
A Coded Generalization of Selective Repeat ARQ

Jason Cloud

Research Laboratory of Electronics

Massachusetts Institute of Technology

Cambridge, MA USA

email: jcloud@mit.edu

Douglas Leith

School of Computer Science and Statistics

Trinity College

Dublin, Ireland

email: doug.leith@tcd.ie

Muriel Médard

Research Laboratory of Electronics

Massachusetts Institute of Technology

Cambridge, MA USA

email: medard@mit.edu

Abstract—Reducing the in-order delivery, or playback, delay
of reliable transport layer protocols over error prone networks
can significantly improve application layer performance. This
is especially true for applications that have time sensitive con-
straints such as streaming services. We explore the benefits of
a coded generalization of selective repeat ARQ for minimizing
the in-order delivery delay. An analysis of the delay’s first two
moments is provided so that we can determine when and how
much redundancy should be added to meet a user’s requirements.
Numerical results help show the gains over selective repeat
ARQ, as well as the trade-offs between meeting the user’s
delay constraints and the costs inflicted on the achievable rate.
Finally, the analysis is compared with experimental results to
help illustrate how our work can be used to help inform system
decisions.

I. INTRODUCTION

Reliable transport protocols are used in a variety of settings

to provide data transport for time sensitive applications. In fact,

video streaming services such as Netflix and YouTube, which

both use TCP, account for the majority of fixed and mobile

traffic in both North America and Europe [1]. In fixed, wireline

networks where the packet erasure rate is low, the quality of

user experience (QoE) for these services is usually satisfac-

tory. However, the growing trend towards wireless networks,

especially at the network edge, is increasing non-congestion

related packet erasures within the network. This can result

in degraded TCP performance and unacceptable QoE for time

sensitive applications. While TCP congestion control throttling

is a major factor in the degraded performance, head-of-line

blocking when recovering from packet losses is another. This

paper will focus on the latter by applying coding techniques to

overcome lost packets and reduce head-of-line blocking issues

so that overall in-order delivery delay is minimized.

Head-of-line blocking issues result from using techniques

like selective repeat automatic-repeat-request (SR-ARQ),

which is used in most reliable transport protocols (e.g., TCP).

While it helps to ensure high efficiency, one problem with SR-

ARQ is that packet recovery due to a loss can take on the order

of a round-trip time (RTT ) or more [2]. When the RTT (or

more precisely the bandwidth-delay product (BDP )) is very

small and feedback is close to being instantaneous, SR-ARQ

provides near optimal in-order delivery delay. Unfortunately,

feedback is often delayed due to queuing and large physical

distances between a client and server. This can have major

implications for applications that require reliable delivery with

constraints on the time between the transmission and in-order

delivery of a packet. As a result, we are forced to look at

alternatives to SR-ARQ.

This paper explores the use of a systematic random linear

network code (RLNC), in conjunction with a coded gen-

eralization of SR-ARQ, to help reduce the time needed to

recover from losses. Redundancy is added to the original

data stream by injecting coded packets at key locations. This

helps reduce delay by overcoming packet losses and limiting

the number of required retransmissions. However, correlated

losses or incorrect information about the network can result

in the receiver’s inability to decode. Feedback and coded

retransmissions are used to ensure that this does not happen.

The following paper will provide the answers to two ques-

tions: when should redundant packets be inserted into the

original packet stream to minimize in-order delivery delay;

and how much redundancy should be added to meet a user’s

requested QoE. These answers will be provided through an

analysis of the in-order delivery delay as a function of the cod-

ing window size and redundancy. We will then use numerical

results to help determine the cost (in terms of rate) of reducing

the delay and as a tool to help determine the appropriate coding

window size for a given network path/link. While an in-depth

comparison of our scheme with others is not within the scope

of this paper, we will use SR-ARQ as a baseline to help show

the benefits of coding at the transport layer.

The remainder of the paper is organized as follows. Section

II provides an overview of the related work in the area

of transport layer coding and coding for reducing delay.

Section III describes the coding algorithm and system model.

Section IV provides the tools needed to analyze the proposed

scheme; and an analysis of the first two moments of the in-

order delay are provided in Sections V and VI. Furthermore,

the throughput efficiency is derived in Section VII to help

determine the cost of coding. Numerical results are finally

presented in Section VIII and we conclude in Section IX.

II. RELATED WORK

A resurgence of interest in transport layer coding has

taken place to help overcome TCP’s poor performance in

wireless networks. Sundararajan et. al. [3] first proposed TCP

with Network Coding (TCP/NC). A coding shim is inserted

between the TCP and IP layers that introduces redundancy into

the network. This spoofs TCP into believing the network is

error-free. Loss-Tolerant TCP (LT-TCP) [4], [5], [6] is another

approach using Reed-Solomon (RS) codes and explicit conges-

tion notification (ECN) to overcome random packet erasures

and improve performance. In addition, Coded TCP (CTCP)

[7] uses RLNC [8] and a modified additive-increase, mul-



tiplicative decrease (AIMD) algorithm for maintaining high

throughput in high packet erasure networks. These proposals

have shown coding can help increase throughput, but only

anecdotal evidence has been provided showing the benefits

for time sensitive applications.

