here d i is the corresponding Euclidean distance vector

between T ·xi and yc(i), c(i) represents the index of the nearest

point in Y corresponding to xi, C
X
n,i and C

Y
n,c(i) are covariance

matrices calculated by n closest neighborhood points around

xi ∈ X and n closest neighborhood points around yc(i) ∈ Y ,

and R is the rotation.

To model the plane structure, [1] modified the covariance

matrix as:

CX
n,i = Uxi



1 0 0

0 1 0

0 0 ǫ


U⊤

xi
(2)

CY
n,c(i) = Uyc(i)



1 0 0

0 1 0

0 0 ǫ


U⊤

yc(i)
, (3)

where Uxi and Uyc(i) are obtained by the SVD of the orig-

inal covariance matrix. Here we assume that the singular

values are in descending order, the smallest singular value is

replaced by a small constant ǫ, and the remaining two singular

values are replaced by 1. When CX
n,i = 0 and CY

n,c(i) = I , it is

equivalent to the standard ICP.

B. TRIMMED STRATEGY

The trimmed strategy updates adaptively the overlap rate r

to trim out unmatched points by optimizing the following

objective function [17]–[20]:

r∗ = argmin
r

e(r)

eλ · m · rλ
,

where e(r) =
∑r×m

i=1 d2i is the Trimmed square dis-

tance (TSD), and λ is a parameter that decreases with

iterations.

III. THE PROPOSED COARSE-TO-FINE ITERATIVE

MATCHING ALGORITHM

PCA can roughly match point clouds and accelerate the con-

vergence rate, but it may also result in worse initial positions.
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FIGURE 2. PCA result. (a) The original PCA result, and (b) The result after
reversing axis.

Compared with ICP, GICP considers a plane-to-plane regis-

tration model that covers more local information and is less

sensitive to the noise. But the proper neighborhood range

is hard to determine. Furthermore, we need to trim out the

incorrect correspondences for the low overlap data or nois-

ing data. By synthesizing the advantages of these methods,

we propose a coarse to fine iterative closest point algorithm

to deal with these problems. The details of our algorithm are

given as follows.

Here we list some notations used in our algorithm. Let k−1

be the last iteration, Tk the current transformation consisting

of a rotation matrix, a translation vector {Rk , tk}, and nk the

updated neighborhood range for the k-th iteration.

A. PREPROCESSING

In this part, we aim to obtain an initial transformation and set

some initial parameters. In our algorithm, PCA is used to get

the initial transformation T0 and align two point sets roughly.

However, it may cause the mirror symmetry or distribution

center difference. In order to avoid the mirror symmetry

problem as displayed in Fig. 2(a), we use axis reversal to

detect and process as displayed in Fig. 2(b), where the target

points are in blue and the source points are in red.

B. ESTIMATING CORRESPONDENCES

Having the transformation Tk−1 fixed, for each point xi ∈ X ,

find its correspondence point yc(i) ∈ Y :

c(i) = arg min
j∈{1,2,...,l}

‖Tk−1 · xi − yj‖
2. (4)

C. CALCULATING THE OVERLAP RATE

Having the correspondences {(xi, yc(i))}
m
i=1 fixed, compute

the squared distances {d2k,i}
m
i=1

d2k,i = (Tk−1 · xi − yc(i))
⊤(Tk−1 · xi − yc(i)) (5)

and sort them in the ascending order.

Then we calculate the overlap rate according as:

rk = argmin
r

r×m∑

i=1

d2k,i

eλk · m · rλk
, (6)

where λk = λk−1 − ξ is a parameter of the trimmed strategy,

and the positive constants λ1 and ξ are defined in advance.

D. UPDATING TRANSFORMATION

In this part, we update the transformation by minimizing

the corresponding plane-to-plane distance. We use a large

neighborhood range n1 = nmax as the initial range parameter.

In each iteration, the plane scale changes with the number of

nearest neighbors.

Here we use D2
nk ,i

to represent the plane-to-plane squared

distance:

D2
nk ,i

= (T · xi − yc(i))
⊤Mk,i(T · xi − yc(i)), (7)

where

Mk,i = (CY
nk ,c(i)

+ RCX
nk ,i

R⊤)−1, (8)

nk = nk−1 − δ is the updated neighborhood range, and the

constant δ is the parameter defined in advance. CX
nk ,i

is the

modified covariance matrix corresponding to the current nk
nearest points of point xi ∈ X , CY

nk ,c(i)
is the modified covari-

ance matrix corresponding to the current nk nearest points of

point yc(i) ∈ Y . The covariance matrices are computed by (2)

and (3).

