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Figure S1. XRD of the as-prepared material and the material after acid leaching (Co-N-
C). The inset is the magnified XRD pattern of the Co-N-C after acid leaching.
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Figure S2. The Raman spectrum of Co-N-C calcinated at 700 °C.
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Figure S3. N2 adsorption-desorption isotherms curve of Co-N-C. Inset is the curve of pore
size distribution.

Figure S4. TEM image of Co-N-C; inset: the orreonding SA pattern.
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Figure S5. HAADF-STEM image of Co-N-C and the corresponding EDX spectrum from the
indicated region. The Cu signals came from the Cu grid on which the sample was casted.
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Figure S6. Additional spherical aberration-corrected HAADF-STEM images of Co-N-C.
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Figure S7. High resolution XPS of Co-N-C: (a) C 1s and (b) O 1s region.
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Figure S8. (a) Multiple CVs, (b) constant current activation process, and (c) constant
potential activation process of Co-N-C. (d) Polarization curves of Co-N-C after activation.
Inset: Tafel plot derived from polarization curve of Co-N-C activated by chronopotential
method (blue line), the Tafel slope is 44 mV/dec. All the measurements were performed
on a GC electrode.
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Figure S9. Constant current activation process of Co-N-C on a carbon-cloth electrode.
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Figure S10. Tafel plot of Co-N-C on a carbon-cloth electrode after activation, the Tafel

slope is 40 mV/dec.
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Figure. S11. Comparison of overpotential at the current density of 10 mA/cm? and Tafel
slope for the activated Co-N-C modified on different electrode. GC = glassy carbon, CC
= carbon-cloth.
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Figure S12. Oxygen evolution curve (black) of the activated Co-N-C (the red curve is the
theoretical oxygen evolution curve assumed 100% Faradaic efficiency).
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Figure S13. The CVs of Co-N-C after activated in normal KOH (Co-Fe-N-C, blue),
Ni(OH)2 treated KOH (Fe free, red).
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Figure S14. Measurements of double-layer capacitance of blank carbon-cloth electrode
(CC) (a, b) and pristine Co-N-C on CC electrode (Co-N-C/CC) in Fe-free KOH (c, d). CVs
from 1.26-1.34 V at different scan rates are shown for blank CC (a) and pristine Co-N-
C/CC (c). The differences of current densities between charging and discharging process
were plotted versus the scan rate for blank CC electrode (b) and pristine Co-N-C/CC (d).
The calculated double-layer capacitance of blank CC and pristine Co-N-C/CC is
0.311£0.082 and 1.04+0.18 mF/cm?, respectively. Therefore the ECSA of the pristine Co-
N-C is 3.34+0.42 cm?. The measurements were conducted on four different samples for
each electrode.
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Figure S15. Measurements of double-layer capacitance of Co-N-C activated in Fe-free
KOH (a, b) and Co-Fe-N-C (c, d) on CC electrodes. CVs from 1.26-1.34 V at different
scan rate are shown for Co-N-C activated in Fe-free KOH (a) and Co-Fe-N-C (c). The
differences of current densities between charging and discharging process were plotted
versus the scan rate for Co-N-C activated in Fe-free KOH (b) and Co-Fe-N-C (d). The
calculated double-layer capacitance of Co-N-C activated in Fe-free KOH and Co-Fe-N-C
is 2.60£0.27 and 3.20+0.47 mF/cm?, respectively. Therefore the ECSA of the Co-N-C
activated in Fe-free KOH and the Co-Fe-N-C is 8.36+1.84 and 10.29+1.11 cm?,
respectively. The measurements were conducted on four different samples for each
electrode.
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Figure S16. ECSA-normalized activity of pristine Co-N-C (black), Co-N-C activated in Fe-
free KOH (red), in normal KOH (blue) and Fe(lll)-added KOH (pink).

