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Abstract—With the availability of live-scan palmprint technology, high resolution palmprint recognition has started to receive

significant attention in forensics and law enforcement. In forensic applications, latent palmprints provide critical evidence as it is

estimated that about 30 percent of the latents recovered at crime scenes are those of palms. Most of the available high-resolution

palmprint matching algorithms essentially follow the minutiae-based fingerprint matching strategy. Considering the large number of

minutiae (about 1,000 minutiae in a full palmprint compared to about 100 minutiae in a rolled fingerprint) and large area of foreground

region in full palmprints, novel strategies need to be developed for efficient and robust latent palmprint matching. In this paper, a coarse

to fine matching strategy based on minutiae clustering and minutiae match propagation is designed specifically for palmprint matching.

To deal with the large number of minutiae, a local feature-based minutiae clustering algorithm is designed to cluster minutiae into

several groups such that minutiae belonging to the same group have similar local characteristics. The coarse matching is then

performed within each cluster to establish initial minutiae correspondences between two palmprints. Starting with each initial

correspondence, a minutiae match propagation algorithm searches for mated minutiae in the full palmprint. The proposed palmprint

matching algorithm has been evaluated on a latent-to-full palmprint database consisting of 446 latents and 12,489 background full

prints. The matching results show a rank-1 identification accuracy of 79.4 percent, which is significantly higher than the 60.8 percent

identification accuracy of a state-of-the-art latent palmprint matching algorithm on the same latent database. The average computation

time of our algorithm for a single latent-to-full match is about 141 ms for genuine match and 50 ms for impostor match, on a Windows

XP desktop system with 2.2-GHz CPU and 1.00-GB RAM. The computation time of our algorithm is an order of magnitude faster than a

previously published state-of-the-art-algorithm.

Index Terms—Palmprint, latent palmprint matching, minutiae clustering, minutia descriptor, match propagation

Ç

1 INTRODUCTION

LATENT palmprints contain critical evidential value in
forensic applications because it is estimated that about

30 percent of the latents lifted at crime scenes are those
of palmprints [1]. Due to the high cost of live-scan
technology for palmprints, most of the existing automatic
palmprint matching systems only use low resolution (about
100 ppi) palmprint images (e.g., [2], [3]), and target civilian
access control applications. Research on designing auto-
mated high-resolution (at least 500 ppi) palmprint matching
systems has emerged only in recent years [4], [5], [6], [7], [8].
The features used for high-resolution palmprint matching
mainly consist of minutiae points, which have been widely
used in fingerprint matching [9], [10], [11], [12]. However,
algorithms developed for fingerprint minutiae matching are

not appropriate for matching the minutiae in palmprints,
due to the following three reasons: 1) the size of palmprint
images are much larger than that of fingerprint images,
which leads to computationally demanding feature extrac-
tion stage; 2) palmprints have a large number of creases (i.e.,
immutable creases like radial transverse creases, proximal
transverse creases and distal transverse creases, and
mutable creases [13]) that can lead to many false minutiae
(See Fig. 1); and 3) a larger nonlinear distortion exists in
palmprint images than in fingerprint images because the
skin and bone structure of palms are very flexible.

Based on the source and size of palmprint images,
palmprint matching can be divided into three categories:
1) full-to-full palmprint matching; 2) latent-to-full palm-
print matching; and 3) live-scan partial-to-full palmprint
matching. Due to extremely high level of accuracy of state-
of-the-art 10-print fingerprint matchers and lack of a large
legacy database of palmprints, full-to-full palmprint match-
ing is generally not of interest in law enforcement and
forensics. Accurate and efficient latent-to-full palmprint
matching algorithms, on the other hand, are urgently
needed in forensic applications because latent palmprints
are frequently encountered at crime scenes. Latent-to-full
palmprint matching is a challenging problem because of the
following reasons:

1. uncontrollable latent image quality;
2. small area of latent palmprints compared to full

palmprints;
3. large nonlinear image distortion; and
4. a large number of spurious (noisy) minutiae.
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Given that no public domain latent-to-full palmprint

database is currently available, several studies have

resorted to using cropped live-scan prints instead of latent

prints to simulate the forensic scenarios. However, the

cropped live-scan partial palmprint images have very

different characteristics compared to latent palmprints in

terms of image quality, distortion and background, making

it much easier to match cropped live-scan palmprints

compared to latent palmprints.

1.1 Palmprint Matching Algorithms

Table 1 summarizes some of the available high-resolution
palmprint matching algorithms as well as the proposed
algorithm. Jain and Demirkus [14] proposed a partial-to-full
palmprint matching system based on a fusion of SIFT
keypoints [15] and minutiae points. Jain and Feng [5]
developed a latent-to-full palmprint matching system. They
proposed a region growing algorithm to deal with creases
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Fig. 1. Immutable creases divide a palmprint into three regions
(interdigital, hypothenar, and thenar). Mutable creases break ridge
structures and lead to a large number of spurious minutiae (the minutiae
shown are extracted by the algorithm in [5], red squares: Unreliable
minutiae, blue circles: Reliable minutiae).

TABLE 1
A Comparison of High-Resolution Palmprint Matching Algorithms Proposed in the Literature

aIn this paper, partial palmprint images always denote the cropped live-scan palmprint images used for simulation of latent palmprint images; latent
palmprint images denote the images lifted from crime scenes.



and introduced a novel minutiae descriptor, called the
MinutiaCode, to measure the minutiae similarity. A rigid
transformation based on the top-5 most similar minutiae
pairs was used to establish the minutiae correspondences.
In [6], the authors proposed a multifeature palmprint
matching system, in which minutiae, ridge density map,
principal line map, and orientation field were fused
together. These published algorithms basically follow the
fingerprint matching strategy, and hence, they suffer from
high-computational complexity. To account for the large
number of minutiae and nonlinear image distortion, Dai
et al. [7] proposed a segment-based palmprint matching
system. However, this algorithm is essentially designed for
full-to-full palmprint matching. It requires a manual
alignment for latent-to-full palmprint matching, which is
not feasible in practice.

