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A Coaxial Line to Post-Wall Waveguide Transition for

a Cost-Effective Transformer between a RF-Device

and a Planar Slot-Array Antenna in 60-GHz Band
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SUMMARY Interfaces between a coaxial structure and a post-wall

waveguide are proposed as the essential components for cost-effective

millimeter-wave modules. PTFE substrate is selected in terms of loss and

manufacturability. The reflection and the transmission characteristics are

investigated. The short-stepped and the short-taper-stepped feeding struc-

tures provide 14.7% and 13.2% bandwidths for the reflection smaller than

−15 dB, respectively. The 46 × 40 mm2 size antenna fed by the short-

stepped structure in PTFE substrate gives 27.3 dBi with 58.2% efficiency

at 60.0 GHz. Feeding structures in PTFE substrate fulfill electrical and

manufacturing demands in millimeter-wave bands.

key words: home-link system, coaxial, post-wall waveguide, millimeter-

wave band, PTFE

1. Introduction

The “home-link system” which transmits video signals with

a bit-rate of several Gbps is one of the candidates for

a broadband wireless system in coming ubiquitous soci-

ety. For this purpose, the millimeter-wave band, especially

the 60-GHz band which has the very wide unlicensed fre-

quency range, is attractive. On the other hand, the exist-

ing millimeter-wave hardware is expensive and requires the

drastic cost reduction for the use in the home-link systems.

As one of the answers to the price requirement, a pla-

nar slot-array antenna fed by a post-wall waveguide has been

proposed and applied for millimeter-wave transmission sys-

tems [1]–[3]. A post-wall waveguide is fabricated by mak-

ing many metalized holes in a print-circuit board. Slots are

etched on one side and the post-wall planar antenna is fab-

ricated simply and cost-effectively. The fabricated planar

slot-array antenna has realized the wide range of antenna

gain; 25−35 dBi and an efficiency of 40−50% has been re-

ported so far [2], [3]. Previously, the RF power was fed to

the post-wall waveguide through a WR-15 standard metal-

wall waveguide via the coupling aperture cut on one of the

broadwalls of the post-wall waveguide [4].

As another challenge for the cost reduction of the sys-

tem, an ultra low-cost 60-GHz module has been proposed
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and developed for millimeter-wave transmission systems

[5]–[10]. The module is composed of some RF devices,

chip-capacitors, -resistors, a planar filter and packaging.

The size of the module is 26 × 20 × 4.5 mm3. At 60 GHz,

the transmitter- and the receiver-module can offer the output

power of 10 dBm and the noise-figure of 7 dB, respectively.

With these successful developments of the compo-

nents, the final step for home-link hardware system integra-

tion is to connect a 60-GHz module and a planar slot-array

antenna. Unfortunately, the standard connection of the mod-

ule to the antenna by using the waveguide or the coaxial-

connector costs around one-third of the module and is too

expensive. In addition, it is bulky and degrades the com-

pactness of the millimeter systems; the cost-effective and

slim alternatives have long been awaited.

The authors have proposed and developed cost-

effective transformers to connect a 60-GHz module and a

post-wall waveguide array antenna. Especially, this paper

focuses upon a transition between a coaxial line and a post-

wall waveguide, which is the key component in the overall

proposed transformer. Figure 1 shows a bird’s-eye view of

the integration with a RF device and a post-wall planar an-

tenna. The packaged RF circuit with the microstrip line in-

terface is mounted on the upper side of print-circuit board in

which the post-wall planar antenna is formed. PTFE (Poly

Tetra Fluoro Ethylen) substrate is selected for fabrication

and the design takes its structural and material characteris-

tics into account.

Fig. 1 A cost-effective 60 GHz module with a post-wall planar antenna.

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers
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In Sect. 2, the proposed cost-effective transformer is

precisely described and the purpose of this paper is declared.