We use d2i to represent the point-to-point squared distance:

d2i = (T · xi − yc(i))
⊤(T · xi − yc(i)) (9)

Having the correspondences and overlap rate fixed, we

can get the Trimmed Mean Square Error (TMSE) for

plane-to-plane matching (10)

f (T ) =
1

mr

mr∑

i=1

D2
nk ,i

, (10)

or point-to-point matching (11):

f (T ) =
1

mr

mr∑

i=1

d2i , (11)

where mr is the number of remaining points after trimming,

mr = rk × m.

For the optimization of transformation, we solve a

6-dimensional vector including rotation angles and transla-

tions. If nk ≥ nmin, we use the TMSE function (10) and solve

the nonlinear optimization problem by the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm [23]–[26], else we solve

the TMSE function (11) by SVD [14], since it degenerates

into a point-to-point situation when the scale is sufficiently

small. Then we update the transformation T ∗
k :

T ∗
k = argmin

T
f (T ). (12)

E. SUMMARY OF ALGORITHM

To summarize, our algorithm is listed as Algorithm 1.

Note that at the k-th iteration, before updating transforma-

tion, the error is

εk :=
1

mr

mr∑

i=1

‖Tk−1 · xi − yc(i)‖
2,
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Algorithm 1 An Adaptive Generalized-ICP Algorithm

Require: Source set X , target set Y and their multi-scale

covariance matrices;

parameters: Niter, nmax, nmin, δ, λmax, ξ ;

Ensure: Final transformation T ∗;

1: Initial n1 = nmax, λ1 = λmax;

2: Obtain initial transformation T0 by PCA.

3: for iteration k = 1 : Niter do

4: Estimate correspondences {(xi, yc(i))}
m
i=1 by (4);

5: Compute squared distance {d2k,i}
m
i=1 by (5);

6: Fix the correspondence, calculate the overlap rate rk
by (6);

7: Fix the correspondence and overlap rate, update trans-

formation T ∗
k using D2

nk ,i
or d2i ;

8: if nk ≥ nmin then

9: optimize the TMSE function (10) via BFGS algo-

rithm;

10: else

11: solve the TMSE function (11) by SVD;

12: end if

13: if the stopping condition is satisfied then

14: break;

15: else

16: nk+1 = nk − δ;

17: λk+1 = λk − ξ ;

18: continue;

19: end if

20: end for

where mr = m × r . Then, after updating transformation,

the new error becomes

Ek :=
1

mr

mr∑

i=1

‖Tk · xi − yc(i)‖
2.

In the algorithm, when any of the following conditions are

satisfied, the iteration stops.

1) The maximum iteration number Niter has reached;

2) The mean error Ek is sufficiently small;

3) |εk − Ek | is sufficiently small.

IV. ISOTROPIC SCALE REGISTRATION

In practice, the scale factor is ubiquitous in registration. For

example, scanning data from different perspectives and dis-

tances may have different scales. In order to match point sets

better, besides the rotation and translation, we need to solve a

scale parameter. Inspired by [15], [27], [28], to deal with the

scale registration, we extend our algorithm to the isotropic

scale case.

For the isotropic scale registration problem, the plane-

to-plane distance function can be written as:

f (s,R, t) =
1

mr

mr∑

i

(sRxi + t − yc(i))
⊤M (sRxi + t − yc(i)),

(13)

FIGURE 3. Point cloud data Turbine Blade, Dragon and Happy Buddha.

where s is the isotropic scale factor and M can be computed

by (8). Similarly, the point-to-point distance function can be

written as:

f (s,R, t) =
1

mr

mr∑

i

‖sRxi + t − yc(i)‖
2. (14)

When solving this optimization problem, we can add the

partial derivative of the scale factor accordingly. The solution

to other variables is similar to that mentioned above.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In order to verify the performance of our algorithm, we com-

pare it with other algorithms, i.e., ICP, TrICP and GICP.

In addition, the results are also compared with our method

using PCA and not using PCA, which are called Adaptive

GICP (AGICP) and Modified GICP (MGICP), respectively.

A. DATASETS AND EVALUATION

We use the data Turbine Blade, Dragon and Happy Buddha

(Fig. 3) from the Large Geometric Models Archive.1

Firstly, the original data are regarded as the source set X ,

and the target set Y is generated with various transformations,

such as rotations from 10 degrees to 40 degrees. Then we

add some outliers to the source set. After that, we add some

random noise to the source set to generate data in noise

condition, or drop some points from the target set to generate

data in the missing data condition.

