
Journal of Computational Mathematics

Vol.28, No.6, 2010, 767–789.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1004-m3172

A COARSENING ALGORITHM ON ADAPTIVE GRIDS BY
NEWEST VERTEX BISECTION AND ITS APPLICATIONS*

Long Chen

Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA

Email: chenlong@math.uci.edu

Chensong Zhang

Department of Mathematics, The Pennsylvania State University, University Park, PA, 16802, USA

Email: zhangcs@psu.edu

Abstract

In this paper, an efficient and easy-to-implement coarsening algorithm is proposed for

adaptive grids obtained using the newest vertex bisection method in two dimemsions. The

new coarsening algorithm does not require storing the binary refinement tree explicitly.

Instead, the structure is implicitly contained in a special ordering of triangular elements.

Numerical experiments demonstrate that the proposed coarsening algorithm is efficient

when applied for multilevel preconditioners and mesh adaptivity for time-dependent prob-

lems.

Mathematics subject classification: 65M55, 65N55, 65N22, 65F10.

Key words: Adaptive finite element method, Coarsening, Newest vertex bisection, Multi-

level preconditioning.

1. Introduction

Adaptive methods are now widely employed in the scientific computation to achieve better

accuracy with minimum degree of freedom. A typical adaptive finite element method through

local refinement can be written as the following loop:

SOLVE → ESTIMATE → MARK → REFINE/COARSEN. (1.1)

In this paper, we shall consider the modules COARSEN and SOLVE. More precisely, we

propose a new efficient and easy-to-implement coarsening algorithm and apply to multilevel

preconditioners for adaptive grids obtained by the newest vertex bisection in two spatial di-

mensions.

Classical recursive bisection and coarsening algorithms [21] are widely used in adaptive

algorithms (see, for example, ALBERTA [31] and deal.II [3]). These algorithms make use of

binary-tree related data structures and subroutines to store and access the bisection history.

We propose a new node-wise coarsening algorithm which does not require storing the bisec-

tion tree explicitly. We only store coordinates of vertices and connectivity of triangles which

is the minimal information to represent a mesh for standard finite element computation. We

can built a kind of tree structure into a special ordering of the triangles. By doing this way, we

simplify the implementation of adaptive mesh refinement and coarsening and thus provide an

easy-access interface for the usage of mesh adaptation without too much sacrifice in time.

* Received July 26, 2009 / Revised version received October 23, 2009 / Accepted December 7, 2009 /

Published online August 9, 2010 /

768 L. CHEN AND C.S. ZHANG

The coarsening algorithm can be applied to construct efficient multilevel solvers for elliptic

problems. Based on the special geometric relation between nested triangulations obtained by

our coarsening algorithm, we develop a new multilevel preconditioner which numerically out-

performs several classical multilevel preconditioners.

The proposed coarsening algorithm can also be employed for mesh adaptation, especially for

time-dependent problems. For steady-state problems, quasi-optimal meshes can be obtained in

practice using (1.1) without the COARSEN step [11]. However, it is not the case for time-

dependent problems as the local features might change dramatically in time. We provide a

numerical example for the application of our coarsening algorithm to time-dependent problems.

The rest of the paper is organized as follows. We review the classical coarsening algorithm

and introduce our new algorithm in Section 2. We explain the data structures and implemen-

tation of our coarsening algorithm in Section 3. In order to demonstrate the performance of

the proposed coarsening algorithm, then we show two applications of our coarsening algorithm:

one is multilevel preconditioners for stationary problems in Section 4 and the other is mesh

adaptation for time-dependent problems in Section 5.

2. Coarsening Algorithms

In this section, we present a new coarsening algorithm for triangular meshes obtained by

the newest vertex bisection method. Unlike the classical recursive coarsening algorithm, the

proposed algorithm is non-recursive and requires neither storing nor maintaining the bisection

tree information such as the parents, brothers, generation, etc.

2.1. Conformity and shape-regularity of triangulations

Let Ω ⊂ R2 be a polygonal domain. A triangulation T (also known as mesh or grid) of Ω is

a set of triangles (also indicated by elements) which is a partition of Ω. The set of nodes (also

indicated by vertices or points) of the triangulation T is denoted by N (T) and the set of all

edges by E(T). As a convention, all triangles t ∈ T and edges e ∈ E(T) are closed sets.

We define the first ring of a point p ∈ Ω or an edge e ∈ E(T) as

Rp := {t ∈ T | p ∈ t} and Re := {t ∈ T | e ⊂ t},

respectively; and define the local patch of p or e as

ωp :=
⋃

t∈Rp

t and ωe :=
⋃

t∈Re

t,

respectively. Note that ωp and ωe are subdomains of Ω ⊂ R2, while Rp and Re are sets of

triangles which can be viewed as triangulations of ωp and ωe, respectively. The cardinality of a

set S is denoted by #S. For each vertex p ∈ N (T), the valence of p is defined as the number

of triangles in Rp, i.e., #Rp.

For finite element discretizations, there are two standard conditions imposed on triangula-

tions. The first condition is the conformity. A triangulation T is conforming if the intersection

of any two triangles t1 and t2 in T either consists of a common vertex, a common edge, or empty.

The second condition is the shape-regularity. A set of triangulations F is called shape-regular

if there exists a constant σ such that

max
t∈T

diam(t)

|t|
1

2

≤ σ, for all T ∈ F , (2.1)

Coarsening Algorithm of Bisection Grids 769

where diam(t) is the diameter of t and |t| is the area of t.

2.2. Newest vertex bisection

We review the newest vertex bisection method studied in detail by Mitchell [24, 25]. More

recent study on newest vertex bisection can be found in Binev, DeVore and Dahmen [8]. A

short implementation of such bisection method in MATLAB can be found in [12]; see also [13].

For each triangle t ∈ T , we label one vertex of t as the newest vertex and call it V (t). The

opposite edge of V (t) is called the refinement edge and denoted by E(t). This process is called

a labeling of T . Starting with a labeled initial grid T0, newest vertex bisection follows two rules:

1. a triangle (father) is bisected to two new triangles (children) by connecting its newest

vertex with the midpoint of its refinement edge;

2. the new vertex created at the midpoint of the refinement edge is labeled as the newest

vertex of each child.

Once the labeling is done for an initial grid, the decent grids inherit labels according to the

second rule and the bisection process can thus proceed.

For a given labeled initial grid T0, we define

F(T0) :=
{
T | T is obtained from T0 by newest vertex bisection(s)

}
. (2.2)

Sewell [32] showed that all the descendants of a triangle in T0 fall into four similarity classes

and hence any triangulation T ∈ F(T0) is shape-regular. It is worth to note that T ∈ F(T0) is

not necessarily conforming. Therefore we define a subset of F(T0):

C(T0) :=
{
T ∈ F(T0) | T is conforming

}
. (2.3)

We now give an example to illustrate the bisection procedure above and address the con-

formity issue. To begin with, we introduce some notation. The generation of each triangle in

the initial grid is defined to be 0; once a triangle is bisected, the generations of both children

are defined as one plus the generation of their father. The generation of a triangle t ∈ T will

be denoted by g(t). Children with the same father are called brothers to each other.

In Figure 2.1, we start from an initial grid T0 with only one triangle t0,1. In the notation

ti,j , the first subscript i is the generation of the triangle and the second subscript j is the index

of the triangle in the generation i. A vertex with a ‘dot’ next to it is the newest vertex of that

triangle. Adaptive methods usually mark some triangles for refinement according some local

error indicator. Those marked triangles are indicated by drawing in light gray and are bisected.