A variety of transformers between a coaxial line and a post-

wall waveguide in PTFE substrate are proposed and studied

in Sect. 3. Section 4 is devoted to discussions upon the re-

sults presented in this paper. Finally, Sect. 5 is the conclu-

sion.

2. Proposed Cost-Effective Transformer Using a Quasi-

Coaxial Structure and a Post-Wall Waveguide

Figure 2 shows a proposed cost-effective transformer be-

tween a RF device and a planar slot-array antenna using

a post-wall waveguide. Figure 2(a) presents the sectional

view of the transformer. The RF devices are packaged to

keep their reliability and has the microstrip line as the in-

terface. The package size is 26 × 20 × 4.5 mm3. The out-

put power from the RF device is fed through the connection

Fig. 2 A proposed cost-effective transformer between a RF device and

a planar slot-array antenna using a post-wall waveguide. (a) The sectional

view of the transformer. (b) The precise connection structure between a

microstrip line and a post-wall waveguide.

marked in a dotted elliptic circle in the figure. The slot an-

tenna followed by the post-wall waveguide is formed in a

print-circuit board. The one side length of the antenna is de-

signed to be around 50 mm and the antenna can offer a gain

of 25 dBi at 60 GHz. The length of the post-wall waveguide

is approximately 10 mm.

Figure 2(b) specifies the connection structure between

a microstrip line and a post-wall waveguide via a quasi-

coaxial structure. Some techniques to connect a microstrip

line and a waveguide were reported in [11]–[13]. An inte-

grated LTCC laminated waveguide-to-microstrip line [11]

and a coaxial-to-microstrip transition [12] can be candi-

dates, but need a multilayer substrate and are a bit compli-

cated from manufacturing and designing points of view. A

transition between a microstrip line and a waveguide fabri-

cated on a single layer dielectric substrate [13] gives promis-

ing characteristics in terms of reflection and transmission in

millimeter wave bands. The microstrip line of this struc-

ture, however, is connected perpendicularly to a rectangu-

lar waveguide. The transformer is not suitable when a mi-

crostrip line-based RF circuit is placed in parallel on the

backside of a waveguide planar antenna as indicated in

Fig. 2. The compact and cost-effective transformer proposed

in this paper can be suitable for the integration with a 60-

GHz module and a planar slot-array antenna.

The proposed structure consists of two key technolo-

gies. One is the quasi-coaxial structure which is composed

of several metalized posts located coaxially around an in-

ner conductor. These posts serve as the outer conductor of

the coaxial structure. The authors have already developed

the transformer between a quasi-coaxial structure and a mi-

crostrip line in the previous work [14]. The through-loss

was measured to be 1.2 dB at 60 GHz, where the receptacle

in the V-connector was used for the measurement in place

of the post-wall waveguide.

Another part of the transformer is a connection be-

tween a coaxial line and a post-wall waveguide. The post-

wall waveguide and following planar antenna are simply and

cost-effectively fabricated by densely arranging metalized

posts in the same print-circuit board.

This paper focuses upon a transition between a coax-

ial line and a post-wall waveguide in order to realize the

overall transformer between a microstrip line and a post-

wall waveguide, in conjunction with the other transition be-

tween a quasi-coaxial structure and a microstrip line in the

previous work [14]. From mass-production point of view

in millimeter-wave bands, the overall characteristics of the

transformer greatly depend on the shape and the dimension

of the inner conductor.

PTFE substrate is chosen as print-circuit board in this

paper. The substrate parameters are listed up in Table 1.

A PTFE is low loss material and a large sized antenna of

gain up to 35 dBi can be realized in the substrate. Manu-

facturing such as suspended via-holes and its metallization

is difficult because the substrate is fiberglass-reinforced and

mechanically strong. Various types of transitions between

a coaxial line and a post-wall waveguide in PTFE substrate



1648
IEICE TRANS. COMMUN., VOL.E89–B, NO.5 MAY 2006

Table 1 Parameters of PTFE substrate.