Figure S17. Additional aberration-corrected HAADF-STEM images of Co-Fe-N-C.
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Figure S18. Upper: HAADF-STEM image of Co-Fe-N-C (Fig. 3c in main text) and bottom:
EDX spectrum of indicated region in the HAADF-STEM image. The Cu signals came from
the Cu grid on which the sample was casted.
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Figure S19. Analysis of a typical aberration-corrected HAADF-STEM image of Co-Fe-N-
C (Fig. 3b in the maintext). Some closely-located atom pairs are marked with red circles.
The intensity profiles (e.g., for 1 and 2) indicate that they are possibly Co-Fe dimers. (The
HAADF intensity of each atom would be very similar because of their neighboring atomic
numbers.)
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Figure S20. (a) HAADF-STEM image, (b) elemental EDXS mapping and (c) EDX spectra
of Co-Fe-N-C from an area that contained nanopatrticles. The spectra showed that the
content of Co is higher for the region containing a nanoparticle (1-2) but the content of Fe
is similar to the area without nanopatrticles (1-1). The Cu signals came from the Cu grid
on which the sample was casted.
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Figure S21. XRD of Co-N-C calcinated at different temperatures. The blue arrow
indicated the diffraction peak of (111) facet of metallic Co (Reference code: 00-015-0806).

0.205 nm

Figure S22. HR-TEM image of Co-N-C-900C. The marked distance of the lattice frin
corresponds to (111) planes of metallic Co (Reference code: 00-015-0806).

e F % gt ol

ges

S16



Co-N-C 900C 10 Co-N-C 900C 10

Figure S23. HAADF STEM images and the corresponding EDXS mapping of Co for
Co-N-C-900.

S17



(a) os

— 10 mVis
e — 20mVis
"‘E 0.64— s0mvis
3] — 100 mV/s
< 94— 150mvis
E 77— 200 mvis
2
® 0.2
c
Q
=) . |
= 0.04 — |
g
3 -0.24
0.4
1.26 1.28 1.30 1.32 1.34
(C) Potential (V vs. RHE)
60
1 Co-N-C-900
e %091 —— Co-N-C-700
Q 4
E 40
>
2 30
Q
g |
fg 20
l=- 4
© 404 /
0
1.44 1.48 1.52 1.56 1.60

Potential (V vs. RHE)

(b) 02
- i [Equaton  y=a+bx

E | Intercept 0.01685 + 0.00347

o 0.6 ;S\npe 0.00327 + 3.0921E-5

EE | R-Square(cOD) 0.99964

2

£ 0.4

c

Q

o

g 0.2-

5

(8]

0.0+
1 T T 1 1
0 50 100 150 200

(d) Scan rate (mV/s)

E s

<

£

< 51 —— Co-N-Cc-900

= Co-N-C-700

£ 44

1)

o°

£

(%]

T 24

Q

N

(1]

g 1

S

2

< 0

8 T T L] T

w  1.44 1.48 1.52 1.56 1.60 1.64

Potential (V vs. RHE)

Figure S24. (a, b) Measurements of double-layer capacitance of Co-N-C-900 after
activation in normal KOH. (a) CVs from 1.26-1.34 V at different scan rates; (b) The
differences of current densities between charging and discharging process were plotted
versus the scan rates. The calculated double-layer capacitance of activated Co-N-C-900
is 1.65+0.14 mF/cm?. Therefore the ECSA of the activated Co-N-C-900 is 5.30+1.30 cm?.
The measurements were conducted on four different samples (c) LSVs and (d) ECSA-
normalized LSVs of Co-N-C calcinated at different temperature after activation in normal

KOH.
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Figure S25. The current density at 1.55 V vs. RHE for the catalysts with different Fe
loadings. The circles with different colors pointed the samples activated in different
electrolyte. Orange: activated in 1M KOH for 2h. Green: activated in 1M KOH until
stabilized performance. Blue: activated in 1M KOH added with 10 ppm Fe3+ until stabilized
performance.
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Figure S26. LSVs of Co-Fe-N-C before and after electrolysis in 1M Fe free KOH for 2h.
The activity can be recovered by re-activating the catalyst in fresh 1M KOH.
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Figure S27. EXAFS r-space spectra of operando Co K-edge for Co-Fe-N-C sample
(experimental data; color circle) and the corresponding fitting (red line). Fitting structural
parameters are gathered in Table 1 and S3.