The interesting case is that after t2,1 is bisected, to keep conformity, we need to bisect t1,2 and

t2,4 using newest vertex bisection. The dashed lines in the tree as well as in the grid T3 in

Figure 2.1 means they are generated due to the conformity requirement.

2.3. A classical coarsening algorithm

The bisection procedure in Section 2.2 is fully revertible using a recursive coarsening algo-

rithm developed by Kossaczký [21] and implemented in ALBERTA [31].

Let us still use the same example in Figure 2.1 to illustrate the classical coarsening algorithm.

In the final grid T3, suppose we want to coarsen the triangle t2,3, the algorithm will first find

770 L. CHEN AND C.S. ZHANG

T0

T1

T2

T3

t0,1

t1,1 t1,2

t2,1 t2,2

t3,1 t3,2

t2,3 t2,4

t3,3 t3,4

Fig. 2.1. Bisection tree (left) and its corresponding grids (right).

its neighboring triangle t3,4 and it should be intelligent enough to tell that these two triangles

are not brothers and thus cannot be glued together. The algorithm will then try to coarsen

t3,4 first. This can be done in a recursive manner. The triangle t3,3 is found to be the brother

of t3,4. Once the algorithm glue t3,3 and t3,4 together to get t2,4 back again, the grid becomes

non-conforming. To keep conformity, t3,1 and its brother should be glued together (if there is a

problem with this step as before, do the same recursive step for t3,1 first.) Once this conformity

step has been completed, the algorithm returns to t2,3 and glue it with its brother t2,4 to obtain

T2. To allow the algorithm to find its neighbors and so on, traversing over the bisection tree is

needed.

In summary, the existing coarsening algorithm developed in [21] is element-wise and recur-

sive; it requires tree-related data structure and algorithms. We shall propose a node-wise and

non-recursive algorithm which does not store the bisection tree and requires only very simple

data structures.

2.4. Compatible bisection and good-for-coarsening nodes

From the previous example discussed in Sections 2.2 and 2.3, we can see that keeping con-

formity of bisection grids complicates both element-wise refinement and coarsening procedures.

It will be more convenient if we change our perspective and view the two procedures node-wise.

We first give a characterization of triangulations in the conforming class C(T0) with some

assumptions on the labeling of the initial triangulation T0.

Let T be a labeled conforming mesh. Two triangles sharing a common edge are called

neighbors to each other. A triangle t has at most three neighbors. The neighbor sharing the

refinement edge of t is called the refinement neighbor and denoted by F (t). Note that F (t) = ∅

if E(t), the refinement edge of t, is on the boundary of Ω. Although E(t) ⊂ F (t), the refinement

edge of F (t) could be different than E(t). For example, in the triangulation T2 shown in Figure

2.1, for t = t2,1, F (t) = t1,2 and they have different refinement edges.

An element t is called compatible if F (F (t)) = t or F (t) = ∅. For a compatible element,

its refinement edge e is called a compatible edge, and ωe is called a compatible patch. By this

definition, if e is a compatible edge, the first ring Re is either a pair of two triangles sharing the

same refinement edge or one triangle whose refinement edge is on the boundary. In both cases,

Coarsening Algorithm of Bisection Grids 771

bisection of triangles in the first ring Re will preserve the conformity (or called compatibility)

of a conforming triangulation; we call such a bisection a compatible bisection. Mathematically,

we define the compatible bisection as a map b : Re → Rp, where Rp is the first ring of the

new point p introduced in the bisection. We note that the inverse map b−1 : Rp → Re can be

thought as a coarsening step. It is restricted to the local patch ωp and thus no conformity issue

arises. See Figure 2.2 for an illustration. In this figure, the edges in boldface are the refinement

edges and dash-lines represent bisections.

e
b

b−1

p e
b

b−1

p

Fig. 2.2. Two examples of compatible bisections. Left: interior edge; right: boundary edge.

If we have access to all compatible bisections, we can easily perform a node-wise coarsening.

The question is how to find the node introduced by a compatible bisection without recording

all compatible bisections. To this end, we introduce a new concept:

Definition 1 [Good-for-coarsening Node] For a triangulation T ∈ C(T0), a node p ∈ N (T)

is called a good-for-coarsening node, or a good node in short, if there exists a compatible bisection

b and a compatible patch Re such that Rp = b(Re). The set of all good nodes in the grid T is

denoted by G(T).

2.5. Existence of good nodes on compatibly labeled grids

In general, the set of good nodes G(T) could be empty; see Figure 2.3 for such an example.

This example indicates that the labeling for the initial triangulation cannot be selected freely

and it is necessary to impose some conditions on the initial labeling.

•

•
•

•

•
•

Fig. 2.3. Bisections on a non-compatible triangulation. Left: a non-compatible labeling; middle: one

bisection on each triangle; right: bisections for conformity.

If all elements in T ∈ F(T0) have the same generation k, T is called the k-th uniform

refinement of T0 and is denoted by T k. Note that T k might not be conforming; see Figure 2.3

(middle) for example. The generation of each element in the initial grid T0 is defined to be 0,

and the generation of an element τ ∈ F(T0) is 1 plus that of the father. Let

P(T0) =
{
∪N (T) : T ∈ F(T0)

}

denote the set of all possible nodes. For any node p ∈ P(T0), we define the generation of p,

denoted by g(p), to be the minimal integer k such that p ∈ N (T k).

772 L. CHEN AND C.S. ZHANG

We call a grid T compatibly labeled if every element in T is compatible and call such a

labeling of T a compatible labeling. The following theorem shows the existence of good nodes

and gives a practical characterization of good nodes if the initial grid T0 is compatibly labeled.

Theorem 2.1 (Existence and Characterization of Good Nodes) Let T0 be a compatibly

labeled conforming triangulation. For any T ∈ C(T0) and T 6= T0, let

M1(T) := {p ∈ N (T) : g(p) ≥ 1, g(p) = max
q∈N (Rp)

g(q)},

M2(T) := {p ∈ N (T) : p /∈ N (T0) and p = V (t) ∀t ∈ Rp}.

Then G(T) = M1(T) = M2(T) 6= ∅.

Remark 2.1 (Compatible Initial Labeling) The assumption “T0 is compatibly labeled” is

not restrictive. In fact, Mitchell [24] proved that for any conforming triangulation T , there

exists a compatible labeling. Biedl et al. [5] give an O(N) algorithm to find a compatible

labeling for a triangulation with N elements. This assumption can be further relaxed by using

the longest edge of each triangle as its refinement edge for the initial triangulation T0; see

Kossaczký [21]. Note that such conditions are also needed in the proof of convergence and

optimality of adaptive finite element methods [11].

To prove Theorem 2.1, we first study a property on uniform refinements.

Lemma 2.1 (Uniform Refinements on A Compatible Mesh) If T0 is conforming and

compatibly labeled, then every uniform refinement T k of T0 is also conforming and compati-

bly labeled.

Proof. We prove it by induction of k. For k = 0, T0 is conforming and compatibly labeled.

Suppose T k−1 is conforming and compatibly labeled, we will show so is T k. Since T k−1 is

compatibly labeled, after bisecting every element of T k−1, we obtain T k which is conforming.

We only need to prove T k is also compatibly labeled.