Thickness 1.2 mm

Permittivity 2.17

tan δ 0.00085

Post Diameter 0.5 mm

Post Spacing 1.0 mm

Waveguide Width 3.08 mm

are proposed and discussed in Sect. 3. The manufacturing

reliability, the frequency characteristics of the reflection and

the transmission loss are investigated and verified experi-

mentally in 60-GHz band.

3. Transitions between a Coaxial Line and a Post-Wall

Waveguide in PTFE Substrate

The literatures [15]–[17] reported several types of transi-

tions between a coaxial line and a rectangular waveguide

and their discussions concentrated on the analysis and the

design of the transformers. The reliability in manufactur-

ing and frequency characteristics of transformers are impor-

tant especially in the millimeter-wave bands but were not

discussed sufficiently. This paper investigates four kinds of

transformers between a coaxial-line and a post-wall wave-

guide in PTFE substrate, as shown in Fig. 3. Structures (c)

and (d) are proposed here while (a) and (b) were developed

before in [15]–[17]. Post-walls of waveguides are replaced

with a metal-wall waveguide with equal guided wavelength

in the design [1].

Feeding structures in Fig. 3 are described below. The

structure (a) is an open-ended structure [15], [17]. The inner

conductor is suspended in the middle of a dielectric sub-

strate. The input impedance is controlled in a wide range by

changing the insertion length h in a substrate and the posi-

tion of the short wall s. This structure however is not suit-

able for a PTFE substrate since the reflection characteristics

is sensitive for the insertion length h while the control of the

length by metallization of a blind alley is very difficult.

Figure 3(b) presents the conventional short-ended

structure [16]. The inner conductor penetrates a PTFE sub-

strate and then metallization of the inner conductor is easy.

However, the inner conductor excessively perturbs the elec-

tric field in the waveguide and the input impedance is much

larger than 50Ω. Reflection suppression over a broad band-

width would be difficult though the additional posts may be

used to suppress the reflection in only a narrow band.

Another type of transformer with a short-stepped struc-

ture, which is proposed in this paper, is shown in Fig. 3(c)

[18]. The inner conductor in a PTFE substrate has a stepped

structure at the end. The stepped structure lowers the input

impedance and wide band matching to a coaxial line would

be expected. Precise manufacturing and metallization of the

inner conductor are possible in a PTFE substrate since the

inner conductor penetrates the substrate. Figure 3(d) shows

an alternative realization of Fig. 3(c) [18]. The taper-step

structure is installed at the end of the inner conductor. It is

expected that the metalizing-liquid flows into the end of the

Fig. 3 Transformers between coaxial line and post-wall waveguide in

PTFE substrate (post-walls are replaced with conducting walls at the equiv-

alent position in the analysis).

inner conductor more easily.

3.1 Design

The transformers are designed at 60 GHz to suppress the re-

flection over a wide frequency range for given dimensions

of post-wall waveguides. In the design, a post-wall wave-

guide is replaced with a metal-wall waveguide to have equal

guided wavelength [1]. Table 1 indicates the parameters of

the PTFE substrate. The diameter of the inner conductor is

chosen to be 0.3 mm. An FEM-based electromagnetic field

simulator “Ansoft HFSS” is utilized for the design.

Initial parameters are introduced for each structure

as described below. A cylindrical metallic post that ex-

tends into the waveguide is a reactive element in waveguide

matching. In a short-ended structure, when h is equal to the

waveguide height, the axial current induced by the domi-

nant TE10 mode is constant along the post surface so that

the inductance is too large. To weaken the EM coupling of

the inner field in the waveguide, the short-ended post would

be placed for the matching at the position of around 0.5 λg
(λg is guide wavelength in the waveguide) from the shorting

wall.