1.2 Motivation and Contributions of This Paper

Pairwise minutiae similarity computation between query
and template palmprint minutiae sets is a computationally
demanding step in palmprint matching. Since many
different minutiae can be characterized in terms of local
properties (e.g., local ridge flow), this property can be used
to quickly filter out many false minutiae correspondences.
“Handedness” is one of the local ridge flow properties. The
term “handedness” here is used to describe the relationship
between minutiae direction and ridge bending direction.
Let x-axis be the direction of the central minutia (tangent
vector to ridge), y-axis be perpendicular to the central
minutia direction and point toward the inner curve of local
ridge flow (curvature vector to ridge), and let z-axis point
outside the paper (normal vector to the tangent plane of
palm surface at the minutia). If this is a right-handed
Cartesian coordinate system, then we call the central
minutia a right-handed minutia, otherwise a left-handed
minutia (see Fig. 2). If ridge flow in the local region of
central minutiae is not bending in the same direction, then
the central minutia is a nonhanded minutia. Our definition
of “handedness” is different from the definition in [18]. In
[18], “handedness” is defined as a global feature of
minutiae in a fingerprint, where singular points are needed
to compute this property. This dependency on singular
points makes it difficult to apply the definition in [18] to
minutiae in palmprints, where it is not easy to identify
singular points that can be used as reference points. Fig. 2
shows two minutiae with different handedness property
defined in this paper.

For a genuine minutiae pair, its neighboring minutiae
should also match with high confidence. This heuristic
makes it possible to propagate, among all the minutiae
correspondences, from one minutiae pair to another
minutiae pair in a genuine pair of palmprints. On the other
hand, in an impostor pair of palmprints, corresponding
minutiae may appear at arbitrary locations in the palmprint
image. So, it is not possible to propagate minutiae
correspondences in an impostor pair of palmprints.

The above two observations motivated us to design and
develop a fast and accurate coarse to fine latent palmprint
matching system. Fig. 3 outlines the proposed system which
specifically deals with the challenges associated with large
number of minutiae and nonlinear image distortion in
palmprints. A minutiae clustering algorithm is first applied
to group minutiae points into Kc clusters based on local
minutia features. Then, a small number of initial minutiae
correspondences is selected within each cluster. Starting
with each initial minutiae correspondence, a minutiae
match propagation algorithm is invoked to establish global
one-to-one minutiae correspondences. The final match score
is computed based on individual match propagation
results. The contributions of this paper are as follows:

1. A minutiae clustering algorithm is proposed to
significantly reduce latent-to-full palmprintmatching
complexity by avoiding the similarity computation
between minutiae with different local characteristics,
which are deemed not to be matched.

2. A minutiae match propagation algorithm is pro-
posed to obtain the final feature correspondences
between palmprints. The propagation is able to
identify most of the true correspondences and
quickly reject impostor matchings.

3. Our algorithm has been evaluated on a large real
latent palmprint database (a total number of
446 latent images are matched to a background
database of 12,489 full palmprint images). Both the
complexity and the accuracy of the proposed
algorithm are significantly better than state-of-the-
art algorithms.

4. A simplified version of the proposed latent-to-full
palmprint matching algorithm is developed for
full-to-full palmprint matching. This proposed
algorithm achieves state-of-the-art performance in
terms of verification error rate and computation
time on a public domain full palmprint database,
THUPALMLAB [7].

The rest of the paper is organized as follows: Section 2
presents a palmprint minutiae clustering algorithm based
on minutiae descriptors by using the well known K-means
clustering algorithm. Section 3 presents a minutiae match
propagation scheme to establish minutiae correspondences
on the whole palmprint image from a set of initial minutiae
pairs. The final palmprint match score computation is
described in Section 4. Experimental results are reported in
Section 5. Finally, conclusions and directions for future
research are reported in Section 6.

2 PALMPRINT MINUTIAE CLUSTERING

Local ridge orientation and ridge period features are
used for characterizing the local features of minutiae. The
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Fig. 2. Three-dimensional Cartesian coordinate system indicating the
minutiae handedness property; x-axis: Minutiae direction (tangent
vector to ridge); y-axis: Ridge bending direction (curvature vector to
ridge); z-axis: Direction pointing out of paper (normal vector to tangent
plane of palm surface).



well-known K-means algorithm [19], [20] is used for
clustering minutiae.

2.1 Clustering Minutiae

Tico and Kuasmanen [21] proposed a minutiae local
orientation sampling structure to extract local features for
minutiae, which has been shown to be useful in fingerprint
matching [22], [23]. We adopt this sampling structure to
extract local ridge orientation and ridge period features for
minutiae in palmprint images. Given a reference minutia
m, L circles with radii ri; i ¼ 1; . . . ; L, centered at the
minutia are considered as its local neighborhood. On each
circle, there are ni; i ¼ 1; . . . ; L, sample points equally
distributed, starting from the projection location of the
reference minutia along its direction on the circle. The
feature value of orientation descriptor at each sample point
is the difference between the local ridge orientation at the
sample point and the ridge orientation at the location of
reference minutia. The feature value of ridge period
descriptor at a sample point is simply set as the ridge
period value at that point. The orientation descriptor and
ridge period descriptor of minutia m are denoted as
OriDes ¼ f. . . ; ðoi;j � omÞ; . . .g and RidDes ¼ f. . . ; wi;j; . . .g,
where i ¼ 1; . . . ; L; j ¼ 1; . . . ; ni, om is the ridge orientation
at the center minutia m, and oi;j and wi;j are local ridge
orientation and ridge period at the jth sample point on the
ith circle, respectively. In this paper, the sampling
structure consists of four circles (L ¼ 4), whose radii are
27, 45, 63, and 81 pixels, and on which 10, 16, 22, and
28 points are sampled, respectively. The total number of
sample points on the four circles is 76. The descriptor
vectors denoted as OriDes ¼ foig

76
i¼1 and RidDes ¼ fwig

76
i¼1

are invariant to palmprint translation and rotation.

For the minutiae near the boundary of a palmprint, some

of the sample points on the circles may fall outside the

foreground region. For these sample points, which we call

invalid points, the corresponding feature values cannot be

computed directly because there is no ridge orientation or

ridge period information available at their locations. To

facilitate the use of clustering algorithm for those descrip-

tors containing invalid values, we predict the values at

invalid points from their nv nearest valid (in the foreground

region of palmprint) sample points by

o ¼
1

2
tan�1

P

i2V sin 2oi
P

i2V cos 2oi

� �

; ð1Þ

w ¼
1

nv

X

i2V

wi; ð2Þ

where tan�1 is a four-quadrant arctangent function, V is the

set of valid nearest sample points with nv points in the

structure, and o and w are the predicted ridge orientation

and ridge period values, respectively. Fig. 4 shows two

example descriptors with predicted values.
The distance between two orientation descriptors cannot

be directly measured in the euclidean space because of the

periodic singularity of angle after wrapping. The distance

between two orientation descriptors, OriDes ¼ foig
76
i and

OriDes0 ¼ fo0ig
76
i , is defined as

Dis ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

76

i¼1

�

cos 2oi � cos 2o0i
� �2

þ sin 2oi � sin 2o0i
� �2�

v

u

u

t : ð3Þ
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Fig. 3. Flowchart of the proposed latent palmprint matching system. The system consists of three stages: (a) training stage: A K-means clustering
algorithm is applied to a set of training descriptors to get a set of cluster centroids; (b) registration stage: For a given template of full palmprint image,
minutiae and descriptors are extracted and clustered based on the obtained centroids; (c) matching stage: Given a query latent palmprint image,
minutiae and descriptors are first extracted and clustered as the registration stage, then a small number of initial minutiae pairs is selected within the
same cluster and fed to a match propagation procedure to get a fine match result.