Here we suppose the estimated transformation is T̃ , and

the set Xtrans = T̃ · X is obtained by transforming the

original source set X . To evaluate our method, we calculate

the Root Mean Squared Distance (RMSD) between Xtrans and

the original target set Y .

B. POINT CLOUD REGISTRATION WITHOUT SCALE FACTOR

We perform experiments for Turbine Blade, Dragon and

Happy Buddha in two cases: the noise case and the missing

data case. In our experiments, we rotate the source data from

10 degrees to 40 degrees. For noise data, we add noise to

50% source points, and add 5% outliers. For missing data,

we generate data by dropping 10% to 40% points from the

target set and add 5% outliers.

Some visual results are shown in Fig. 4 to Fig. 10,

which indicates the registration results for Turbine Blade,

Dragon and Happy Buddha in the noise case and in the data

1https://www.cc.gatech.edu/projects/large_

models/

VOLUME 8, 2020 40695

https://www.cc.gatech.edu/projects/large_models/
https://www.cc.gatech.edu/projects/large_models/


X. Wang et al.: Coarse-to-Fine Generalized-ICP Algorithm With Trimmed Strategy

FIGURE 4. Registration results of Dragon data with noise and outliers. (a) 3D view of two point sets before registration; (b) registration result of
GICP; (c) registration result of TrICP; (d) registration result of MGICP; (e) registration result of AGICP.

FIGURE 5. (a), (b), (c) and (d) are the enlarged figures of (b), (c), (d) and (e) in Fig. 4.

FIGURE 6. Registration results of Happy Buddha data with noise and outliers. (a) 3D view of two point sets before registration; (b) registration
result of GICP; (c) registration result of TrICP; (d) registration result of MGICP; (e) registration result of AGICP.

FIGURE 7. (a), (b), (c) and (d) are the enlarged figures of (b), (c), (d) and (e) in Fig. 6.

FIGURE 8. Registration results of Turbine Blade data with data missing and outliers. (a) 3D view of two point sets before registration;
(b) registration result of GICP; (c) registration result of TrICP; (d) registration result of MGICP; (e) registration result of AGICP.

missing case. In the figures, the source sets are shown in red

points and the target sets in blue circles. (a) is the 3D view of

point sets before registration. (b), (c), (d) and (e) are the 3D

views of four algorithm’s results.

40696 VOLUME 8, 2020
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FIGURE 9. (a), (b), (c) and (d) are the enlarged figures of (b), (c), (d) and (e) in Fig. 8.

FIGURE 10. Registration results of Dragon data with data missing and outliers. (a) 3D view of two point sets before registration; (b) registration
result of GICP; (c) registration result of TrICP; (d) registration result of MGICP; (e) registration result of AGICP.

FIGURE 11. (a), (b), (c) and (d) are the enlarged figures of (b), (c), (d) and (e) in Fig. 10.

TABLE 1. The result of RMSD error and iteration numbers for point cloud without scale factor.

Figs. 4 and 6 illustrate the registration results for Dragon

and Happy Buddha in the noise case. For data in Figs. 4 and 6,

we add noise to 40% source points, and add 5% outliers.

All four algorithms perform well in the noise condition.

However, when we enlarge the area marked by the black

circle (Figs. 5 and 7), our methods are better than other three

algorithms.

Figs. 8 and 10 illustrate the registration results for Turbine

Blade and Dragon in the data missing case. For data in Fig. 8,

we drop 30% points from the target set and add 5% outliers to

source points. For data in Fig. 10, we drop 40% points from

the target set and add 5% outliers to source points. Due to

the low overlap rate, Turbine Blade data, GICP and TrICP all

fail in matching. Contrary to these algorithms, our approach

performs very well, which can be viewed in the enlarged

figures (Figs. 9 and 11). Fig. 11 shows that our method with

PCA is better than that of without PCA.

Statistical results are shown in Table 1 and Figs. 12 and 13.

As shown in the table, our method almost gets the smallest

RMSD errors of all the datasets no matter in the noise case

or in the missing data case, which indicates that our algo-

rithm performs consistently better than ICP, GICP, and TrICP.

VOLUME 8, 2020 40697
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FIGURE 12. Boxplot of RMSD error in various noise cases.

FIGURE 13. Boxplot of RMSD error in various missing data cases.

