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Abstract— We consider here the problem of allocating variable
length orthogonal codes in an ad hoc network based on CDMA.
We consider a snapshot version of the problem at some instant. It
had been proved earlier that even for a static set of communica-
tions and topology the problem is intractable. A greedy algorithm
is stated to provide a bounded approximation to the throughput
maximizing optimal allocation. We present a simple distributed
code allocation protocol based on the greedy approximation.
Simulation experiments show the enhanced throughput obtained
by our protocol as compared to other code allocation schemes.

I. INTRODUCTION

Multi-access schemes allow multiple transmitters to share
the spectrum by proper allocation. Code Division Multiple
Access allows all terminals to use the entire bandwidth at the
same time and provides flexibility and graceful degradation to
the system. If orthogonal variable spreading factor codes are
being used for spreading then the use of smaller length codes
provides larger data rates and hence should be preferred to
achieve greater aggregate throughput. But the number of such
mutually orthogonal codes decreases with decreasing length of
the codes. Hence, there is a need to spatially reuse codes, i.e.,
codes need to be reused at terminals which are not in hearing
range of each other. But allocation of the same code to multiple
terminals gives rise to the possibility of space and time overlap
of two or more packet receptions on the same code, called a
collision or interference, which results in corrupted bits being
received at the receiver.

Collisions increase the number of retransmissions and de-
crease throughput. In [1], interference has been described as
either being direct or secondary. Direct interference occurs
when two nodes simultaneously initiate transmissions to each
other. Secondary interference occurs at a receiver due to si-
multaneous transmissions by two transmitters who cannot hear
each other. They proposed a protocol which allocates a code
to each terminal which is different from the codes allocated to
its two-hop neighbors. This can be seen to eliminate collisions
but requires a large number of codes in the worst case.

The code allocation problem for eliminating secondary
collisions has been shown to be NP-Complete [2] and therefore
several heuristics solutions have been presented [2], [3]. Due
to the known intractability of the problem there has been little
work on bounding the worst case behavior of code allocation
techniques and none on the increased throughput obtained by
using codes of smaller length while doing code allocation.

In fact, the use of variable length codes allows optimal
use of the radio spectrum allowing the code allocation to be
independent of worst case scenarios that might exist locally.
If we were to use fixed length codes, the smallest length of
the code would be dominated by the minimum required at any
place in the network. Suppose some part of the network had
an abnormally high density of terminals. Then the length of
the code used here would be extremely large and since the
codes are fixed length, the throughput in the whole network
(which is related to the length of the codes), would be low.
On the other hand, if we were to use variable length codes
then we could allocate larger length codes in this part of the
network and use shorter lengths in parts where the density was
low, thus achieving greater throughput. The use of orthogonal
variable length codes (OVSF codes) in W-CDMA has been
considered in [4], [5], [6], but with an emphasis on reducing
the blocking probability[4] in single hop networks and not for
increasing throughput.

In this paper, we propose a distributed allocation proto-
col that achieves an approximate solution to the throughput
maximization problem in multihop ad hoc networks. Using a
graph theoretic approach we have shown the equivalence of
this problem to a variant of graph coloring which we call the
range sum of a graph. A greedy algorithm for the range sum
is used as the basis for designing the protocol.

The rest of the paper is organized as follows: In Section
II, we present the network model and assumptions. This is
followed by the problem formulation in Section III. Then in
Section IV we introduce the range sum of a graph. In Section
V we present techniques to allocate codes for maximizing
aggregate throughput based on the approximate solution to the
range sum problem. In Section VI we present the results of the
simulation experiments to demostrate the superior throughput
performance of our protocol. Section VII concludes the paper.

II. NETWORK MODEL AND ASSUMPTIONS

Consider a multihop ad hoc network consisting of portable
terminals communicating through a common wide-band trans-
mission channel using CDMA. A symmetric connectivity
channel is assumed. Receiver terminals are equipped with the
facility to broadcast the code on which they are receiving their
transmission. This is done on a broadcast channel (time slot)
during the Medium Access Control layer ACK phase.
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Fig. 1. Tree structured generation of Orthogonal Variable Spread Factor
codes

A CDMA system with code reuse is prone to the problem
of secondary interference. Two possible situations in which
such interference occurs, as observed in [1], is when there
exists a receiver B which can hear transmissions from two
transmitters A, C, which cannot hear each other and both are
transmitting on the same code c. In both situations (one in
which A and C are transmitting to B and the other when the
receivers are different), a collision occurs at B. In a dynamic
code allocation scheme if each transmitter were to observe the
codes being used in its neighborhood before deciding its own
code then there would have been no collisions.