We pick up a triangle t ∈ T k. If F (t) = ∅, t is compatible by definition. We now consider

the case F (t) 6= ∅. Denoted by the father of a triangle t by father(t). Since t is refined

t F (t)

father(t) father(F (t))

Fig. 2.4. Refinement edges of t and F (t).

from its father, E(t) 6= E(father(t)). By the same reason, E(F (t)) 6= E(father(F (t))). By

the conformity of T k−1, E(t) is an edge of both father(t) and father(F (t)). In the triangle

father(F (t)), it is evident that after the bisection, the refinement edge of F (t) is also E(t); see

Figure 2.4 for an illustration of one possible configuration of t and F (t).

If we begin with a compatibly labeled initial triangulation T0, then for any p ∈ N (T k) with

k = g(p), k ≥ 1, p is introduced by a compatible bisection from T k−1 and thus p must be a

good node. More precisely, if we denote the ring of p in T k as Rk,p with k = g(p) and the

first ring of e ∈ E(T k−1) by Rk−1,e, then be : Rk−1,e → Rk,p is the compatible bisection which

introduces p.

Coarsening Algorithm of Bisection Grids 773

Remark 2.2 (Generation of Elements) Let T0 be a compatibly labeled triangulation and

T ∈ C(T0), but T 6= T0. For any t ∈ T \T0, V (t), the newest vertex of t, is introduced later than

other vertices of t and thus g(V (t)) > g(p), for any vertex p of t and p 6= V (t). Since t ∈ T g(t)

and t /∈ T k for k < g(t), we conclude that g(t) = g(V (t)).

Now we are at the position to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Let p∗ ∈ N(T) such that g(p∗) = maxq∈N (T) g(q). Then p∗ ∈ M1(T)

and thus M1(T) is non-empty.

We then show the equivalence of M1(T) and M2(T). It is obvious that g(p) ≥ 1 is

equivalent to p /∈ N (T0). Let us pick up a node p ∈ M1(T). Suppose there is a triangle t ∈ Rp

and V (t) 6= p. Then we have g(V (t)) > g(p) which contradicts with the choice of p. So we

conclude p is the newest vertex of all triangles in Rp. On the other hand, if p is the newest

vertex of all elements in Rp, then g(p) = g(V (t)) ≥ g(q) for any t ∈ Rp, q ∈ N (t), i.e., g(p) will

be a local maximum in Rp. This finishes the proof of the equivalence of M1(T) and M2(T).

The proof of G(T) ⊆ M2(T) is straightforward. Since p is introduced by a compatible

bisection, p should be the newest vertex of all t ∈ Rp.

To complete the proof, we now prove M1(T) ⊆ G(T). Let p ∈ M1(T). For any t ∈ Rp,

g(t) = g(V (t)) = g(p) and consequently Rp ⊆ Rk,p. Since ωp is hormophism to a disk (interior

node) or half disk (boundary node) with the center p, we conclude Rp = Rk,p and thus p is a

good node.

Remark 2.3 (Characterization in 2-D) In R2, there are only two possibilities for compat-

ible bisections, for p ∈ G(T), #Rp = 4 or #Rp = 2. This characterization will help us to find

out all good nodes without recording the generation; see Section 3.2.

Remark 2.4 (Generalization to 3-D) Existence of good nodes (Theorem 2.1) can be easily

generalized to three or higher dimensions, if we can choose an initial labeling of T0 such that

all uniform refinement T k, k ≥ 1 are conforming. However, we need to record the generation of

nodes and extra information; see [13] for details.

2.6. A node-wise coarsening algorithm

Formally, our new coarsening algorithm simply reads:

ALGORITHM COARSEN (T)

Find all good nodes G(T) of T .

For each good node p ∈ G(T)

Replace the first ring Rp by b−1
e (Rp).

END

We postpone the discussion on implementation of this algorithm to the next section and

continue theoretical discussions on the coarsening algorithm. An important question is whether

we can finally obtain the initial grid back by repeatedly applying this coarsening algorithm.

The answer is positive and a rigorous discussion is given in the following theorem.

Theorem 2.2 (Coarsening Theorem) Let T0 be a compatibly labeled conforming triangula-

tion. For any T ∈ C(T0), there exists a positive integer L ≤ #N (T) − #N (T0) such that by

applying the algorithm COARSEN at most L times, we can recover T0.

774 L. CHEN AND C.S. ZHANG

Proof. If T = T0, we can simply choose L = 0. When T 6= T0, by the existence of good

nodes (Theorem 2.1), we obtain a new grid T ′ =COARSEN(T) with #N (T ′) < #N (T) and

T ′ ∈ C(T0) since only good nodes are removed.

If T ′ 6= T0, we can continue applying the COARSEN algorithm on T ′. Therefore with at

most L = #N (T) − #N (T0) steps, we obtain T0.

Remark 2.5 (Refinement Length) In the theorem above, the worst case scenario is L =

#N (T) − #N (T0). Our numerical examples strongly indicates that at each step the decrease

of the number of nodes is at the ratio about 0.5. Namely for most bisection triangulations, half

of the nodes are good nodes. See Section 4 (Table 4.1) for some numerical evidence.

Remark 2.6 (Coarsening and Refinement) It is possible that the algorithm COARSEN ap-

plied on the current grid T gives a grid which is not in the adaptive history. Indeed our coars-

ening algorithm may remove nodes added in several different stages of the adaptive procedure.

3. Data Structures and Implementation

In this section, we present a MATLAB implementation of the proposed algorithm, COARSEN.

3.1. Data structures

There is a dilemma when designing data structures in the implementation level. Sophisti-

cated data structures can be used to facilitate traversing on the mesh more easily; for example,

saving all elements surrounding a node p makes finding Rp simple. On the other hand, if we

do so, after each bisection and coarsening step, we have to update these data structures which

in turn makes the computational overhead heavier and complicates the implementation. We

decide to use minimal data structures for the mesh and regenerate auxiliary data structures

when necessary.

3.1.1. Basic data structure

The matrices node(1:N,1:2) and elem(1:NT,1:3) are used to represent a two dimensional

triangulation, where N is the number of vertices and NT is the number of elements. In the

node matrix node, the first and second columns contain x- and y-coordinates of the nodes

in the mesh. In the element matrix elem, the three columns contain indices to the vertices

of elements. These two matrices represent two different structures of a triangulation: elem

for the topological connectivity and node for the geometric embedding of vertices. As an

example, node and elem matrices to represent a triangulation of the L-shape domain Ω =

(−1, 1) × (−1, 1)\([0, 1] × [0,−1]) are given in the Figure 3.1 (a) and (b).

3.1.2. Assumptions on ordering

An important feature of our implementation is that we only maintain node and elem matrices.

At a first glance, one might think it is impossible to coarsen an adaptive mesh without storing

the refinement history. Our trick is: a tree structure of the adaptive procedure can be built

into the elem matrix by the ordering. We shall make it more precisely in the follows.

Suppose p1, p2, and p3 are three vertices of a triangle t and p4 is the midpoint of the

refinement edge E(t). After t is bisected, we name the new element with vertices p1, p2, and

Coarsening Algorithm of Bisection Grids 775

1

234

5

6 7

8

1

2

3

4

5

6

1

2

3

4

5

6

7

8

1 0

1 1

0 1

-1 1

-1 0

-1 -1

0 -1

0 0

1 2

node

1

2

3

4

5

6

1 2 8

3 8 2

8 3 5

4 5 3

7 8 6

5 6 8

1 2 3

elem

Fig. 3.1. (Left) is a triangulation of the L-shape domain (−1, 1)× (−1, 1)\([0, 1]× [0,−1]) and (Right)

is its representation using node and elem matrices.

p4 the left child and the other the right child. (Left or right is with respect to the direction

walking from p4 to p1.) For example, in Figure 2.1, the left children always appear left to their

brothers (right children).