On the other hand, the open-ended structure equiva-

lently works as a series circuit of inductance and capaci-

tance. The metallic post itself has inductance and the ca-

pacitance generates between the open-end of the post and

the facing waveguide wall. The input impedance can be

controlled by changing the length of the inner conductor h

and series resonance is realized when h is equal to about

0.25 λε (= λ0/
√
εr). The distance between the inner conduc-

tor and the shorting wall would be approximately 0.25 λg in

order to obtain the strong coupling with the inner field of
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Fig. 4 Calculated results of reflection characteristics for various angles

of inner conductors in PTFE substrate.

the waveguide. The taper-stepped structures in (c) and (d)

are used for impedance reduction so that the position of the

shorting wall s would be around 0.25 λg as well. Additional

reflection canceling posts, which fully penetrate the wave-

guide, would be installed to assist the suppression of the re-

flection if required. These posts are located around 0.25 λg
and 0.50 λg from the inner conductor in the open-ended and

short-ended structures, respectively.

Based upon above initial parameters, the insertion

length h (in (a), (c) and (d)), the angle of gradient θ (in

(d)), the step width d (in (c)), the short position s and the

reflection canceling posts position p, q (in (a), (b) and (d))

are determined by iteration in a few turns. Let the shorting

posts position s be measured from the center of the inner

conductor to that of the shorting posts.

Figure 4 shows the calculated frequency characteris-

tics of the reflection for various angles of the inner conduc-

tor, where the transformers are designed to minimize the re-

flection. The structures of θ = 90◦, 120◦ and 180◦ give

bandwidth wider than 10% with respect to the reflection be-

low −15 dB. Even if not reflection canceling posts, a wide

bandwidth for reflection suppression is obtained in case of

θ = 180◦. The taper-stepped structures decrease the input

impedance and match to a coaxial line over a wide frequency

bandwidth. On the other hand, when the declining angle θ is

0◦ and 60◦, the bandwidths become narrow, 2.0% and 5.9%,

respectively. The size of the taper-stepped structure is small

and the input impedance of the structure does not decrease

so that the suppression of the reflection is difficult in the suf-

ficient broad bandwidth.

Table 2 summarizes the parameters of structure (a)–

(d) after fine optimization. The structures of θ = 180◦

and 120◦ are applied as short-stepped (c) and short-taper-

stepped structures (d), respectively in this paper. The final

parameters are almost close to the initial ones mentioned

above, or the values plus around 0.5 λg. The parameter p is

around 0.35 λε irrespective of the structure.

Figure 5 summarizes the calculated frequency char-

acteristics of the reflection for the transitions between a

coaxial line and a post-wall waveguide. The reflection

Table 2 Determined parameters of transitions.

s mm h mm p mm q mm

(λg) (λε) (λε) (λg)

Open-ended 2.89 0.90 1.20 1.50

(0.70) (0.27) (0.35) (0.37)

Short-ended 1.99 − 1.20 1.80

(0.49) (0.35) (0.44)

Short-stepped 1.25 0.70 − −
(d = 1.4 mm) (0.31) (0.21)

Short-taper-

stepped 3.39 0.39 1.20 3.40

(d = 2.8 mm (0.83) (0.11) (0.35) (0.84)

θ = 120◦)

Fig. 5 Calculated results of reflection characteristics of transitions be-

tween a coaxial line and a post-wall waveguide in PTFE substrate.

of structure (a) has a very wide frequency range between

55 GHz and 65 GHz with the reflection below −20 dB. In the

short-ended structure (b), the bandwidth less than −15 dB is

not wide, 2.0%, as expected. On the contrary, the short-

stepped (c) and the short-taper-stepped structures (d) give

wide bandwidths of 16.7% and 12.8%, respectively, where

the reflections are below −15 dB. The structure (c) and (d)

are comparable to the open-ended structure (a) in terms of

the bandwidth of the reflection.

3.2 Fabrication

Figure 6 includes the cross-sectional photos of the fabri-

cated structures (a)–(c). In the structure (a), the metalizing

does not reach into the end of the inserted inner conductor.