A. Spreading Codes:

We assume that Orthogonal Variable Spread Factor (OVSF)
codes are being employed for variable rate spreading. A tree
structured method for generating such codes was proposed in
[7].

The ith code at level N − 1, CN−1(i), generates two
codes, CN (2i) = CN−1(i) ⊕ CN−1(i) and CN (2i − 1) =
CN−1(i) ⊕ CN−1(i), at level N . Here ⊕ and (·) denote
the concatenation and bitwise inversion operators respectively.
OVSF codes allow us to allocate variable spread factor codes,
resulting in variable data rate allocation to the terminals, while
still maintaining orthogonality. A pair of (possibly different
length) codes in this set are orthogonal to each other except
when one is derived from the other.

III. PROBLEM FORMULATION

An ad hoc network can be modeled as an undirected graph
Gtopo = (V,E), called the topology graph, where the set of
vertices V = {1, . . . , n} represent the set of terminals with an
edge between two vertices iff the corresponding terminals can
receive a transmission from each other. To analyse the optimal
code allocation problem we consider the network at some
instant and call the topology at that instant a snapshot. We
construct a new graph called the communication graph which
captures the set of communicating entities and the interfering
sets for a particular snapshot. We will later show that even for
this static instance the code allocation problem is intractable.
Therefore an approximate solution is required.
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Fig. 2. (a) A snapshot and a set of communications. The transmitters are
shown by filled black nodes and their corresponding receivers are hollow and
connected by bold black lines. Dashed lines denote entities within radio range.
(b) The communication graph. It can be easily verified that the assignment of
OVSF codes as shown in the figure maximizes throughput.

A. The Communication Graph

Let us denote by Gtopo = (V,E), the topology graph.
Then the vertex, V ′, and edge, E′, sets in the communication
graph, Gcomm = (V ′, E′, t0), for some set of transmitters
and receivers which are active at time t = t0, are defined as
follows:

• V ′ = {v(u,v) | u, v ∈ V and u is a transmitter and v its
corresponding receiver at time t = t0}

• E′ = {(v(u,v), v(p,q)) | iff (u, q) ∈ E or (p, v) ∈ E}

In an ad hoc network, the problem of allocating variable
length codes with a throughput maximization criterion can
be formulated as follows: Reduce the topology graph of the
network, given a set of communicating transmitter-receiver
pairs, to the communication graph. Since adjacent vertices in
the communication graph represent pairs of entities which have
to be assigned different codes, this results in a simple instance
of graph coloring. But the length of the code allocated to the
nodes in this graph also determines the throughput achieved
by using a code allocation scheme at that particular instant. An
assignment of codes which results in the maximum possible
throughput for this snapshot is called an optimal allocation.
Hence the code allocation problem is to assign codes such
that adjacent pairs receive orthogonal codes with a throughput
maximization criterion.

Example Let us consider the topology graph as shown in
Figure 2a. The bold lines connect communicating entities and
the dashed lines connect terminals which can hear each other.
It can be easily verified that the assignment of orthogonal
OVSF codes as shown in Figure 2a will lead to the maximum
throughput for this set of communications. If we merge
each transmitter-receiver pair into a vertex to construct the
communication graph, as shown in Figure 2b, then the problem
reduces to a modified instance of coloring. In addition to
coloring the nodes with orthogonal codes (different colors),
we also require that the codes be assigned in such a manner
that the throughput is maximized in the network.
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Fig. 3. Example graph and a coloring for its chromatic sum.

IV. THE σ−RANGE SUM OF A GRAPH

To facilitate the theoretical analysis of the variable length
code allocation problem we first define the σ−range sum of
a graph.

A. Graph Theoretic Definitions and Notation

For a given undirected graph G = (V,E), the order and size
of the graph are the number of vertices and edges respectively.
The degree of a vertex is the number of edges incident on it
and let ∆ and d̄ denote the maximum and average degree of
the graph.

A coloring of a graph is an assignment of colors from a
specified set to the vertices of a graph. A coloring is called
proper if no two adjacent vertices share the same color. The
chromatic number of a graph is defined to be be the minimum
number of colors which are required to achieve a proper
coloring of the graph from the set of natural numbers. The
chromatic sum [8] of a graph is the minimum sum of the colors
of the vertices over all colorings of the graph with natural
numbers. The graph shown in Figure 3 has been colored with
natural numbers and the chromatic number can easily be seen
to be 3 and the chromatic sum to be 9 (=1+2+3+2+1) which
is obtained by the sample coloring shown in the figure.