Given a set of orientation descriptors belonging to the same
cluster, OriDesk ¼ fok;ig, where k ¼ 1; . . . ; S, S is the
number of descriptors that belong to the same cluster, and
i ¼ 1; . . . ; 76, the cluster centroid, OriCen ¼ fcig

76
i¼1, is

computed by

ci ¼
1

2
tan�1

PS
k¼1 sin 2ok;i

PS
k¼1 cos 2ok;i

 !

: ð4Þ

The clustering for ridge orientation descriptors is done by
using the K-means algorithm with the distance measure
defined in (3) and cluster centroids computed by (4). The
clustering for ridge period descriptors is done by using
the K-means algorithmwith the euclidean distance measure.

2.2 Centroids of Ridge Orientation Descriptors

Fig. 5 shows 16 (Kc ¼ 16) ridge orientation descriptor
centroids obtained from clustering a total of 642,749
descriptors from a set of 800 full palmprints by K-means
algorithm [19], using (3) as the distance measure and (4) for
computing the cluster centers. More discussion on the
choice of Kc (i.e., the number of clusters) is provided in
Section 5. Basically, each orientation descriptor centroid
represents a type of ridge flow pattern, such as the left
handedness, right handedness, singularity, and so on.

These centroids can be regarded as atomic patterns (or
prototype patterns) of local ridge flow surrounding a
minutia. Six basic types of local ridge flow patterns are
revealed from these cluster centroids. They are

1. left-handedness (clusters 1, 3, 7, 8, and 11),
2. right-handedness (clusters 5, 12, 14, 15, and 16),
3. radiation (clusters 9 and 13),
4. contraction (cluster 6),
5. with-core point (cluster 2), and
6. with-delta point (clusters 4 and 10).

By setting the value of Kc to a larger value, more
complex ridge flow patterns can be revealed. Given an
orientation descriptor of a minutia (i.e., minutia in latent
palmprint or full palmprint), the minutia can be associated
to the cluster whose centroid has the smallest distance to
its descriptor. Fig. 6 shows some examples of minutiae
clustering results. We can see that while the cluster
centroids are smoother than individual orientation de-
scriptors of minutiae, the individual orientation descriptors
have similar ridge flow patterns as their corresponding
cluster centroids.

2.3 Centroids of Ridge Period Descriptors

The K-means clustering algorithm [19] is applied to the
ridge period descriptors of the same minutiae set used in
training the orientation descriptor cluster centroids. Fig. 7
shows 16 (i.e., Kc ¼ 16) centroids of ridge period
descriptors, with the width of lines proportional to ridge
period at the corresponding locations of sample points.
These centroids can be roughly divided into two types.
The first type of centroids has a very small variation in
the ridge period, such as centroids 1, 2, 3, 8, 11, and 14.
Minutiae belonging to these clusters usually appear in flat
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Fig. 4. Examples of descriptors with predicted values; red: Predicted
values, blue: Valid values, green: Reference minutiae. Thicker lines
indicate larger ridge periods.

Fig. 5. Orientation descriptor centroids obtained by clustering the
descriptors from minutiae in 800 full palmprints with distance measure
defined in (3). The total number of descriptors (extracted from 800 full
palmprints) that were clustered is 642,749.

Fig. 6. Examples of minutiae clustering; the orientation descriptors in the
first column (in squares) represent the centroids of four different
clusters. Columns 2 to 5 show four examples of minutiae orientation
descriptors that belong to the corresponding clusters in the first column;
(a) a contraction type of cluster; (b) a radiation type of cluster; (c) a left-
handedness type of cluster; and (d) a right-handedness type of cluster.



regions of palmprints, where the ridge period is almost
constant. The remaining centroids have relatively larger
variations in ridge period, and the ridge period values
change smoothly from one side to the other side of the
center minutiae.

3 MINUTIAE MATCH PROPAGATION

In [24], the authors proposed a match propagation
algorithm, which produced a quasi-dense pixel matching
between two images, which was later extended in [25]. This
match-growing strategy has wide applications in, e.g.,
stereo image matching [26], image registration [27], and
image rendering [28], [29]. In this paper, we use the match
propagation strategy in an attempt to simulate how forensic
experts match two minutiae sets [13], [30]. The matching
procedure adopted by forensic examiners [13] usually starts
with an initial pair of minutiae (or a pair of singular points)
in two palmprints to be matched. If this minutiae pair is a
true correspondence, then their neighboring minutiae
should also match (usually by following the ridge line
and counting the minutiae near this ridge); by recording
these mated neighboring minutiae, additional neighboring
minutiae are matched, recursively, until no more neighbor-
ing minutiae can be matched.

The difference between the match propagation of the
proposed method and K-plet [31] is that we use a fixed
radius-based local minutiae structure descriptor, which
makes it possible to tessellate it into sectors and accelerate
the match propagation. On the other hand, K-plet is a fixed
number of minutiae-based local structure and the matching
of two K-plets is based on the string alignment algorithm.
The match propagation based on the proposed local
structure descriptor is more suitable for palmprint match-
ing because of the large number of minutiae in palmprints.

The proposed minutiae match propagation algorithm
consists of three basic steps: 1) minutiae similarity measure;

2) initial mated minutiae pairs selection; and 3) minutiae
match propagation.

3.1 Minutiae Similarity Measure

Minutiae similarity measure plays a vital role in minutiae
matching. Three types of minutiae similarities are used in
this paper. The first two are based on ridge orientation
and ridge period descriptors, which are also used for
minutiae clustering, and the third one is based on local
minutiae structure.