Any permutation of vertices of t will represent the same triangle. By a convention, three

vertices of a triangle are ordered counter-clockwise such that the signed once is positive. Even

with such ordering requirement, an even permutation of vertices is still allowed. Also a permu-

tation of indices of triangles, i.e., rows of elem matrix, still represents the same triangulation.

The ordering of the row and column indices of elem matrix provides a room to store additional

information.

We impose the following three assumptions on the ordering of node and elem matrices

which can easily be built into the bisection procedure.

(O1) elem(t,1) stores the newest vertex of element t.

(O2) When a triangle is bisected, its left child is stored in a position prior to its right child in

the new elem matrix.

(O3) The nodes in the initial triangulation T0 is stored in the range node(1:N0,:).

3.1.3. Auxiliary data structures

We introduce two auxiliary data structures: valence and edge2elem. We do not main-

tain these auxiliary data structures during refinement nor coarsening. Instead, we rebuild

edge2elem and valence in the beginning of our algorithm. Since we make use of built-in

functions in MATLAB, the construction of those data structure is simple yet efficient.

First, we use the array valence to record the number of the triangles in the first ring of a

node. It will be used to find all good nodes.

Second, we use an N × N sparse matrix edge2elem to store the mapping from edges to

element; see Table 3.1. If pipj is an edge of t, then edge2elem(i,j)=t. Due to the ordering

of vertices, for an interior edge, edge2elem(j,i) will give another (if it exists) element t′

such that pjpi is an edge of t′. If one of them is zero, it implies that this edge is on the boundary.

3.2. Code and explanation

We now present our MATLAB code for the coarsening algorithm and then explain the code

in detail part by part.

776 L. CHEN AND C.S. ZHANG

Table 3.1: edge2elem matrix for the L-shape mesh in Figure 3.1.

1

2

3

4

5

6

7

8

0 1 0 0 0 0 0 0

0 0 2 0 0 0 0 1

0 0 0 4 3 0 0 2

0 0 0 0 4 0 0 0

0 0 4 0 0 6 0 3

0 0 0 0 0 0 5 6

0 0 0 0 0 0 0 5

1 2 3 0 6 5 0 0

1 2 3 4 5 6 7 8

function [node,elem] = coarsen(node,elem,N0)

%−−−−−−−−−−−−− Part 1: construct auxiliary data structures −−−−−−−−−−−−−

N = size(node,1); NT = size(elem,1); % number of nodes and elements

edge2elem = sparse(elem(:,[1,2,3]),elem(:,[2,3,1]),[1:NT,1:NT,1:NT]);

valence = accumarray(elem(:),ones(3*NT,1),[N 1]);

%−−−−−−−−−−−−− Part 2: find good−for−coarsening nodes −−−−−−−−−−−−−−−−−−

newestNode = unique(elem((elem(:,1)>N0),1)); % newest vertices

isGood = find((valence(newestNode) == 2) | (valence(newestNode) == 4));

goodNode = newestNode(isGood); % all good nodes

marker(goodNode) = 1; % marker for good nodes

%−−−−−−−−−−−−− Part 3: coarsen good nodes −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for t = 1:NT % for loop over all elements

p = elem(t,1); % newest vertex of element t

if (p > 0) % p could be removed already

if (marker(p)==1) % p should be a good node

brother = edge2elem(elem(t,2),p); % brother of t

elem(t,1) = elem(t,2); % keep t

elem(t,2) = elem(t,3);

elem(t,3) = elem(brother,2);

elem(brother,1) = 0; % discard brother

end % end of if (marker(p)==1)

end % end of if (p > 0)

end % end of for loop

%−−−−−−−−−−−−− Part 4: clean node and elem −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

elem((elem(:,1) == 0),:) = []; % remove empty entries in elem

node(isGood,:) = []; % remove empty entries in node

indexMap = zeros(N,1); % initialize of indexMap

indexMap(¬isGood)= 1:size(node,1); % index map from old node to new node

elem = indexMap(elem); % shift the nodal index

In the first part, we construct auxiliary data structures edge2elem and valence. To im-

prove the efficiency and concise of the code, we use the sparse and accumarray functions to

avoid using for loops. We refer to MATLAB manual (help sparse and help accumarray

in the command window) for the detailed usage of these two functions.

The second part finds all good nodes in the current mesh. It is just algorithmic description

of good nodes. The last part is to remove the empty entries in elem and node arrays. The

clearance of node,elem arrays is relatively easy. But we should also shift the indices in elem

to reflect to the change of node indices. So we build an index map from the old nodal index

to the new and shortened nodal index. Then elem is shifted by the index map. Note that we

cannot coarsen the node in the initial triangulation thus (O3) remains hold.

Coarsening Algorithm of Bisection Grids 777

We now explain in detail the third part of our algorithm. After we find out all good nodes,

we traverse in the elem array to find elements containing good nodes. Let t be such an element.

We need to find out the brother of t which can be glued with t. By (O2), if we go through all

elements from 1 to NT, we always meet a left child before its (right) brother. It is easy to find

the brother of a left child t by brother = edge2elem(elem(t,2),elem(t,1)).

We use T3 in Figure 2.1 as an example to illustrate how our coarsening algorithm works.

There is only one good node p in T3; see Figure 3.2. We mark this node and traverse the element

array elem. In the element array of T3, elements are stored in a possible order indicated by the

p T3

t3,1

t3,2 t3,3

t3,4
t2,2 t2,3

t3,1 t2,3 t2,2 t3,3 t3,2 t3,4

t2,1 t2,3 t2,2 t3,3 t3,4

t2,1 t2,3 t2,2 t2,4

Fig. 3.2. Good nodes and coarsening procedure.

first row in the right of Figure 3.2. We will encounter firstly t3,1 which use p as its newest vertex.

We use the edge2elem to find its brother t3,2 and then glue these two elements together to

get t2,1 back. The place of t3,1 is used to store its father t2,1 and place of t3,2 is marked to be

discarded by setting its newest vertex as 0; see the second row in Figure 3.2. After this step,

p will be left as a hanging node as it is still the newest vertex of t3,3 and t3,4. However the

traverse of element array will continue and encounter t3,3 and glue it with t3,4 and thus recovery

the conformity. Their father t2,4 will be stored in the place of t3,3 which is behind t2,3. In this

way, the ordering of the coarse grid still satisfies the condition (O2). Finally, we get a mesh

T ′
2 which is different than T2 in Figure 2.1 but still in the class of C(T0); so we can proceed as

before.

4. Application in Multilevel Preconditioning

In this section, we apply the proposed coarsening algorithm to construct multilevel precondi-

tioners. We note that most existing multilevel preconditioners on adaptive grids are developed

for the regular refinement [1,9,16]. We shall make use of the special structure of bisection grids

to construct a simple but efficient preconditioner.