B. The σ−Range Sum

We now introduce a variant of the chromatic sum of a
graph. Instead of coloring the nodes with colors from the
set of natural numbers, we instead color the vertices with
ranges. Given a parameter σ, the ranges used for coloring are
obtained recursively, by equally subdividing the line segment
[0, 1) into σ equal parts at each step of the recursion. We
color the nodes with these ranges in a manner such that no
two adjacent nodes are colored with ranges having a non zero
intersection. More formally:

Definition Define the sets Rσ(k) with parameters σ, k recur-
sively as:

• Rσ(0) = {(0, 1]}
• Rσ(k + 1) =

{[
l(r) + (t − 1) ∗ |r|

σ , l(r) + t ∗ |r|
σ

)

∣∣∣t ≤ σ, t ∈ N, ∀r ∈ Rσ(k)
}

where l(r) denotes the left end of the range r.

For notational convenience we shall refer to the ith element
of Rσ(k) as Rσ(k, i) and denote the set of Rσ(k)’s as �σ i.e.
�σ = limk→∞

⋃k
i=0 Rσ(k).

Example Figure 4 shows the hierarchical organization of the
ranges in �2. The ith level in this range tree corresponds to
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Fig. 4. Graphical illustration of the range set �2. Overlapping ranges are
shown connected and form a complete binary tree. For simplicity, the subscript
2 has been omitted.

the set R2(i). Moreover the parameter σ(=2 in this case) can
be visualized as the degree of branching of this range tree.

Definition Let G = (V,E) be a graph with vertex set V and
edge set E. A proper σ−range coloring is a coloring of the
nodes with adjacent nodes being colored with non-intersecting
ranges from �σ; i.e. r : V → �σ such that r(u) ∩ r(v) = φ
whenever (u, v) ∈ E.

We define the σ−range sum of the graph G, denoted by
Γσ(G), to be the maximum sum of the lengths of ranges over
all proper σ−range colorings of G.

Example Consider the problem of 2-range coloring the graph
shown in Figure 5. For �2, the length of a range in R(1,−)
(p and q) is 0.5 and in R(2,−) (r and s) is 0.25.

This example illustrates the difference of the range sum
problem from the chromatic sum and chromatic number prob-
lem. The chromatic number and sum have been observed to be
3 and 9 respectively. Both the assignments in Figures 5b and
5c are proper range coloring with the only difference being in
the range assigned to the vertex v5. Figure 5b shows that the
graph can be properly range colored using only three ranges
but it can easily be verified that any coloring with three ranges
cannot achieve a sum of more than 1.75 (= 2|r| + 2|p| + |s|)
in the assignment shown. While on the other hand if a fourth
range is used then a larger sum of 2.0 (= 2|p|+ |r|+ |q|+ |s|)
can be achieved and it can be verified that this is the range
sum for this graph.

C. Computing the Range Sum for arbitrary graphs

In [9], we show that computing the range sum for arbitrary
graphs is an NP-Complete problem. Hence an approximation
algorithm is required. The following is a simple greedy algo-
rithm to proper range color a graph. The algorithm processes
vertices in an arbitrary order and assigns a range with the
maximum possible length such that all adjacent vertices which
have not been assigned a range are left with some subset of
(0, 1] which can be used.

1387

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on September 30, 2009 at 03:28 from IEEE Xplore.  Restrictions apply. 



r = R(2,2) s = R(2,3)

q = R(1,1)p = R(1,0)

r

s

p

p

r

s

p

p

v
v

v

v

1 4

5

3

v
2

v

v

v
1 4

5

3

v

v

2

q

r
(b)

(c)

(a)

Fig. 5. (a) The range tree for σ = 2 upto the relevant levels. (b) A proper
range coloring using just 3 colors. (c) A range coloring which uses 4 ranges
and achieves the 2-range sum for this graph.

Algorithm Greedy-Range-Color(G, σ):
Input: A undirected graph G = (V,E) and integer parameter

σ.
Output: A proper σ−range coloring r : V → �σ of G.
For each node v ∈ V maintain:

• r(v), the range(color) assigned to v, initialized to φ
• Unused(v), the subset of [0, 1) not being used to color

any node u adjacent to v; or more formally

Unused(v) = [0, 1) −
⋃

∀u;(u,v)∈E

r(u)

Algorithm:

Step 1: Determine an ordering of the vertices v ∈ V ,
v1, v2, . . . , vn.