Given a query minutia (i.e., minutia in the latent image)
with ridge orientation descriptor OriDes ¼ foig

76
i¼1 and ridge

period descriptor RidDes ¼ fwig
76
i¼1, and a template minutia

(i.e., minutia in the full palmprint image) with ridge
orientation descriptor OriDes0 ¼ fo0ig

76
i¼1 and ridge period

descriptor RidDes0 ¼ fw0ig
76
i¼1, the similarities among orien-

tation and ridge period descriptors are computed, respec-
tively, by

So ¼
1

Nv

X

i2V

exp �
�oi

�o

� �

; ð5Þ

Sr ¼
1

Nv

X

i2V

exp �
�wi

�r

� �

; ð6Þ

where V is the set of sample points valid in both
descriptors, Nv is the number of valid sample points,
�oi ¼ minfjoi � o0ij; 180� joi � o0ijg, �wi ¼ jwi � w0ij, and �o

and �r are two predefined parameters. (In this paper, they
are set to 4 and 2, respectively). When Nv < 20, So and Sr

are both set to zero. Although the values of invalid sample
points are predicted in the minutiae clustering stage, they
are not used for the similarity computation here, because
the predicted values are not as stable as the valid ones.

The third minutiae similarity measure is based on the
local minutiae structure. To ensure a fast and accurate
matching, the local region around a minutia is tessellated
into several sectors according to the local polar coordinate
system with the location and direction of center minutia as
pole and polar axis, respectively. The tessellation here is
slightly different from [5]. For a query minutia (i.e., in a
latent palmprint), the circular region around a central
minutia is divided into R�K sectors using R concentric
circles and K radial lines as illustrated by Fig. 8. The lines
are equally spaced starting from the direction of the central
minutia. The radius of the ith circle (ordered from inner to
outer) is i� rmax

R
, where i ¼ 1; . . . ; R and rmax is the radius

of the outer most circle. In this paper, R and K are set to 4
and 8, respectively, and rmax is set to 180 pixels. For
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Fig. 7. Ridge period descriptor centroids obtained from 642,749
descriptors of 800 full palmprints. The thickness of the line is
proportional to the ridge period value.

Fig. 8. Matching of local minutiae structures. Left: Query local minutiae
structure; Right: Template local minutiae structure.



minutiae in template (i.e., full palmprint), the tessellation is
different. While the center of each sector is not changed,
each sector now has 10 degrees of overlapping angle and
20 pixels of overlapping radius with its neighboring
sectors. The overlapped tessellation for template minutiae
is to account for distortion in palmprints and displacement
of extracted minutiae.

The local minutiae structure is denoted by LmsDes ¼
fSig

Nb

i¼1, where Nb ¼ R�K is the number of sectors, Si ¼
fðrj;i; tj;i; �j;iÞg

ki
j¼1 is the set of local minutiae in the ith sector

represented by their local polar coordinates with respect to
the center minutiae, ki is the number of minutiae in the ith
sector, r and t are the radius and angle coordinate values in
the local polar coordinate system, and � is the normalized
minutia direction with respect to the center minutiae
direction. All features of local minutiae are represented
with respect to a central minutiae, so that the local
structures are invariant under translation and rotation.

Once all the sectors are aligned with respect to the
reference central minutiae, the matching of local minutiae
only needs to be performed within corresponding sectors.
That is to say, given a local minutia ðr; t; �Þ in the ith sector
of a query structure, it is only necessary to find its mated
minutia in the ith sector of a template structure so as to
speed up the matching of two local structures.

Two local minutiae, ðr; t; �Þ and ðr0; t0; �0Þ, are considered
as being mated if they satisfy the following conditions:

�t < Tht;

�r <
r

rmax

� Thr;

�� < Th�;

8

>

<

>

:

ð7Þ

where �t ¼ minfjt� t0j; 360� jt� t0jg, �r ¼ jr� r0j, �� ¼
fj�� �0j; 360� j�� �0jg, Th�, Thr, and Tht are three
predefined thresholds. In this paper, the thresholds are set
to 8, 20, and 15, respectively. If more than one local
minutiae is found in the same sector of template structure
that satisfy the above conditions, then only the nearest
minutia in terms of euclidean distance will be considered.
The similarity of two mated local structures is computed by

Sm ¼
1

M

X

M

i¼1

si �
M

Nt þNq

�
M

M þM0

�QðdqÞ �QðdtÞ; ð8Þ

where M is the number of matched local minutiae, M0 is a
predefined parameter (in this paper, M0 is set to 10), Nq and
Nt are the numbers of local minutiae in the query and
template structures, respectively, and si is the similarity of
the ith local minutiae pair and is computed by

si ¼ fat;btð�tiÞ � far;brð�riÞ � fa�;b�ð��iÞ;

with fa;b function defined as

fa;bðxÞ ¼

1; if x < a;

0; if x > b;
b� x

b� a
otherwise:

8

>

<

>

:

QðxÞ ¼ 1� faQ;bQðxÞ is a minutiae quality measure function
defined in [32], and dq and dt are the average euclidean
distances of three nearest minutiae to the reference minutia
in query and template structures, respectively.

3.2 Initial Mated Minutiae Pair Generation

The initial pairs of mated minutiae serve as seeds for
searching minutiae correspondences in the palmprints.
They are not only starting points, but also reference points
which provide initial alignment for other minutiae. The
initial pair generation process is a coarse to fine procedure.
Details of initial pair generation are summarized in
Algorithm 1. ComputeWeakSimilarity computes the min-
utiae similarity by multiplying the similarities of orienta-
tion and ridge period descriptors, i.e., So � Sr, and
ComputeStrongSimilarity computes the minutiae similar-
ity by multiplying the similarities of orientation descrip-
tors, ridge period descriptors, and local minutiae
structures, i.e., So � Sr � Sm. The computation of So and
Sr can be made very efficient by using a table look up
procedure instead of exponential float computing. On the
other hand, the local minutiae structure matching is much
slower than orientation or ridge period descriptors. Para-
meters in Algorithm 1 are defined as NI

1 ¼ minf100; jMQjg

and NI
2 ¼ minf50; NI

1g, where jMQj is the number of
minutiae in the query minutiae set MQ. After two rounds
of similarity computation and correspondence selection, the
most similar minutiae pairs can be found by sorting. It
should be noted that the initial minutiae correspondences
need not be one-to-one. We only select the most similar
minutiae pairs within the same clusters.

Algorithm 1. Initial mated minutiae pair generation.

Input: Query minutiae list MQ ¼ fGq
1; G

q
2; . . . ; G

q
Kc
g

and template minutiae list MT ¼ fGt
1; G

t
2; . . . ; G

t
Kc
g,

where Kc is the number of clusters, Gq
i and Gt

i are

the minutiae subset of cluster i in query and template

minutiae list, respectively.

Output: A list of initial mated minutiae pairs I.