S20



Figure S28. The proposed, indicative structure of the Co-N-C sample taking account of
the results from the XAS study.
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Figure S29. Fourier transform Co K-edge EXAFS spectra of as-prepared Co-N-C, Co-Fe-N-C
(after activation) and Co-Fe-N-C after OER for 5 hours in comparison with Co reference samples.
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Figure S30. (a) XANES spectra of Fe K-edge for Co-Fe-N-C (after activation) and references
including iron oxides and foil. (b) Magnified XANES for the transition from 1s to 4p.
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condition path R(A) N a?(AY R factor

Fe-O Co-Fe-N-C 198(4) 5.11(5) 0.0086(5) 9.300
Co-Fe-N-C
Fe-Co (Fe edge) FeCo  2.69(6) 0.59(4) 0.0020(5)
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Figure S31. EXAFS spectra of Fe K-edge for Co-Fe-N-C (after activation) and references
including iron oxides and foil. EXAFS r-space spectra of Fe K-edge for Co-Fe-N-C sample
(experimental data; color circle) and the corresponding fitting (red line). Fitting structural
parameters are gathered in Table.
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Figure S32. Potential-dependent TOFs of Co-Fe-N-C (blue curve) and activated Co-N-C-900 (in
normal KOH, red curve). The solid lines are based on the loadings of dimetric Co-Fe sites and
the dashed lines are based on the loadings of total metals (Co+Fe). The former represents the
true activity while the latter is an indicative TOF.
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Table S1. The performance of the activated Co-N-C (Co-Fe-N-C) modified on different

electrode.
Type of the electrode Overpotential @ 10 mA/cm? (mV) Tafel Slope (mV/dec)
Glassy carbon 360 + 8 44 £ 3
Carbon-cloth 321 5 402

Table S2. The performance of Co-N-C before and after activation in different KOH (1M).

Overpotential @ 10 mA/cm? (mV) | Tafel Slope (mV/dec)
Before activation 495419 724
Activated in Fe-free KOH 443415 5814
Activated in normal KOH 32115 4012
Activated in KOH with Fe (10 ppm) 309+4 37+2
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Table S3. Structural parameters of Co-N-C and Co-Fe-N-C extracted from operando Co
K-edge EXAFS refinement for as-prepared Co-N-C and after activation as well as under
OER for various duration.