The metalizing-liquid tends to be reluctant to creep in a nar-

row gap. This tendency causes a serious difference between

analysis and measurement. On the other hand, the surface

of the inner conductor in (b) is metalized smoothly. The

stepped structure in (c) is graved by using a particular T-type

drill. The surface and the metallization are almost smooth

while the roughness of the metallization around the disconti-

nuity of the stepped structure is observed. Figure 6(d) shows

a photo from above. The metalizing has been successfully

done over the whole inner conductor. The taper structure

is smooth and is well suited to be metalized. It would con-

tribute to the robustness against fabrication error.
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Fig. 6 Photos of fabricated transitions between a coaxial line and a post-

wall waveguide in PTFE substrate.

Fig. 7 Experimental results of reflection characteristics of transitions be-

tween a coaxial line and a post-wall waveguide in PTFE substrate.

3.3 Measured Frequency Characteristics of the Reflection

In following measurements, the receptacle in the V-

connector is installed in place of the post-wall waveguide.

Reflection coefficients of the transitions themselves are ex-

tracted by using the time-gate function of the vector network

analyzer. Figure 7 shows the measured frequency charac-

teristics of the reflection for the structure (a)–(d). For the

structure (a), a serious increase of reflection is observed in

the measurement; the reflection is larger than approximately

−3 dB although the broad band suppression of the reflection

is predicted in calculation. The short-ended structure (b) has

a very narrow bandwidth, 1.1%, for a reflection less than

−15 dB. The frequency range below −15 dB of the structure

(c) is as wide as 55.6−64.4 GHz (14.7%) while the calcu-

lation predicts well the measured bandwidth. The structure

(d) also provides a wide bandwidth, 7.9 GHz (13.2%). The

discrepancy in (b)–(d) between analysis and measurement

is acceptable so that accurate manufacturing is confirmed.

Fig. 8 Experimental model for transmission characteristics of short-

stepped structure (c) in PTFE substrate.

Fig. 9 Measured transmission characteristics of short-stepped structure

(c) in PTFE substrate.

The structure (c) and (d) fulfill the required bandwidth of

7.0 GHz for a reflection less than −15 dB and can be candi-

dates for millimeter-wave band wireless systems.

3.4 Transmission Characteristics of Short-Stepped Struc-

ture (c)

We fabricated various lengths of straight post-wall waveg-

uides. Each post-wall waveguide is terminated by a few

posts at the both ends and the transformers with the short-

stepped structure (c) are installed as the ports for back-

to-back measurement of the transmission coefficients. Re-

ceptacles are installed on the structure (c) at both ports in

the measurements as shown in Fig. 8. From the measured

transmission characteristics as a function of the waveguide

length, the insertion loss of the transformer and the trans-

mission loss per centimeter are identified. Figure 9 shows

the frequency dependence of the measured transmission loss

of each waveguide, the loss per centimeter and the insertion

loss for the structure (c). The thin lines show the transmis-

sion loss after eliminating the reflection loss of the input

aperture in order to compensate the reflection loss in each

waveguide. The transmission loss increases as the wave-
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Fig. 10 Coaxial line feed post-wall waveguide planar slot array antenna.

Fig. 11 The reflection and gain characteristics of the antenna fed by the

short-stepped structure (c).

guide becomes longer. The loss of the post-wall waveguide

is around 0.13 dB/cm and the insertion loss of the trans-

former only is about 0.13 dB at 60.0 GHz. Assuming 1 cm

as the typical size of the connection between the transformer

and antenna, we can estimate the total connector loss of

about 0.26 dB for the structure (c).