4.1. Preliminary

Let Ω be a polygonal bounded domain in R2 and consider the following Dirichlet problem:
{
−div(A(x)∇u) = f in Ω,

u = 0 on ∂Ω,
(4.1)

where f ∈ L2(Ω) and A(x) is a uniformly bounded and positive definite symmetric matrix

function defined in Ω. The weak formulation of (4.1) reads: find u ∈ H1
0 (Ω) such that

(A(x)∇u,∇v) = (f, v) for all v ∈ H1
0 (Ω), (4.2)

where (·, ·) is the L2 inner product in Ω and H1
0 (Ω) is the usual Sobolev space of function with

square integrable weak derivatives and vanishing boundary trace in Ω. We approximate (4.2)

778 L. CHEN AND C.S. ZHANG

by the linear finite element discretization. Let T be a conforming and shape-regular grid of the

polygonal domain Ω. We define

V = V(T) :=
{
v ∈ H1

0 (Ω) : v|t is affine, for all t ∈ T
}
,

and look for a discrete solution uh ∈ V such that

(A(x)∇uh,∇vh) = (f, vh) for all vh ∈ V. (4.3)

Let {φi}
N
i=1 be the set of piecewise linear nodal basis functions for interior nodes and uh =∑N

i=1 uiφi. With an abuse of notation, we still denote the vector (u1, u2, . . . , uN)T by u and

(f1, f2, . . . , fN)T by f . Let A = (ai,j)
N
i,j=1 ∈ RN×N with aij = (A(x)∇φj ,∇φi) be the stiffness

matrix. We then end up with the following algebraic system

Au = f. (4.4)

We shall apply the preconditioned conjugate gradient (PCG) method to solve (4.4), namely

use the conjugate gradient method to solve the preconditioned system BAu = Bf, where B is

a symmetric positive definite (SPD) matrix and known as a preconditioner. Note that we do

not have to form B explicitly. Instead, given a vector r, we only need the action of B on r, i.e.,

the vector Br. A good preconditioner is a balance of the following two considerations:

❼ the conditioner number κ(BA) is small compared with κ(A);

❼ the action of B is relatively cheap to compute.

We shall construct multilevel preconditioners using the framework of space decomposition

and subspace correction methods [33]. Let V =
∑L

k=0 Vk be a decomposition of V, where

Vk ⊂ V (k = 0, . . . , L) are subspaces of V. Let Ik : Vk 7→ V be the natural inclusion operator

(often known as prolongation) and IT
k : V 7→ Vk be its adjoint in L2 inner product (often

known as restriction.) Let Ak : Vk 7→ Vk be the restriction of A on the subspace Vk. By

choosing a local subspace solver, often known as a smoother, Rk ≈ A−1
k , we obtain an additive

preconditioner of the form

B =
L∑

k=0

IT
k RkIk. (4.5)

It is well-known, e.g. [33,34] that, when Rk is SPD on Vk under L2 inner product, the operator

B defined by (4.5) is also SPD on V under L2 inner product and can be used as a preconditioner.

We now discuss the choice of Rk. Let Dk be the diagonal matrix of Ak. We choose

R0 = A−1
0 and Rk = D−1

k . (4.6)

Notice that we use a direct solver on the coarsest space V0 since the dimension of V0 is small

and the computational cost is negligible.

With such a choice of smoothers, the preconditioner is uniquely determined by the space

decomposition. We now present several classical and new preconditioners in Section 4.2.

4.2. Space decomposition and preconditioning

Starting with TL = T ∈ C(T0), we apply our coarsening algorithm iteratively, i.e., Tk−1 =

COARSEN(Tk) to obtain a sequence of nested grids. Let Vk = V(Tk) be the linear finite element

Coarsening Algorithm of Bisection Grids 779

space on Tk and Nk as the set of interior nodes of Tk for k = 0, 1, . . . , L. When k = L, the

subscript will be skipped. For a given node xk,i ∈ Nk, we use φk,i to denote the canonical nodal

basis function at xk,i in Tk. We shall denote by Vk,i = span{φk,i} the one dimensional space

spanned by the nodal basis on Tk.

4.2.1. Hierarchical basis preconditioner

Recall that Gk ⊂ Nk denote sets of good nodes. Let W0 = V0. The so-called hierarchical basis

(HB) preconditioner BHB by Yserentant [35,36] is obtained using the hierarchical decomposition

V =

L⊕

k=0

Wk with Wk =
⊕

xk,i∈Gk

Vk,i, k = 1, · · · , L. (4.7)

Since our coarsening algorithm will remove all good nodes in the current level, we have

Nk = Nk−1 ∪ Gk. (4.8)

Thus the first decomposition for V in (4.7) is a direct sum. Let pk,i, pk,j ∈ Gk be two different

good nodes in Tk. Suppose that there exists an element t ∈ Rk,i ∩ Rk,j , then both pk,i and

pk,j are the newest vertices of t which is a contradiction. So Rk,i ∩ Rk,j = ∅, and the second

decomposition in (4.7) for each Wk is also a direct sum. Note that this is the special property

of nested bisection grids obtained by our coarsening algorithm and may not be true for nested

bisection grids using the tree structure and adaptive grids obtained by the regular refinement.

The hierarchal decomposition (4.7) is of optimal computational complexity and easy to

implement. It is well known [4, 35] that the preconditioner BHB based on (4.7) is almost

optimal in the sense that

κ(BHBA) ≤ CL| log hmin|, (4.9)

where hmin = mint∈T diam(t).

4.2.2. BPX preconditioner

To stabilize the HB preconditioner, Bramble, Pasciak and Xu [10] propose to use the so-called

BPX preconditioner BBPX based on the space decomposition

V =

L∑

k=0

Vk with Vk =
∑

xk,i∈Nk

Vk,i, k = 1, . . . , L. (4.10)

It is well known [16,29,33] that there exists a constant C independent of the problem size such

that

κ(BBPXA) ≤ C. (4.11)

The decomposition (4.10), however, has lots of overlapping. For adaptive grids, it is possible

that Vk results from Vk−1 by just adding a handful of basis functions (maybe even only one).

Thus smoothing on both Vk and Vk−1 leads to a lot of redundancy. In the worst scenario, the

complexity of smoothing could be as bad as O(N2) [26].

780 L. CHEN AND C.S. ZHANG

4.2.3. Three-point hierarchical basis preconditioner

We note that the difference between (4.7) and (4.5) is that the nodes set for finite element

spaces in the k-th level. One natural idea is to choose nodal sets Sk such that

Gk ⊂ Sk ⊂ Nk, k = 1, . . . , L. (4.12)

On the one hand, Sk is chosen more than Gk to stabilize the decomposition. On the other hand,

Sk should have the same order of cardinality as Gk to preserve optimal complexity.

Let pi ∈ Gk be the midpoint of Ei. Let pi,1 = pi and pi,2, pi,3 be the two end nodes of Ei

(or the so-called parents of pi). We define Sk := {pi,1, pi,2, pi,3 | pi ∈ Gk}, W̃0 = V0, and the

decomposition

V =

L∑

k=0

W̃k with W̃k =
∑

p∈Sk

Vp, k = 1, · · · , L, (4.13)

where Vp = span{φp} is the space spanned by the nodal basis functions on Tk.

We call the corresponding multilevel preconditioner. Three-point smoothing (TPS) precon-

ditioner and denoted by BTPS. It is obvious that #Sk = 3#Gk and thus the computational

complexity of BTPS is at most three times of BHB. In [14], it is proved that

κ(BTPSA) ≤ C. (4.14)

We conclude that (4.13) is a stable decomposition with optimal complexity.