condition path R (A) N o2 (A?) R factor
' Co-C 1.59(6) 1.09(4) 0.0096(8) 9.901
Co-N 1.87(4) 3.35(7) 0.0087(4)
Co-O 2.19(4) 0.74(6) 0.0040(9)
As-prepared
Co-C1 2.90(5) 3.41(9) 0.0099(8)
Co-C2 3.19(4) 4.00(11) 0.0094(9)
Co-Fe
I Co-C 1.37(8) 0.41(5) 0.0089(9) 3.926
Co-N 1.63(4) 1.52(5) 0.0097(4)
Co-0 1.87(4) 3.19(4) 0.0054(4)
In electrolyte
Co-C1 2.79(6) 2.30(5) 0.0073(9)
Co-C2 3.33(5) 2.19(8) 0.0076(5)
Co-Fe
I Co-C 1.43(6) 0.46(6) 0.0093(5) 3.191
Co-N 1.64(4) 1.51(6) 0.0092(4)
Co-0 1.83(6) 3.31(5) 0.0061(4)
Activation
Co-C1 2.83(5) 2.21(7) 0.0074(8)
Co-C2 3.41(7) 2.10(8) 0.0084(9)
Co-Fe 2.51(4) 0.25(5) 0.0099(7)
I 45 min Co-C 1.46(4) 0.47(4) 0.0095(6) 2.883
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Co-N 1.65(5) 1.51(6) 0.0083(8)
Co-O0 1.84(4) 3.43(8) 0.0064(4)
Co-C1 2.83(6) 2.27(6) 0.0091(9)
Co-C2 3.41(7) 2.17(8) 0.0097(9)
Co-Fe 2.61(5) 0.25(4) 0.0084(4)
Co-C 1.45(6) 0.43(4) 0.0026(6) 4.034
Co-N 1.67(5) 1.53(4) 0.0061(7)
Co-O0 1.87(4) 3.42(5) 0.0050(4)
90 min
Co-C1 2.83(6) 2.28(6) 0.0053(7)
Co-C2 3.41(7) 2.15(7) 0.0046(9)
Co-Fe 2.63(7) 0.26(6) 0.0096(6)
Co-C 1.49(4) 0.45(1) 0.0033(7) 4.015
Co-N 1.66(4) 1.54(6) 0.0024(5)
Co-O0 1.85(5) 3.47(6) 0.0053(4)
135 min
Co-C1 2.83(4) 2.24(6) 0.0038(6)
Co-C2 3.40(7) 2.17(8) 0.0073(9)
Co-Fe 2.63(5) 0.26(4) 0.0061(5)
Co-C 1.41(6) 0.45(4) 0.0093(7) 3.043
Co-N 1.69(5) 1.54(4) 0.0095(4)
Co-0 1.86(4) 3.23(6) 0.0048(4)
180 min
Co-C1 2.89(4) 2.14(5) 0.0083(7)
Co-C2 3.35(8) 2.10(8) 0.0066(9)
Co-Fe 2.71(4) 0.27(5) 0.0097(6)

S28



Table S4. Comparison of OER activity of Co-Fe-N-C with other OER catalysts based on

nanomaterials based on 1st transition metals.

Exfoliated CoFe LDH

Catalysts Electrolyte Overpotential Tafel slope TOF (s) Reference
(mV) @ 10 (mV/dec) /overpotential
mA/cm? (mV)

Co-N-C activated* 1 M KOH 321 40 12/350 This work.
CoOOH nanosheet 1 M KOH 300 38 0.09/340 1
Fe adsorbed CoO 1 M KOH 309 28 1.6/350 2
CoAl LDH-graphene 1 M KOH 252 36 1.14/350 3
FeO clusters on Ni foam 1M KOH 215 34 0.82/270 4
NiFe LDH-rGO 1 M KOH 207 39 0.99/300 5
NiFe LDH-CNT 1 M KOH 245 31 0.56/300 6
NiFeOy 1 M KOH 297 37 1.9/300 7
Exfoliated NiFe LDH 1 M KOH 301 40 0.11/300 8
Plasma-assisted 1 M KOH 267 38 4.78/300 9

* In a KOH adding with 10 ppm Fe(lll), the overpotential is 309 mV (@10 mA/cm?) while the Tafel slope is 37 mV/dec.

Table S5. Comparison of OER activity of Co-Fe-N-C with other single-atom catalysts

and the catalysts based on sub-nano clusters.

Catalysts Electrolyte Overpotential Tafel slope TOF (s™) Reference
(mV) @ 10 (mV/dec) /overpotential
mA/cm? (mV)

Co-N-C activated* 1 M KOH 321 40 12/350 This work.
Co-g-CsNs-CNT 1 M KOH 370 62 - 10
Co-N,S-graphene 1 M KOH 370 62 0.27/350 1
Plasma treated ZIF-67 1 M KOH 319 70 0.082/320 12
Plasma treated ZIF-67 1 M KOH 310 54 0.462/300 i
Fe-N,S-CNT 1 M KOH 370 82 - i
Nis(PET)s 0.1 MKOH 330 38 - 1
Nis(PET)12 0.1 MKOH 430 69 10/470 16
Ni-NHGF 1M KOH 331 63 0.72/300 i
Mn-GO 1 M KOH 337 55 - 18

* In a KOH adding with 10 ppm Fe(lll), the overpotential is 309 mV (@10 mA/cm?) while the Tafel slope is 37 mV/dec.
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