I 0  fg, I  fg

for i from 1 to Kc do

for each minutia mq in G
q
i do

Simmax  0

p fg

for each minutia mt in Gt
i do

Simor  ComputeWeakSimilarityðmq;mtÞ

if Simor > Simmax then

Simmax  Simor

p ðmq;mt; SimorÞ

end if

end for

I 0  I 0 [ p

end for

end for

//The first round selection.

I 0  top NI
1 pairs in I 0 according to the degree similarity

for each pair ðmq;mt; SimorÞ in I 0 do

Simorm  ComputeStrongSimilarityðmq; mtÞ

I  I [ ðmq;mt; SimormÞ // update similarity
end for

//The second round selection.

I  top NI
2 pairs in I according to the degree of

updated similarity

return Initial mated minutiae pair list I.
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3.3 Match Propagation

Given an initial mated minutiae pair obtained in the
previous steps as seeds, the minutiae match propagation
procedure is given in Algorithm 2. The function Pushback

pushes one minutiae pair into the stack S, and the
corresponding Popup function pops a minutiae pair up
from the top of stack S. MatchStruct matches the
corresponding local structures of minutiae pair p and
returns a list of matched local minutiae pairs as described
in Section 3.1. Thsim is a predefined threshold value (Thsim

is set to 0.0015). Function GetTransPara computes the rigid
transformation parameters for a given minutiae pair, and
function WithinLimit checks if two rigid transformation
parameter sets are sufficiently close to each other. Suppose
T0 ¼ ð�x0;�y0;��0Þ and T ¼ ð�x;�y;��Þ, where �x and
�y are the translation parameters along x- and y-axes, and
�� is the rotation parameter. WithinLimit function returns
true if the following conditions hold:

j�x0 ��xj < �Tx;

j�y0 ��yj < �Ty;

minðj��0 ���j; 180� j��0 ���jÞ < �T�;

8

<

:

where �Tx, �Ty, and �T� are three predefined thresholds.
In this paper, they are set to 40, 40, and 15, respectively.

Algorithm 2. Match propagation from an initial mated

minutiae pair.

Input: Query minutiae list MQ and template minutiae
list MT , all the minutiae in MQ and MT are initially

set as available; an initial minutiae pair p0 ¼ ðm
q
0;m

t
0; s0Þ;

an empty stack S.

Output: Minutiae correspondence list L.

L fp0g

PushbackðS; p0Þ

mark m
q
0 and mt

0 as not available

T0  GetTransParaðmq
0;m

t
0Þ

while S is not empty do

p PopupðSÞ

l MatchStructðp;MQ;MT Þ

for each ðmq;mtÞ in l do

if mq or mt is not available then

continue

else

mark mq and mt as not available
Simorm  ComputeStrongSimilarityðmq;mtÞ

L L [ fðmq;mt; SimormÞg

T  GetTransParaðmq;mtÞ

if Simorm > Thsim and WithinLimitðT0; T Þ

then

PushbackðS; ðmq;mt; SimormÞÞ

end if

end if

end for

end while

return Minutiae correspondence list L.

During the minutiae pair propagation, we set two
constraints to determine whether the newly found minutiae
pairs can be used as new starting points to search for
correspondences. The first constraint is Simorm > Thsim.

This constraint ensures that the newly found mated
minutiae have sufficiently high similarity to avoid false

minutiae correspondences. The second constraint is that the

difference between the rigid transformation parameters

obtained from the newly found pairs and the initial rigid
transformation parameters estimated from the initial mated

minutiae pairs should be within a certain range. This

constraint controls the amount of nonlinear distortion that
can be tolerated.

4 MATCH SCORE COMPUTATION

For different true initial minutiae pairs, the match propaga-

tion procedure may output very similar matching results
due to the nature of local compatibility. Among these match

propagation results, not all of them are needed; we only

need the best one or the one with enough correspondences
to provide robust matching. Given the kth initial mated

minutiae pair, where k ¼ 1; . . . ; NI
2 , match propagation is

applied to obtain additional minutiae correspondences in

the whole palmprint region. If the number of matched
minutiae, M, is less than NL

1 , then the match score is set to

zero and we proceed to the next initial pair; otherwise, the

query palmprint is aligned based on the current initial
mated minutiae pair, and the overlapping region of convex

hulls determined by matched minutiae lists is obtained.

Parameter NL
1 can filter out most of the impostor palmprint

matchings. In this paper, NL
1 is set to 5. Three types of

similarities are computed and fused together to get the

match score associated with the initial minutiae pair if

M � NL
1 . They are 1) orientation field similarity, 2) ridge

density map similarity, and 3) average minutiae similarity.

Dividing the common regions into 16� 16 nonoverlapping

blocks, the global orientation field similarity is computed by

Scoreo ¼
1

Num

X

Num

i¼1

exp �
�oi

�o

� �

�
No

No þ 900
; ð9Þ

where Num is the total number of blocks in the overlapped

region,�oi is the orientation difference of the ith block, �o is

the same parameter as used in (5), and No � Num is the

number of blocks with the average ridge orientation
difference less than 22.5 degree. Similarly, the global ridge

density map similarity is obtained by

Scorer ¼
1

Num

X

Num

i¼1

exp �
�ri

�r

� �

�
Nr

Nr þ 900
; ð10Þ

where �ri is the ridge period difference of the ith block,

Nr � Num is the number of blocks with average ridge

period difference less than 2 pixels, and �r is the same

parameter as used in (6). The minutiae features-based
similarity is

Scorem ¼
X

M

i¼1

Simi
orm; ð11Þ

where Simi
orm is the similarity of the ith minutiae

correspondence in L obtained by match propagation. The

kth match score is
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Scorek ¼ Scoreo � Scorer � Scorem: ð12Þ

If M > NL
2 , the matching algorithm outputs Scorek as the

final match score, ignoring the rest of initial pairs.

Otherwise, the final match score is set to maxfScorekg. NL
2

is set to 200 in this paper.

5 EXPERIMENTS

5.1 Palmprint Databases

To our knowledge, there is no public domain latent and

mated full palmprint database that is available. Our latent

palmprint images come from Noblis [33], the Forensic

Science Division of Michigan State Police (MSP) [34] and

Ron Smith and Associates Inc. (RS&A)[35]. The Noblis

latent database consists of 46 latent palmprints that come

from eight different palms. The MSP latent database

consists of 54 latent palmprints that come from 22 different

palms, and the RS&A database consists of 346 latent

palmprints that come from 88 different palms. These three

latent databases are combined together to form a database

of 446 latent palmprints. The foreground area of latent

palmprints is manually marked in the original images.