3.5 Overall Reflection and Loss of a Short-Stepped Struc-

ture (c) with a Prototype High Gain Antenna

Overall characteristics of the transformer including a large

sized high gain antenna in the PTFE substrate is demon-

strated. We manufacture a post-wall waveguide planar an-

tenna [1]–[3] fed by the short-step structure (c) as shown

in Fig. 10. A post-wall feed waveguide in the antenna has

several coupling windows to excite a TEM wave in a par-

allel plate waveguide, where slot pairs are arrayed and de-

signed to obtain a uniform aperture distribution. The de-

sign of this feed waveguide is not mature and is still nar-

row band [2], [3]. Figure 11 shows the frequency depen-

dence of the overall reflection at the input port and the gain

of the antenna. The reflection is around −12.2 dB (6.0%

loss) at 60.0 GHz. The peak of the measured antenna gain

Table 3 Bandwidth for reflection less than −15 dB and tolerance to fab-

rication error.

Analysis Experiment Tolerance

Open-ended More than × Poor

15[%]

Short-ended 2.0[%] 1.1[%] Good

Short-stepped More than 14.7[%] Fair

15[%]

Short-taper- 12.8[%] 13.2[%] Fair

stepped

is 27.3 dBi with 58.2% efficiency at 60.0 GHz for the aper-

ture size 40 × 46 mm2. The frequency range in which the

gain is larger than 25 dBi is 59.4−60.9 GHz (2.5%). The

gain loss due to the reflection is about 0.3 dB (100% − 6%

= 94%) around 60 GHz but is much larger otherwise. In or-

der to identify the gain loss due to these, the thin dotted line

in Fig. 11 indicates the antenna gain if not for the reflection

loss. This result reveals that the antenna with the low loss

transformer would have the potential for excellent efficiency

up to 60%, and 3.0% bandwidth lager than 25 dBi. The re-

flection characteristics of the short-stepped transformer only

is also included in Fig. 11. This specific array of the antenna

is too narrow-band to fully utilize the wide band character-

istics of the transformer discussed here.

4. Discussions

Table 3 summarizes the bandwidths of the reflection for

analysis, experiment and the tolerance against fabrication

error upon the transformers in PTFE substrate. The band-

widths are discussed for the reflection less than −15 dB.

The analysis results show broadband frequency character-

istics except for the short-ended structure, while the seri-

ous degradations are observed in open-ended structure in the

measurement since the fabrication of the inner conductor is

crucial. Short-ended, short-stepped and short-taper-stepped

structures have the acceptable agreement with the analysis

results. These structures are well suited to metalizing the

inner conductor in PTFE substrate. The structures (b), (c)

and (d) that penetrate the dielectric substrate are more ad-

vantageous than the structure (a) in terms of process yield

of the inner conductor as well as fabrication cost. In partic-

ular, short-stepped and short-taper-stepped structures give

enough measured bandwidths, 14.7% and 13.2%, respec-

tively.

Overall characteristics of the transformer (c) with the

post-wall waveguide antenna are discussed and demon-

strated experimentally. The 46×40 mm2 size antenna fed by

the short-stepped structure in PTFE substrate gives 27.3 dBi

with 58.2% efficiency at 60.0 GHz. So, the low loss charac-

teristics are confirmed but the bandwidth is narrow mainly

due to the immature design of the feeding waveguide in the

array. Above results support a fine prospect for realizing

high efficiency 60 GHz modules with high antenna gain.
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5. Conclusion

The authors have proposed a millimeter-wave band interface

to a post-wall waveguide through a coaxial structure. The

fabrication tolerance is also discussed for PTFE substrate.

Four kinds of the structures as shown in Fig. 3 are proposed

and discussed. The short-stepped (c) and the short-taper-

stepped (d) structures give 14.7% and 13.2% bandwidths

for a reflection smaller than −15 dB, respectively. We fab-

ricated a 40 × 46 mm2 sized post-wall planar antenna with

the structure (c). The peak of the measured antenna gain

is 27.3 dBi with 58.2% efficiency at 60.0 GHz, though the

bandwidth is narrowed due to the imperfect reflection char-

acteristics of the array. Post-wall antenna design with bet-

ter and wideband reflection characteristics is left for future

study. Feeding structures in PTFE substrate fulfill electrical

and manufacturing demands in millimeter-wave bands.
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