4.2.4. Locally orthogonal hierarchical basis preconditioner

We propose another improvement over the HB decomposition (4.7) by enhancing the coarse

space. For convenience of presentation, we now give a local index of the vertices in ωpi
; see

Figure 4.1 for a pictorial description.

1
2

4

3

5

Fig. 4.1. Local indices of nodes for a compatible bisection.

Consider the local patch ωpi
and the piecewise linear function space

Vk,i := Vk(ωpi
) = span{φi,j | j = 1, . . . , Ji},

where Ji = 5 if pi is an interior point and Ji = 3 if pi is on the boundary. We define

ψi,j := φi,j + αi,jφi,1 ∈ Vk(ωpi
) and αi,j = −

(φi,j , φi,1)A

(φi,1, φi,1)A

,

such that (ψi,j , φi,1)A = 0. We construct a local A-orthogonal decomposition

Vk,i = span(φxi
) ⊕ Qk−1,i, (4.15)

Coarsening Algorithm of Bisection Grids 781

where Qk−1,i := {ψi,2, ψi,3, . . . , ψi,Ji
} ⊂ Vk(ωpi

). We name this preconditioner correspond-

ing to (4.15) as Locally Orthogonal Hierarchical Basis (LOHB) preconditioner. This simple

modification gives a much better hierarchical basis preconditioner.

In fact, we should point out the equivalence of LOHB preconditioner and hierarchical basis

multigrid (HBMG) [4], where the special hierarchical structure of bisection grids using our

coarsening algorithm plays an important role. Thus we can estimate the condition number

of κ(BLOHBA) using the results by Bank, Dupont and Yserentant [4]. More precisely, in our

setting, suppose A(x) is piecewise constant on the coarse mesh T0, then

κ(BLOHBA) ≤ CL| log hmin|, (4.16)

and the constant C is independent of the jump of diffusion coefficients and the size of the linear

system. Although (4.16) still depends on the mesh size, the computational results show that

the LOHB preconditioner outperforms the other preconditioners.

Remark 4.1 (Implementation of Prolongation and Restriction) The local prolongation

operator, J k
k−1 : Qk−1,i → Vk,i is given by

(J k
k−1u)(pi,1) =

Ji∑

j=2

αi,ju(pi,j) pi,1 ∈ Gk

u(pi,1) pi,1 ∈ Nk\Gk.

The restriction operator will be the transpose of the prolongation operator. Algorithmically, it

is a simple modification of HB preconditioner.

We present the following algorithm for the LOHB preconditioner BLOHB. We shall use e

and r to indicate that we are solving the residual equation Ae = r in each subspace. The

algorithm will compute Br for a given vector r.

Algorithm e = LOHB(r)

rL = r

for k = L : 1

rk−1 = (J k
k−1)

trk % restriction

end

e0 = A−1
0 r0 % exact solver

for k = 1 : L

ek = Rkrk % local smoother

ek = ek + J k
k−1ek−1 % prolongation

end

e = eL

END Algorithm

4.3. Numerical examples

We use the residual-type error estimator introduced by Babuška and Miller [2] for general

second-order elliptic equations. The bulk marking strategy by Dörfler [17] with θ = 0.3 is used

in our simulation for marking. For comparison, we always start the preconditioned conjugate

gradient (PCG) methods from the zero initial guess and the stopping criteria is the relative

residual error is less than tol = 10−6. All numerical experiments are performed with MATLAB

7.0 on a PC with Intel Pentium IV 1.0GHz and 1GB RAM.

782 L. CHEN AND C.S. ZHANG

Example 1: Poisson equation on L-shaped domain

In this example, we consider the second-order elliptic equation (4.1) with A ∈ R2×2 being

the identity matrix and f = 0 on a L-shaped domain Ω := (−1, 1)2\{[0, 1) × (−1, 0]} with a

reentrant corner. We choose the Dirichlet boundary condition g such that the exact solution to

be u(r, θ) = r
2

3 sin(2
3θ) in polar coordinates. It is well-known that the solution u ∈ Hs(Ω) for

s < 5
3 has a corner singularity at the origin.

We start the adaptive finite element method from a compatibly labeled initial grid T0 (Figure

4.2(a)). An example adaptive grid is given in Figure 4.2(b). Since there is a point-singularity,

(a) Initial grid: isosceles triangles. (b) Adaptive grid obtained by newest vertex bisections.

Fig. 4.2. Initial and refined meshes used in Example 1.

the adaptive refinement are done very locally (see Figure 4.2(b)). It is interesting to find out how

many good-for-coarsening nodes we actually have on each level for highly graded adaptive grids

generated by the AFEM loop (1.1). The results are reported in Table 4.1, from which we can see

that degree of freedom (DOF) on each level (generated by our coarsening algorithm) decreases

geometrically as for the uniform refinement case. Since the decay rates α = DOFk−1/DOFk

are almost constant for any two consecutive levels, we only show the rates for the last two levels

in the table.

Table 4.1 suggests that we only need to call the coarsening algorithm iteratively a few times

to obtain a coarse enough grid. For example, for this problem, after 5 steps of coarsening, the

degree of freedom left is only about 3% of the original number of unknowns.

Table 4.1: Number of good nodes on each level in five different adaptive grids for Example 1.

DOF 9628 13339 18648 26097 36528

level: J 4586 6365 8934 12532 17793

level: J − 1 2402 3393 4699 6572 9164

level: J − 2 1276 1749 2425 3448 4733

level: J − 3 684 943 1293 1765 2425

level: J − 4 375 486 696 945 1293

Decay rate 0.548 0.515 0.538 0.535 0.533

We present number of iterations for PCG with CPU time in the bracket using different

preconditioners in Table 4.2. From this table, we have a couple of observations: (1) The

iteration number of HB preconditioner increases slightly as DOF increases because the decom-

position (4.7) is not stable. (2) The BPX preconditioner is uniform, but it could take more

CPU time than the HB preconditioner. The advantage of the former is more significant for

Coarsening Algorithm of Bisection Grids 783

Table 4.2: Number of iterations (CPU time in seconds) by PCG (initial guess u0 = 0 and tol = 10−6)

with different preconditioners for Example 1.

DOF 9628 13339 18648 26097 36528

HB 31 (0.37) 31 (0.48) 31 (0.67) 36 (0.98) 36 (1.42)

BPX 23 (0.48) 23 (0.71) 22 (0.92) 25 (1.48) 25 (2.32)

TPS 18 (0.35) 19 (0.50) 18 (0.71) 20 (0.87) 20 (1.40)

LOHB 10 (0.21) 10 (0.29) 10 (0.37) 11 (0.54) 11 (0.79)

large problems. (3) The TPS is a good balance of HB and BPX. (4) The LOHB is the best

among the four in terms of CPU time and iteration steps.

Example 2: Discontinuous coefficient problem

In this example, we employ a test example designed by Kellogg [20] with discontinuous
diffusion coefficient. Consider the partial differential equation (4.1) with Ω = (−1, 1)2 and the
coefficient matrix A is piecewise constant: in the first and third quadrants, A = a1I; in the
second and fourth quadrants, A = a2I. For f = 0, the exact solution in polar coordinates has
been chosen to be u(r, θ) = rγµ(θ), where

µ(θ) =

cos
(

(π

2
− σ)γ

)

cos
(

(θ − π

2
+ ρ)γ

)

if 0 ≤ θ ≤ π

2
,

cos (ργ) cos ((θ − π + σ)γ) if π

2
≤ θ ≤ π,

cos (σγ) cos ((θ − π − ρ)γ) if π ≤ θ ≤ 3π

2
,

cos
(

(π

2
− ρ)γ

)

cos
(

(θ − 3π

2
− σ)γ

)

if 3π

2
≤ θ ≤ 2π,

and the constants

γ = 0.1, ρ = π/4, σ = −14.9225565104455152, a1 = 161.4476387975881, a2 = 1.