Table 2 summarizes the latent palmprint databases used in

our experiments. We see RS&A database has much higher

standard deviation of no. of minutiae than the other two

databases. That is because RS&A database contains lots of

latent palmprints with small friction ridge region. The

background databases of full palmprints consists of eight

subsets. Table 3 summarizes each of these full palmprint

subsets. The total number of full palmprint images in the

background database is 12,489. All latents or full palmprint

images used in our experiments that are not at 500 ppi

resolution are up or down sampled to 500 ppi using

bicubic interpolation.

5.2 Evaluation of Minutiae Clustering

The number of clusters, Kc, is an important parameter in
our method. A large number of clusters can divide minutiae
set into more groups, resulting in more variety of cluster
centroids, but it may also lead to missing some true
minutiae correspondences. Furthermore, the clusters
trained from different sets of descriptors may be slightly
different. To test the number of clusters and measure their
stability, we choose eight different values of Kc, namely
Kc ¼ 1; 2; 4; 8; 16; 32; 48, and 64, where Kc ¼ 1 means min-
utiae clustering was not used. All other parameters used in
our algorithm are summarized in Table 4. For each number
of clusters, we train 10 sets of cluster centroids indepen-
dently for matching, with each set of cluster centroids
trained from 800 full palmprints (not including mated full
palmprints) that were randomly selected from the back-
ground database. Our experiments were conducted in the
identification mode (i.e., 1:N matching). For each latent, the
identification system searches for its mated full palmprint
in the background database and returns a list of candidates
in order of their similarity.

Two different sets of clusters, i.e., orientation descriptor
based (OriDes) and ridge period descriptor based (RidDes),
are evaluated in our experiments. Fig. 9a shows the average
rank-1 identification rates and standard deviations as a
function of the number of clusters. In the case of Kc ¼ 1, the
latents are matched against the background database only
once, so the standard deviation is zero. In general, the
average rank-1 identification rate drops and standard
deviation increases as the number of clusters Kc increases.
A larger number of clusters leads to fewer true mated
minutiae pairs being clustered together and, consequently,
fewer initial pairs of true correspondences can be selected.
The standard deviation for all values of Kc is very small
(around 0.5), indicating high stability of both OriDes and
RidDes cluster centroids. The average rank-1 identification
rate when Kc ¼ 2 is slightly higher (by 0.18 percent) than
Kc ¼ 1. We also observe that the OriDes-based clustering
performs better than RidDes-based clustering.

Fig. 9b shows the average genuine and impostor
matching time for different number of clusters. The
computation time is measured on a Debian linux system
with 2.3-GHz CPU. We can see a significant drop in
computation time when clustering is used to search for
initial minutiae pairs. Without clustering, the genuine and
impostor match computation times are about 239 and
141 ms, respectively. With OriDes, the computation time
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TABLE 2
Latent Palmprint Databases Used in This Study

TABLE 3
Background Database of Full Palmprints

aAmong these 196 images, 88 palmprints are mated full palmprints of the latent RS&A database.



decrease rapidly when Kc increases from 2 to 16. With the
number of clusters, Kc, further increasing to 64, the
computation time decreases to 37 and 10 ms, respectively.
So, the proposed minutiae clustering method makes the
latent palmprint matching algorithm up to 14 times faster
depending on the number of clusters. The computation time
stabilizes asKc increases beyond a certain value (around 16)
because the time saved by clustering becomes negligible
with respect to the time spent in minutiae match propaga-
tion. RidDes clusters are slightly better than OriDes clusters
in terms of matching time. As a tradeoff between matching
accuracy and computation efficiency, we suggest using
OriDes cluster centroids with Kc ¼ 16 for latent-to-full
palmprint matching.

5.3 Latent-to-Full Palmprint Matching

Fig. 10 shows the Cumulative Match Characteristic (CMC)
curves for matching latent images in MSP, Noblis, and
RS&A databases, separately, against the background
database of 12,489 full palmprints by the proposed
algorithm with 16 OriDes clusters. The reported perfor-
mance is the average identification rate based on 10 sets of
different cluster centroids. The average identification rates

on MSP and Noblis databases are much higher than that on
the RS&A database. This is because MSP and Noblis
databases have higher image quality than palmprint images
in the RS&A database.
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Fig. 9. Matching performance of the proposed algorithm as a function
of number of clusters, where Kc ¼ 1 means no clustering of minutiae
descriptors was performed. (a) Average rank-1 identification rates
along with standard deviations. (b) Average genuine and impostor
matching time.

Fig. 10. CMC curves for matching latent palmprints in MSP, Noblis, and
RS&A databases against a background database of 12,489 full
palmprints by the proposed algorithm with 16 OriDes clusters.

TABLE 4
Summary of Parameter Values Used in the Proposed

Latent-to-Full Palmprint Matching Algorithm



The proposed latent-to-full palmprint matching algo-
rithm is compared with the MinutiaCode method [5] on the
combined latent database. The same feature extraction
algorithm as reported in [5] is used to extract features for
the two methods. Fig. 11 shows the CMC curves, which
demonstrate that a significant performance improvement is
achieved by the proposed algorithm over the MinutiaCode
method [5]. With 16 OriDes clusters, the rank-1 identifica-
tion rate of the proposed algorithm is about 18.6 percent
higher than that of the MinutiaCode method. Recall that the
purpose of minutiae clustering is to make the latent
palmprint matching very efficient. Our algorithm not only
meets this requirement, but it also improves the matching
performance over state-of-the-art algorithms.

The accuracy improvement achieved by the proposed
algorithm is mainly because of the following two reasons:

1. In palmprint matching, false correspondences can be
easily established if their local compatibility is not
considered because of the large number of minutiae
in palmprints. Our algorithm reduces these false
correspondences by minutiae match propagation.

2. The minutiae correspondences are established start-
ing from an initial pair and gradually expanding to
the whole palmprints without applying any global
rigid alignment. As a result, our algorithm is robust
to nonlinear distortion.

Fig. 12 shows three examples where latent-to-full
palmprint matching is successful. Fig. 13 shows two
examples where the latent is matched to its true mate at
ranks higher than 1,000. We see from the directions of
match propagation denoted by blue arrows in these figures
that each minutia is matched several times in the local
structures of its neighboring minutiae. So, the propagation
sometimes moves backward. This increases the chance of
mated minutiae pairs being matched. We can also see that
the depth of propagation tree starting from a genuine
minutiae pair is much deeper than that from impostor
minutiae pairs. Since impostor minutiae pairs lack high
local compatibility, the propagation stops quickly. Most of
the identification failures are due to low-quality palmprints
and small overlap between latent and full palmprints.