Table 1 shows that the results of our method with or without

PCA nearly have no difference in the noise case, but the

result with PCA will be better in the missing data case. The

average number of iterations with PCA is about 16, and the

average number of iterations is about 21 without PCA, which

is lower than ICP, GICP and TrICP. It illustrates that our

method converges faster.

In Figs. 12 and 13, we use boxplots to illustrate the RMSD

error for all data in Table 1. The boxplot can be interpreted

as: the x−axis represents four algorithms; y−axis represents

their respective errors; on each box, the central red mark

indicates the median, and the bottom and top edges of the

box indicate the 25th and 75th percentiles, respectively;

the whiskers extend to the most extreme data points not

considered outliers, and the outliers are plotted individually

using the red ‘+’ symbol.

Fig. 12(a) to Fig. 12(c) are the results for data in various

noise situations. When the noise is small, due to the outliers,

ICP gets a bad result, GICP and TrICP get results with some

errors, and our results with or without PCA get a small RMSD

error. With the increment of noise, the error of ICP becomes

higher, but our results are still small. It indicates that our

method is robust to noise.

Figs. 13(a) and 13(b) are the results for data in various

overlap situations. When the overlap rate is 80%, the errors

of TrICP and our method are all small, compared with the

higher error in ICP andmore abnormal results in GICP. As the

overlap rate decreases, the abnormal results of ICP, GICP and

TrICP increase, while our method obtains more stable results,

which illustrates that our method is robust to missing data.

The boxplot figures reveal that our methods, nomatter with

or without PCA, nearly get the similar results in the noise

case; but in the missing data case, AGICP gets higher error

results.

We also compare the convergence rates of these algo-

rithms. We measure the convergence by the Root-Mean-TSD

(RMTSD) between Y and Xtrans = Tk · X in every iteration.

The RMTSD error is defined as
√√√√ 1

mr

mr∑

i

‖Tk · xi − yc(i)‖
2.

Figs. 14 and 15 display the RMTSD error and the overlap

rates of data illustrated in Figs. 4, 6, 8 and 10. In Fig. 14,

GICP converges fast, but easily falls into local minima, while

ICP and TrICP converges slowly. Our method accelerates the

convergence procedure by PCA, uses the multi-scale plane

matching in the early stage to avoid falling into the local

minima, and refines the results by point-to-point matching

in the later stage. Figs. 15, (a), (b), (d) show that TrICP and

40698 VOLUME 8, 2020
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FIGURE 14. RMTSD error for every iteration of ICP, GICP, TrICP, MGICP and AGICP, (a) is Dragon Data, (b) is Happy Buddha data with noise in Figs. 4
and 6. (c) is Turbine Blade data, and (d) is Dragon Data with data missing in Figs. 8 and 10.

FIGURE 15. The estimation of the overlap rate for every iteration of TrICP, MGICP and AGICP for experiments in Fig. 14(a)-(d) corresponding to the
same data set. Their corresponding groundtruth of overlap rate are about 0.57, 0.57, 0.66 and 0.57.

FIGURE 16. Registration results of Dragon data with missing data. (a) 3D view of two point sets before registration;
(b) registration result of SICP; (c) registration result of GSICP; (d) registration result of TrSICP; (e) registration result
of MGICP; (f) registration result of AGICP.

our method with or without PCA all get good overlap rate

results. Fig. 15(c) shows that there is a little deviation in the

overlap rate of TrICP; as seen from Fig. 14, the RMTSD error

of TrICP achieves significantly small at last, but according

to the registration result, the final matching result is biased,

because TrICP gets a wrong overlap rate and retains the

incorrect matching pairs only according to the distance from

point to point. Our method can achieve a better result by plane

matching, which reduces the risk of mismatching.

C. POINT CLOUD REGISTRATION WITH ISOTROPIC SCALE

FACTOR

In this part, we conduct experiments for data at various scales,

from 0.9 to 0.6. At the same time, we also generate datasets

with noise and missing data.

We add the isotropic scale factor into the original ICP,

TrICP and GICP to generate SICP, TrSICP and GSICP, and

solve the registration problems by using SVDmethod for ICP

and TrICP, using BFGS method for GICP.

VOLUME 8, 2020 40699
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FIGURE 17. Registration results of Turbine Blade data with noise and outliers. (a) 3D view of two point sets
before registration; (b) registration result of SICP; (c) registration result of GSICP; (d) registration result of
TrSICP; (e) registration result of MGICP; (f) registration result of AGICP.