Step 2: Consider the vertices in the order determined above.
Let the current vertex be vr. Find the least value of
t such that

• Rangeσ(t) ∩ Unused(vr) = Rangeσ(t) and
• Unused(u) − Rangeσ(t) �= φ, ∀u satisfying

(u, vr) ∈ E and r(u) = φ

Color vr with Range(t), i.e r(vr) = Rangeσ(t)
and update Unused(u) = Unused(u) −
r(vr) ∀u, (u, vr) ∈ E. Repeat until there is
some uncolored vertex.

In [9] we show that the coloring computed by Greedy-
Range-Color for any G is a σ

σ+d̄
σ−1 -approximation to Γσ(G).

Example Consider again the graph shown in Figure 5. The
lexicographic order of the ranges in �2 is R(0,0), R(1,0),
R(1,1), R(2,0), R(2,1), R(2,2), R(2,3), R(3, 0) . . .. And con-
sider the ordering of the vertices as shown in the figure itself. It
can be easily verified that the range coloring that is produced
by Greedy-Range-Color is the same as shown in Figure 5b
which is coincidently optimal.

V. CODE ALLOCATION FOR MAXIMIZING THROUGHPUT

As discussed in Section II, the problem of code allocation
such that there are no collisions reduces to coloring a node
(representing a pair of communicating entities in the topology

graph) in the communication graph, such that their immediate
neighbors are not using the same color (code). For codes taken
from the OVSF code set, the following lemma holds:

Lemma 5.1: The problem of maximizing the aggregate
throughput by optimal code allocation is equivalent to finding
the 2-range sum of the communication graph, Gcomm.

A. Distributed Code Allocation using Greedy Range Coloring
(DCA-GRC)

In this section we shall refer to codes and ranges (⊆ [0, 1))
interchangeably using the one-to-one mapping from the OVSF
code tree to the range tree for �2. When the network shows
variation in the topology structure, use of OVSF codes allows
the use of smaller spreading factor codes in parts with less
density and hence increased aggregate throughput for that
region. We now present a distributed version of the greedy
range coloring algorithm outlined in Section IV-C [9]. By
Lemma 5.1, this amounts to finding an allocation which
maximizes throughput.

1) Protocol Idea and Overview: To formulate a distributed
version of Greedy-Range-Color observe that in Step 2 of the
algorithm only local information is required at each node
which is being assigned the code. Therefore it remains to find
a distributed implementation of Step 1. Since the ordering of
the vertices is not based on any criterion, we can as well
allow all nodes to choose their own codes locally, as long as
there are no codes being negotiated in the neighborhood. This
can be easily ensured by a simple implicit locking phase. We
now describe the procedure executed by each node (a pair of
transmitter receiver after they have negotiated the codes being
used in their neighborhood during the MACK phase) in the
communication graph.

Algorithm Code-Negotiation:
1) Construct a tree, Tcode, of the codes that are being used,

i.e. for each code that is being used in the neighborhood
construct the appropriate leaf in the tree along with any
nodes required in the path to the root code. Label all
nodes in Tcode as used

2) Binarize Tcode, i.e. for each used node in the tree, add
unused children until all used nodes have two children
and all unused nodes are leaves.

3) For each leaf node, l, (which is unused) calculate

suitability(l) =
1

code len(l)
−

∑ n

2 ∗ code len(v)
(1)

where the sum is taken over all nodes in the tree which
are ancestors of l and n is the number of neighbors using
the code corresponding to that node in the OVSF code
tree.

4) Find the leaf node, lmax, with largest value of
suitability(l). Resolve ties in a left to right manner.
Choose the code corresponding to lmax.
When the path from lmax to the root has some used
codes then SPLIT messages need to be sent to neigh-
bors that are using those codes. A SPLIT message is
essentially an instruction to the terminal to start using
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Fig. 6. Construction of Tcode. The number beside each node denote the
number of neighbors using the code corresponding to this node.
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Fig. 7. Tcode after binarizing. All unused leaves have been populated with
their suitability values.

one of the descendants of the code currently being used,
i.e. to start communicating at half the current bit rate.
The new code, out of the possible two, that the neighbor
will use will depend on the direction of split required to
vacate the path to the root.

Example Consider the codes in use to be the ones which
are shown as dark nodes in the OVSF code tree in Figure 6.
The hollow nodes are the ones added to create a path from
each used node to the root. Figure 7 shows the tree after leaf
nodes have been added. Node 5 is then chosen as lmax and
the neighbor using the code corresponding to node 2 will start
using 4.