5.4 Full-to-Full Palmprint Matching

Due to the large number of minutiae (average number of
minutiae is about 1,000) in full palmprint images, it is highly
probable to find more correspondences between two full
palmprint images in the initial pair generation stage. To
further reduce the computation time of full-to-full palmprint
matching, we simplify the latent-to-full version of palmprint
matching algorithm to make it more suitable for full-to-full
palmprint matching. First, the minutiae clusters for full
palmprints are “compound” clusters obtained by combining
the OriDes and RidDes clusters using Cartesian product.1

Two minutiae are regarded as belonging to the same cluster
only if they are clustered to the same OriDes centroid and
RidDes centroid. Second, during the initial pair generation,
only the orientation descriptor similarity is used in the
ComputeWeakSimilarity function, and the second stage
selection of initial pairs using the ComputeStrongSimilarity

function is not applied. Third, only the top 5 most similar
pairs of minutiae correspondences are selected as initial
pairs. Fourth, the global orientation field similarity and
ridge density map similarity are not used. The final match
score is simply the sum of minutiae similarity Scorem
defined in (11).

The proposed algorithms, both simplified and nonsim-
plified full-to-full palmprint matcher, were evaluated on a
public domain full palmprint database, THUPALMLAB [7],
under the verification protocol, and compared with the
segment-based method [7], MinutiaCode method [5], and
MCC-based method [17]. The total number of palms in
THUPALMLAB is 160, with eight impressions for each
palm. The genuine matches are formed by matching every
pair among the eight impressions of each palm, and the
impostor matches are simulated by matching the first
impression of each palm against the first impression of all
the other palms. So, the total number of genuine and
impostor matches are 4,480 and 12,720, respectively.2

Our experimental results show that the proposed
algorithms, both nonsimplified and simplified versions,
achieve much higher accuracy than the segment-based
method and the MinutiaCode method. The equal error rates
(EERs) of the segment based and MinutiaCode methods are
1.46 and 1.47 percent, respectively. The nonsimplified
version of the proposed algorithm with 16 OriDes clusters
achieves an EER of 0.11 percent, and the simplified version
of the proposed algorithm with 64 OriDes clusters and
16 RidDes clusters achieves an EER of 0.13 percent.

The EER of the MCC-based algorithm [17] is estimated to
be about 0.01 percent, but its ZeroFMR is 0.48 percent
compared to our performance of 0.29 percent using the
simplified version. Given the small number of genuine
matches (4,480 in our experiments and 3,360 in [17] for
MCC), the difference between the two algorithms is just
three false nonmatches when FMR ¼ 0 percent. However,
the matching speed of the proposed algorithm is signifi-
cantly faster than the MCC-based matching algorithm. The
average genuine and impostor matching times of the
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Fig. 11. CMC curves of the proposed method and the MinutiaCode
method [5] in searching 446 latents against a background database of
12,489 full palmprints.

1. Each minutia is clustered into two types of cluster centroids, one for
OriDes and another one for RidDes.

2. The experimental results of MCC-based algorithm are from [17].



nonsimplified algorithm are 133.2 and 102.2 ms, respec-
tively, and the average genuine and impostor matching
times of our simplified algorithm are 14.7 and 2.0 ms,
respectively. The simplified algorithm significantly reduces
the computation time of full-to-full palmprint matching
without any significant loss in the matching accuracy.

Fig. 14 shows an example of the proposed algorithm’s
performance in matching full palmprint images with large
nonlinear distortion.

5.5 Evaluation Results by FVC-onGoing

The proposed algorithm was also tested on the public
palmprint verification benchmarks, PV-Full-1.0, and PV-
Partial-1.0, hosted on FVC-onGoing [37]. The number of
genuine and impostor attempts in PV-Full-1.0 benchmarks
are 2,800 and 4,950, respectively, and the number of
genuine and impostor attempts in PV-Partial-1.0 bench-
marks are 400 and 10,000, respectively. For PV-Partial-1.0,
we used the latent-to-full matcher with Kc ¼ 16 for OriDes,
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Fig. 12. Three examples of successful latent-to-full palmprint matching with OriDes clusters and Kc ¼ 16. (a), (d), and (g) are three latent palmprint
images from hypothenar, thenar, and interdigital regions, respectively. The second column contains three zoomed in images of mated full palmprints,
and the third column contains three mated full palmprint images with target areas (where the latent print comes from) marked by ellipses. The red
circles denote matched minutiae, green squares denote the initial minutiae pairs, and blue arrows denote the direction of minutiae match
propagation. Mated full palmprints of latents (a) and (d) were successfully identified at rank-1 and mated print of latent (g) was identified at rank-2.
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Fig. 13. Two failure cases of latent palmprint matching with OriDes clusters and Kc ¼ 16. (a) a latent palmprint image with small overlap with its
mated full print; (b) zoomed in area of matched region of (a) with incorrectly paired minutiae; (c) target region of (a) in the mated full palmprint; (d) a
latent palmprint image with poor quality; (e) zoomed in area of matched region of (d) with incorrectly paired minutiae; (f) target region of (d) in the
mated full palmprint. The red circles denote matched minutiae, green squares denote the initial minutiae pairs, and blue arrows denote the direction
of minutiae match propagation. The retrieval ranks of (a) and (d) with the true mates are 1,244 and 8,427, respectively.

Fig. 14. An example of nonlinearly distorted full palmprint matching by the proposed method. (a) Rigid alignment based on initial mated minutiae pair,
and (b) affine alignment based on mated minutiae pairs generated by match propagation.



and for PV-Full-1.0, we used the full-to-full matcher
(simplified) with Kc ¼ 16 for both OriDes and RidDes.

Tables 5 and 6 are the performance comparisons with the
published results on FVC-onGoing. We see that while the
MCC-based matching algorithm achieves the best accuracy,
the proposed “coarse to fine” algorithm has the lowest
average matching time.

In the proposed algorithm, the cluster centers need to be
learned from the training data. The cluster centers used in
our algorithm submitted to FVC-onGoing were trained on
800 full palmprints that were randomly chosen from the
background database (not including the mated full palm-
prints), consisting of MSP full, MSU live, CMC inked or
live scan databases. We did not use the PV-TEST-FULL
or PV-TEST-PARTIAL for training because the number
of palmprints in it is too small (only 80 full palmprints and
40 partial palmprints).