We see that the solution u produces a very strong singularity at the origin (barely in H1(Ω)).

See Figure 4.3 for an example of adaptive grids and its associated finite element solution.

Fig. 4.3. Finite element solution uh (left) on the adaptive grid with DOF = 164 (right).

The point singularity in the example is much stronger than the one in the previous test

example. The adaptive grids are extensively concentrated at the origin. Due to this effect, the

number of marked elements are quite small each iteration. The number of good nodes on first 5

levels are shown in Table 4.3. The decay rate of the number of DOF is slight worse than before

but still close to a constant. The number of iterations required for each method are listed in

784 L. CHEN AND C.S. ZHANG

Table 4.3: Number of good nodes on each level in five adaptive grids for Example 2.

DOF 7095 9708 13726 19821 28956

level: J 2351 3280 4792 7068 10569

level: J − 1 1780 2364 3245 4624 6648

level: J − 2 1067 1443 2029 2884 4147

level: J − 3 662 873 1234 1765 2554

level: J − 4 393 552 788 1132 1666

Decay rate 0.593 0.632 0.638 0.641 0.652

Table 4.4: Number of iterations (CPU time in seconds) by PCG (initial guess u0 = 0 and tol = 10−6)

with different preconditioners for Example 2.

DOF 7095 9708 13726 19821 28956

HB 26 (0.26) 25 (0.40) 27 (0.62) 27 (1.0) 33 (1.51)

BPX 24 (0.48) 24 (0.60) 24 (0.85) 24 (1.48) 27 (1.93)

TPS 19 (0.29) 19 (0.42) 19 (0.56) 19 (0.89) 21 (1.26)

LOHB 10 (0.17) 10 (0.23) 10 (0.32) 10 (0.59) 10 (0.68)

Table 4.4. We observe similar behaviors as in Example 1. Especially the LOHB is the best

among the four in terms of CPU time and iteration steps.

From the experiments above, we have already seen that the LOHB preconditioner performs

the best. Now we want to check how sensitive it is to the magnitude of the jump in the coefficient

matrix A. We use the same domain with f = 1 and g = 0. We keep a1 = 1 and change a2 from

1 to 104 on the same grid (uniform refinement by newest vertex bisections.) From Table 4.5,

we can see that the preconditioner BLOHB is robust with respect to the size of jumps.

Table 4.5: Number of iterations by PCG (initial guess u0 = 0 and tol = 10−6) with the LOHB

preconditioner for Example 2.

DOF 961 1985 3969 8065 16129

a2 = 1 10 8 9 11 9

a2 = 10 10 9 10 11 10

a2 = 102 10 9 10 11 10

a2 = 103 10 9 10 11 10

a2 = 104 10 9 10 11 10

5. Application in Time Adaptive Mesh Refinement

When solving time dependent problems with local features, it is usually difficult if even

possible to design optimal meshes a priori. Hence, adaptive mesh refinement and adaptive time

stepping are important to achieve optimal complexity. In order to obtain nearly optimal meshes

for time dependent problems, the COARSEN step in (1.1) is crucial as local features often

move in time. Standard coarsening algorithms (see [31] for details) requires data structures

to store a refinement tree in order to keep shape regularity after coarsening. As we have seen

Coarsening Algorithm of Bisection Grids 785

before, the proposed new coarsening algorithm, on the contrary, does not need refinement tree

information.

We take an example from Chen and Jia [15] to test the performance of the proposed coars-

ening algorithm when applied to adaptive mesh refinement. Consider the heat equation with

Dirichlet boundary condition in two spatial dimensions for u(x, s):

du

ds
− ∆u = f x ∈ Ω, s ∈ (0, T], (5.1)

where Ω := (−1, 1) × (−1, 1) and T = 1. We choose the right hand side function f(x, s) such

that the exact solution

u(x, s) = β(s) exp(−25|x− α(s)|2)

with

α(s) = s− 0.5, β(s) = 0.1
(
1 − exp(−104α(s)2)

)
.

A posteriori error estimations and adaptive algorithms for linear parabolic problems have

been discussed by many researchers [6, 7, 15, 18, 19, 22, 23, 28, 30]. Traditionally we write a

posterior error estimators in element-wise which is more convenient for marking elements with

large local error for refinement. We could also easily rewrite error estimators side-wise or node-

wise. There are also error estimators which are intrinsically node-wise; see [27] for example. A

genuine a posterior error estimators for parabolic problems can be written as follows

∫ T

0

|||u− Uh|||
2
Ω ds ≤ C

{
η2
init +

N∑

n=1

kn

(
(ηn

space)
2 + (ηn

time)
2 + (ηn

coarse)
2
)}
,

where, u is the solution to (5.1), Un is an finite element approximation of u, and, as their names

suggest, ηinit is an initial error estimator, ηn
space is a spatial error estimator, ηn

time is a time error

estimator, and ηn
coarse measures error introduced by coarsening; see [31] for details.

We now briefly discuss the node-wise time-space adaptive mesh refinement scheme for time

dependent problems. Note that we assume that the newest vertex bisection as our refinement

algorithm, see Algorithm 5.1.

Remark 5.1 (An example of error indicators for the heat equation) For completeness,

we now give node-wise error indicators adapted from [27] for the heat equation (5.1):

ηinit(p) = ‖U0
h − u(0)‖ωp

ηn
space(p) = ‖h

1

2 Jn
h ‖γp

+ ‖h(fn − f̃n
p)‖ωp

ηn−1
coarse(p) = ‖∇(Un−1

h − InUn−1
h)‖ωp

ηn
time = ‖∇(Un

h − InUn−1
h)‖Ω,

where the superscript n refers to the time level. In : V(T n−1) → V(T n) is the standard transfer

operator, h is the local mesh size, γp is the set all interior edges of ωp, J
n
h is the jump of gradient

of Un
h over interior edges, and f̃n

p is the average of fn on the local patch ωp.

786 L. CHEN AND C.S. ZHANG

Algorithm 5.1 (Adaptive Algorithm for Evolution Problems)

Start with initial time step size k0, initial mesh T0, and initial solution U0
h . Set n = 1 and

sn = k0.

(i) Compute initial error indicator ηinit.

If ηinit is too large, refine the patch Rp

if ηinit(p) is large; goto (i).

While sn ≤ T , do (a)–(e):

(a) Solve for Un
h and compute time error indicator ηn

time.

If ηn
time is too large, reduce time step kn, update sn, and goto (a).

(b) For every p ∈ N (Tn), compute spatial and coarsening error indicators:

if ηn
space(p) is too large, refine Rp;

if ηn
space(p) + ηn

coarse(p) is too small, coarsen Rp (if p is a good node).

(c) If the mesh was changed in (b):

solve for Un
h and compute error indicators again;

if ηn
time is too large, goto (a);

if ηn
space is too large, goto (b);

otherwise, accept the current solution Un
h .