FIGURE 18. Local area enlarged figure for Figs. 16(f) and 17(f).

Some visual results are shown in Figs. 16 and 17, which

indicates the registration results for Turbine Blade and

Dragon in noise case or in data missing case. In the figures,

the source sets are shown in red points and the target sets

in blue circles. (a) is the 3D view of point sets before reg-

istration. (b), (c), (d), (e) and (f) are the 3D views of registra-

tion results of SICP, GSICP, TrSICP [19], [20], MGICP and

AGICP.

Figs. 16 and 17 illustrate the registration results for Dragon

in the scale registration with missing data and Turbine Blade

in scale registration with noise. For data in Fig. 16, we drop

30% points from the target set, and expand the source data so

that target data is 0.9 times the source data. For data in Fig. 17,

we add noise to 40% source points, add 5% outliers and

expand source data so that target data is 0.6 times source data.

SICP and TrSICP all trap in the localminima. On the contrary,

our method matches the two point sets with a correct scale,

and performs very good, which can be further observed by

enlarging the area marked by the black circle of our results in

Figs. 18(a) and 18(b).

Statistical results are shown in Table 2 and Fig. 19. In the

table, from the RMSD error result, ICP, GICP and TrICP

cannot deal with scale registration well without considering

the scale factor. Our method almost obtains the best result,

no matter with or without PCA method. SICP and TrSICP

need to iterate many steps to achieve the convergence, and the

results are not satisfactory. On the contrary, our results show

that the convergence can be achieved in a small number of

iterations, andwith the PCAmethod, we obtainmore accurate

results.
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TABLE 2. The result of RMSD error and iteration numbers for point cloud with scale factor.

FIGURE 19. Boxplot of RMSD error in various scale cases. (a) and (b) are the results for data with
missing data, (c) and (d) are the results for data with noise.

Fig. 19(a) to Fig. 19(d) are the results for data in various

scale situations with noise or missing data. Original ICP,

TrICP and GICP obviously fail to match because they do

not take the scale into account. SICP and TrSICP may fail

in the scale registration, and get higher error with the scale

decreasing. GSICP obtains the results with a low average

error but not robust, and our method gets stable results at

different scale factors no matter with PCA method or not.

In Figs. 20 and 21 we display the RMTSD error and the

overlap rate. For the scale registration, SICP and TrSICP get

high RMTSD errors, TrSICP also has a wrong overlap rate,

which almost takes all points into account. GSICP gets a

very small RMTSD error as the scale parameter decreases,

but it is a degenerate case. Because GSICP and our method

initially calculate the plane-to-plane distance, and ourmethod

calculates the point-to-point distance in the later stage, which

causes some fluctuations in our RMTSD results. After PCA

preprocessing, our method has greatly improved the calcula-

tion of scale and the overlap rate, so the correct convergence

results can be obtained quickly.

Our method gets an initial position after PCA, uses

multi-scaled plane-to-plane matching and trimmedmethod to

reject the influence of incorrect correspondences, and refines

the result by point-to-point matching finally. For the exper-

imental data, no matter what random noise, isotropic scale

factor, or the overlap rate in various rotation, our algorithm
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FIGURE 20. RMTSD error for every iteration of SICP, GSICP, TrSICP, MGICP and AGICP, (a) is Dragon data,
(b) is Turbine Blade in Fig. 16 and Fig. 17.

FIGURE 21. overlap rate for every iteration of TrSICP, MGICP and AGICP, (a) is Dragon data, (b) is Turbine
Blade in Figs. 16 and 17. Their corresponding groundtruth of overlap rate are about 0.7 and 0.57.

TABLE 3. The result of RMSD error and runtime comparison for Figs.4, 6 and 8.

can achieve satisfactory results. Experimental results demon-

strate that our method is robust to noise and missing data.

In addition, we add the computation time comparison

results in Table 3. The experimental results show that the

run time of AGICP is much less than that of point-to-point

methods, and comparable to GICP.

VI. CONCLUSION

In this paper, we have proposed a coarse to fine iterative

closest point algorithm by introducing a modified multi-scale

GICP algorithm to refine the matching accuracy, especially

for low overlap cases. We have adopted a multi-scale plane-

to-plane matching by using a gradually reduced neighbor-

hoods range, and trimmed method to reject the influence

of incorrect correspondences. The extensive experiments

demonstrate that our algorithm is more accurate and robust

in a variety of situations, including missing points and noise.
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