The image characteristics of palmprints in PV-TEST-
FULL (or PV-TEST-PARTIAL) are quite different from the
palmprints in databases that we used (MSP full, MSU live,
CMC inked or live scan). Each impression of a palm in PV-
TEST-FULL was collected under different controlled con-
ditions, such as torsion, traction, shrinking or expanding
fingers, humidity, and so on, whereas the palmprints in our
database were collected under normal conditions.

This difference in characteristics of the palmprint
databases used by us and PV-TEST-FULL (or PV-TEST-
PARTIAL) partly explains our somewhat lower matching
performance (PV-TEST-FULL and PV-TEST-PARTIAL
were collected using the same protocol as PV-Full-1.0 and
PV-Partial-1.0).

5.6 Computational Complexity

To evaluate and compare the computation time, we tested
the proposed algorithm, the segment-based algorithm and
the MinutiaCode algorithm3 on the same computer with
Dual-Core AMD Opteron (tm) 2.20-GHz CPU, 1.00-GB
RAM, and Windows XP operating system. The segment-
based algorithm is not tested on the latent-to-full database,
because this algorithm is designed to work only for full-to-
full palmprint matching. To apply it to latent palmprint
matching, manual alignment is needed, which is not
practical in operational scenarios because most of the latent
palmprint images only contain a small portion of the palm.
In some instances, we are not even able to determine which
part (e.g., interdigital, hypothenar or thenar) of the palm the
latent comes from. The computation time of the proposed
full-to-full palmprint matching algorithm is reported for the
simplified algorithm. We did not implement the MCC-
based matching algorithm [17]. To compare the matching

efficiency with MCC, the match time on PV-Full-1.0 and
PV-Partial-1.0 are used for comparison (evaluated by FVC-
onGoing). As shown in Table 7, the proposed algorithm is
extremely efficient in full-to-full matching compared with
the segment-based matching algorithms [7], MinutiaCode
[5], and MCC-based algorithm [17]. For full-to-full palm-
print matching, the genuine and impostor matching are,
respectively, 17 and 104 times, faster than the segment-
based algorithm [7], and are, respectively, 85 and 437 times
faster than the MinutiaCode algorithm [5]. For latent-to-full
palmprint matching, the proposed algorithm for genuine
and impostor matching times are, respectively, about 12
and 22 times faster than the MinutiaCode-based method.
Another advantage of our algorithm is that the impostor
matching is significantly faster than the genuine matching,
which makes our algorithm very suitable for operating in
the identification mode. Compared with MCC in FVC-
onGoing, the proposed algorithm is 2-3 times faster in full-
to-full matching. For latent-to-full matching, the genuine
match time is very close, but impostor match time of the
proposed algorithm is faster than MCC.

6 CONCLUSIONS

We have proposed an efficient and robust latent-to-full
palmprint matching algorithm, which can also be applied to
full-to-full palmprint matching. To deal with the large
number of minutiae in palmprint images, a minutiae
clustering algorithm is proposed to group minutiae into
several clusters based on the local features (i.e., ridge
orientation and ridge period) in minutiae neighborhood.
These clusters can greatly narrow down the search space of
initial minutiae correspondences so as to drastically cut
down the computation time. The initially selected minutiae
correspondences are fed to a fine matching procedure,
called minutiae match propagation, to establish the minu-
tiae correspondences in the whole palmprint. The proposed
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TABLE 5
Comparison of Matching Performance
on PV-Full-1.0 by FVC-onGoing [37]

TABLE 7
Comparison of Match Time (ms) with

Published Palmprint Matching Algorithms

(The numbers in brackets are match time (ms) evaluated on PV-Full-1.0
and PV-Partial-1.0 by FVC-onGoing [37]). aThe above speed was
measured using an earlier released version of this algorithm. A faster
version has since been released on the authors’ website. Because the
segment-based method cannot be directly applied to latent palmprint
images, we only report its full-to-full matching time here.

TABLE 6
Comparison of Matching Performance
on PV-Partial-1.0 by FVC-onGoing [37]

3. The implementations of these two algorithms are available from the
authors’ website: http://ivg.au.tsinghua.edu.cn/.



minutiae match propagation algorithm ensures that local
compatibility among the minutiae correspondences is
satisfied to quickly reject false minutiae correspondences.
Our algorithm does not require global rigid alignment
between the two palmprints. This matching strategy is
especially suitable for palmprint matching since palmprints
contain a large number of minutiae and suffer from
nonlinear distortion.

Experimental results demonstrate the high efficiency and
robustness of the proposed algorithm for both latent-to-full
and full-to-full palmprint matching. With 16 OriDes
clusters, the proposed algorithm has a 79.4 percent average
rank-1 accuracy in searching 446 latent palmprints against a
background database of 12,489 full palmprints, which is
18.6 percent higher than the performance of the Minutia-
Code method [5]. To evaluate the computational efficiency,
the proposed algorithm was tested on three different
computing systems: 1) a linux server system for evaluating
the computation time under different numbers of clusters,
2) a Windows XP system for comparison with other
palmprint matching algorithms which were implemented
on the same platform, and 3) a public platform for
palmprint matching algorithm evaluation hosted by FVC-
onGoing [17]. The results show that the matching can be
significantly speeded up (5 to 14 times faster, on average) by
introducing minutiae clustering without adversely affecting
the matching accuracy. Compared with the MinutiaCode
method [5] in latent-to-full palmprint matching, our method
is 12 and 22 times faster for genuine and impostor
matchings, respectively. Our algorithm is also the fastest
palmprint matching algorithm published in FVC-onGoing.

The proposed algorithm (with/without simplification)
can also be applied to full-to-full palmprint matching.
Compared with two state-of-the-art full-to-full palmprint
matching algorithms, the proposed algorithm is extremely
fast and accurate. The EER of our algorithm is 10 times
lower than that of the segment based [7] and MinutiaCode
[5] algorithms. For genuine and impostor matchings, the
proposed algorithm is, respectively, 17 and 104 times, faster
than the segment-based method, and is, respectively, 85 and
437 times, faster than the MinutiaCode method.

Spurious minutiae and small overlap between palm-
prints remain two of the major challenges in latent-to-full
palmprint matching. Due to the presence of immutable
creases in palmprints and uncontrollable image acquisition
conditions, a large number of spurious minutiae might be
extracted especially in palmprint images. These spurious
minutiae could lead to many false initial minutiae pairs
which, in turn, leads to field matches. Certain types of latent
palmprints, e.g., writer’s palmprints might have very small
overlap with the full palmprints. This makes it difficult to
find a sufficient number of true minutiae correspondences.
In our future work, we will further improve the proposed
algorithm keeping the above two aspects in mind.
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