(d) If ηn
time is small, enlarge kn+1.

(e) Let sn+1 = sn + kn+1 and n = n+ 1.

Now we show the performance of our coarsening algorithm. We report energy error at

different time in Figure 5.1 together with number of degrees of freedom (DOF) and time step

size. From Figure 5.1, we find the adaptive refined mesh and time step are adapted to the exact

very well. In particular, when the solution becomes very smooth in space but changes very fast

in time around time level 0.5, the time stepsize becomes small and spatial mesh size becomes

large. We also show two sample meshes in Figures 5.2 and 5.3.

Acknowledgments. The first author was supported in part by NSF Grant DMS-0811272,

and in part by NIH Grant P50GM76516 and R01GM75309. The second author was supported

by NSF Grant DMS-0915153.

Fig. 5.1. History of energy error, spatial DOF and time stepsize. Left: energy error; middle: spatial

degree of freedom; right: time stepsize.

Coarsening Algorithm of Bisection Grids 787

Fig. 5.2. Solution and automatically generated mesh at the initial time (t = 0.0).

Fig. 5.3. Solution and automatically generated mesh at the final time (t = 1.0).

References

[1] B. Aksoylu, S. Bond, and M. Holst, An adyssey into local refinement and multilevel precon-

ditioning III: Implementation and numerical experiments, SIAM J. Sci. Comput., 25:2 (2003),

478-498.

[2] I. Babuška and A. Miller, The post-processing approach in the finite element method. Part 3:

A posteriori error estimates and adaptive mesh selection, Int. J. Numer. Meth. Eng., 20 (1984),

2311-2324.

[3] W. Bangerth, R. Hartmann, and G. Kanschat, deal.ii — a general purpose object oriented finite

element library, ACM T. Math. Software, 33:4 (2007), 24, Aug. Article 24, 27 pages.

[4] R.E. Bank, T. Dupont, and H. Yserentant, The hierarchical basis multigrid method, Numer.

Math., 52 (1988), 427-458.

[5] T.C. Biedl, P. Bose, E.D. Demaine, and A. Lubiw, Efficient algorithms for Petersen’s matching

theorem, J. Algorithm., 38:1 (2001), 110-134.

[6] M. Bieterman and I. Babuška, The finite element method for parabolic equations. I. A posteriori

error estimation, Numer. Math., 40:3 (1982), 339-371.

[7] M. Bieterman and I. Babuška, The finite element method for parabolic equations. II. A posteriori

error estimation and adaptive approach, Numer. Math., 40:3 (1982), 373-406.

[8] P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with convergence rates,

788 L. CHEN AND C.S. ZHANG

Numer. Math., 97:2 (2004), 219-268.

[9] F.A. Bornemann and H. Yserentant, A basic norm equivalence for the theory of multilevel meth-

ods, Numer. Math., 64 (1993), 455-476.

[10] J.H. Bramble, J.E. Pasciak, and J. Xu, Parallel multilevel preconditioners, Math. Comput., 55:191

(1990), 1-22.

[11] J.M. Cascon, C. Kreuzer, R.H. Nochetto, and K.G. Siebert, Quasi-optimal convergence rate for

an adaptive finite element method, SIAM J. Numer. Anal., 46:5 (2008), 2524-2550.

[12] L. Chen, Short implementation of bisection in MATLAB, In P. Jorgensen, X. Shen, C.-W.

Shu, and N. Yan, editors, Recent Advances in Computational Sciences – Selected Papers from

the International Workship on Computational Sciences and Its Education, pages 318-332. World

Scientific Pub Co Inc, 2007.

[13] L. Chen, iFEM: an integrated finite element methods package in MATLAB. Technical Report,

University of California at Irvine, 2009.

[14] L. Chen, R.H. Nochetto, and J. Xu, Local multilevel methods on graded bisection grids, In

Preparation, 2009.

[15] Z. Chen and F. Jia, An adaptive finite element algorithm with reliable and efficient error control

for linear parabolic problems, Math. Comput., 73 (2004), 1167-1194.

[16] W. Dahmen and A. Kunoth, Multilevel preconditioning, Numer. Math., 63 (1992), 315-344.

[17] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33

(1996), 1106-1124.

[18] K. Erickson and C. Johnson, Adaptive finite element methods for parabolic problems. i. a linear

model problem, SIAM J. Numer. Anal., 28:1 (1991), 43-77.

[19] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems II: Optimal

error estimates in l∞l2 and l∞l∞, SIAM J. Numer. Anal., 32:3 (1995), 706-740.

[20] R.B. Kellogg, On the Poisson equation with intersecting interface, Appl. Aanal., 4 (1975), 101-129.

[21] I. Kossaczký, A recursive approach to local mesh refinement in two and three dimensions, J.

Comput. Appl. Math., 55 (1994), 275-288.

[22] O. Lakkis and C. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully

discrete linear parabolic problems, Math. Comput., 75:256 (2006), 1627-1658 (electronic).

[23] C. Makridakis and R.H. Nochetto, Elliptic reconstruction and a posteriori error estimates for

parabolic problems, SIAM J. Numer. Anal., 41:4 (2003), 1585-1594.

[24] W.F. Mitchell, Unified Multilevel Adaptive Finite Element Methods for Elliptic Problems, PhD

thesis, University of Illinois at Urbana-Champaign, 1988.

[25] W.F. Mitchell, A comparison of adaptive refinement techniques for elliptic problems, ACM

Transactions on Mathematical Software (TOMS) archive, 15:4 (1989), 326-347.

[26] W.F. Mitchell, Optimal multilevel iterative methods for adaptive grids, SIAM J. Sci. Comput.,

13 (1992), 146-167.

[27] K.-S. Moon, R.H. Nochetto, T. von Petersdorff, and C.-S. Zhang, A posteriori error analysis for

parabolic variational inequalities. Mathematical Modelling and Numerical Analysis (M2AN), 41:3

(2007), 485-511.

[28] R.H. Nochetto, A. Schmidt, and C. Verdi, A posteriori error estimation and adaptivity for degen-

erate parabolic problems, Math. Comput., 229:220 (1999), 1-24.

[29] P. Oswald, Multilevel Finite Element Approximation, Theory and Applications, Teubner Skripten

zur Numerik. Teubner Verlag, Stuttgart, 1994.

[30] M. Picasso, Adaptive finite elements for a linear parabolic problem, Comput. Method. Appl. M.,

167:3-4 (1998), 223-237.

[31] A. Schmidt and K.G. Siebert, Design of adaptive finite element software, volume 42 of Lecture

Notes in Computational Science and Engineering, Springer-Verlag, Berlin, 2005. The finite element

toolbox ALBERTA, With 1 CD-ROM (Unix/Linux).

[32] E.G. Sewell, Automatic generation of triangulations for piecewise polynomial approximation, In

Coarsening Algorithm of Bisection Grids 789

Ph. D. dissertation. Purdue Univ., West Lafayette, Ind., 1972.

[33] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992),

581-613.

[34] J. Xu and L. Zikatanov, The method of alternating projections and the method of subspace

corrections in Hilbert space, J. Am. Math. Soc., 15 (2002), 573-597.

[35] H. Yserentant, On the multi–level splitting of finite element spaces, Numer. Math., 49 (1986),

379-412.

[36] H. Yserentant, Two preconditioners based on the multi-level splitting of finite element spaces,

Numer. Math., 58 (1990), 163-184.