2) Throughput Performance of the Protocol: We now
present a bound on the throughput resulting from a code
allocation produced by DCA-GRC.

Lemma 5.2: Given a set of communications, algorithm
DCA-GRC produces an initial allocation which is proper and
an 22d̄−1-approximation to γmax, where d̄ is the average
degree in the topology graph, Gtopo, and γmax is the maximum
possible aggregate throughput for the given set of communi-
cations.

Proof: A formal proof is provided in [9].
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Fig. 8. Throughput performance as the range of the nodes is increased.

VI. SIMULATION MODEL AND RESULTS

Simulations were done using random topologies to evaluate
the performance of DCA-GRC and the throughput obtained
was compared to the case when an off-line static code al-
location had been done. For the off-line static allocation, we
consider the greedy algorithm presented in [3] and assume that
a centralized entity decides the codes which are communicated
to the nodes without any overhead. For Gtopo which does not
change with time, this means that we are ignoring the network
setup time; for a network with mobile nodes, this means that
we are ignoring the losses incurred due to collisions. The
simulation were done with the following parameters:

• Packet burst arrival process is Poisson with mean of the
interarrival times being λ.

• Packet burst size is uniformly distributed between 1 to 5
packets, each of size 1 KB.

• The physical layer is assumed to provide a communica-
tion channel with a maximum bit rate of 11Mbps (The
base bit rate provided by the IEEE 802.11b standard)

• The nodes are randomly distributed in a square region of
unit area and their range of communication is represented
as a fraction of the length of the side.

Using an event driven simulator we simulated the packet
transmission for the above parameters. For DCA-GRC each
packet burst transmission is preceded by a code negotation
phase in which the nodes execute Code-Negotiation to decide
the code to use. No such overhead is incurred in the case of
static allocation. A packet is assumed to be corrupted and lost
if any other transmitter in the range of the receiver transmitted
in the duration of the packet using a non-orthogonal code.
For our current simulation we omit the locking procedure
that is supposed to be called before code negotiation. This
causes a few rare collisions which cause a slight degradation
in performance of our protocol.

In Figure 8, we vary the range of the terminals (which is
expressed as a fraction of the length of one side the area) such
that the network topology varies from a set of isolated nodes
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Fig. 9. Throughput performance as the number of nodes in the network
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to fully connected. In effect we are varying the transmit power
of the terminals from a very low value to a value which results
in a single hop network. In these simulations λ, the mean of
the interarrival time, is taken to be 150ms, which ensures
that the nodes almost always have packets in queue. Since the
number of terminals is fairly large (50), the static allocation
throughput for the fully connected topology is two orders
of magnitude lower than what is achieved by DCA-GRC
since its performance only depends on the number of active
communications in the neighborhood. On the other extreme,
both protocols show a steep rise in throughputs obtained when
the average degree in the network increases from zero. This is
because with an average degree of zero the network consists
of a set of isolated nodes and aggregate throughput is zero
while the maximum throughput is obtained when the average
degree is around 2, since nodes are not interfering with each
others’ transmission and yet are connected enough to be able to
flush incoming packets in time. The static allocation protocol
shows a step wise degradation as the maximum degree (which
dominates the length of codes being used) descends a level in
the code tree.

In Figure 9, we see a similar plot as we increase the
number of nodes in the network. Here the range has been
fixed at a value of 0.2 while λ is still taken to be 150ms.
DCA-GRC again shows a steady performance while the plot
for static allocation decreases in steps. Since the number of
codes at some level in the code tree is twice that in the

previous level, we see a sharp fall in the throughput for
static allocation. This is because an increase in the average
degree does not have any effect till the codes are chosen from
the same level in the code tree. Whenever the length of the
code doubles, which happens on approximately doubling the
maximum degree the throughput shows a sharp decrease. On
the other hand, our dynamic code allocation scheme is never
really affected in its performance since it is dependent on the
number of communications in progress which is independent
of the maximum degree in the network. The slight downward
curve is expected since a larger number of nodes implies larger
interference.

VII. CONCLUSIONS

In this paper we have introduced the concept of range
coloring and the range sum of a graph. Based on a greedy
approximation algorithm for the range sum we have presented
a distributed code allocation scheme. The performance of this
allocation scheme has been evaluated and found to be much
better than static allocation schemes which have been proposed
earlier.
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