On the other hand, a large body of research investigating

coding delay in different settings has taken place. Most of

these works can be summarized by Figure 1. The rows and

columns of each matrix in the figure indicate the time and

the specific information/uncoded packets, pi, that need to be

transmitted respectively. The composition of the transmitted

packet is shown by the dots in each row, different color dots

indicate specific generations, horizontal lines show the time

when feedback about a specific generation is obtained, and the

red crosses show lost packets. Furthermore, the time packets

are delivered, in-order, to the client application is shown by

the double arrows on the right-hand side of each matrix.

The coding delay of chunked and overlapping chunked

codes [9] (shown in Figure 1(a)), network coding in time-

division duplexing (TDD) channels [10], [11], [12], and net-

work coding in line networks where coding also occurs at

intermediate nodes [13] is well understood. In addition, a non-

asymptotic analysis of the delay distributions of RLNC [14]

and various multicast scenarios [15], [16], [17] using a variant

of the scheme in Figure 1(b) have also been investigated.

The research that looks at the in-order delivery delay is

provided in [2] and [18] for uncoded systems, while [19],

[20], and [21] considers the in-order delivery delay for non-

systematic coding schemes similar to the one shown in Figure

1(b). However, these non-systematic schemes may not be the

optimum strategy in networks or communication channels with

a long RTT .

Possibly the closest work to ours is that done by [22],

[23] and [24]. Bounds on the expected in-order delay and

a study of the rate/delay trade-offs using a time-invariant

coding scheme is provided in [22] and [23] where they assume

feedback is instantaneous, provided in a block-wise manner,

or not available at all. A generalized example of their coding

scheme is shown in Figure 1(c). While their analysis provides

insight into the benefits of coding for streaming applications,

their model is similar to a half-duplex communication channel

where the sender transmits a finite block of information and

then waits for the receiver to send feedback. Unfortunately,

it is unclear if their analysis can be extended to full-duplex

channels or models where feedback does not provide com-

plete information about the receiver’s state-space. Finally, the

work in [24] considers the in-order delivery delay of online

network coding where feedback determines the source packets

used to generate coded packets. However, they only provide

experimental results and do not attempt an analysis.

III. CODING ALGORITHM AND SYSTEM MODEL

We consider a time-slotted model to determine the coding

window size k and added redundancy R � 1 that minimizes

the in-order delivery, or playback, delay D, which is defined

as:
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Figure 1: Coding matrices for various schemes assuming an identical
loss pattern and a feedback delay of 4 time-slots.

Definition 1. The in-order delivery delay D is the difference

between the time a packet is first transmitted and the time that

the same packet is delivered, in-order.

The duration of each time-slot is ts = spkt/Rate where

spkt is the packet size and Rate is the transmission rate of

the network. The propagation delay between the sender and

the receiver is tp (i.e., RTT = ts + 2tp assuming that the

acknowledgement size is sufficiently small). Packet erasures

are assumed to be independently and identically distributed

(i.i.d.) with ✏ being the packet erasure probability.

Information packets pi, i = {1, . . . , N}, are first partitioned

into coding generations Gj =
n

p(j−1)k+1, . . . ,pmin(jk,N)

o

,

j 2 [1, dN/ke], of size k packets as they are made available

to the transport layer. Once enough information packets are

available to the encoder to fill a generation, random linear

combinations of these packets produce coded packets cj,m,

m 2 [1, nk � k] where nk = Rk. Both the information and

coded packets are then transmitted. This systematic network

scheme is summarized in Algorithm 1 where the coding

coefficients ↵i,j,m 2 Fq are chosen at random and each pi

is treated as a vector in Fq . Once this process completes for

one Gj , the coding window slides to the next generation Gj+1

and the process repeats without waiting for feedback.

We assume that feedback is delayed (i.e., tp > Rkts
and multiple generations can be in-flight at any time), and



Algorithm 1: Code Generation Algorithm

for each j 2 [1, dN/ke] do

for each i 2 [(j � 1) k + 1,min (jk,N)] do

Transmit pi

for each m 2 [1, nk � k] do

Transmit cj,m =
Pmin(jk,N)

i=(j−1)k+1 ↵i,j,mpi

Algorithm 2: DOF Retransmission Algorithm

ACK From Gj Received

if No packets from Gj in-flight and l > 0 then

for each m 2 [1, Rl] do

Transmit cj,m =
Pmin(jk,N)

i=(j−1)k+1 ↵i,j,mpi

it contains the number of degrees of freedom (dofs) l still

required to decode the generation. If l > 0, an additional

nl = Rl � l coded packets (or dofs) are retransmitted. This

process is shown in Algorithm 2. When at least k dofs have

been received, the generation is decoded and delivered. This

naturally leads to the concept of rounds.

Definition 2. The ith round for a single generation begins with

the transmission of nj dofs where j is the number of dofs
required by the receiver at the conclusion of round i� 1; and

it ends when feedback is obtained from the receiver regarding

the number of dofs still needed to successfully decode.

Figure 1(d) provides an example of this concept as well as

the proposed scheme. Here we see that information packets

are partitioned into coding generations of size k = 3 packets,

and one coded packet is transmitted for redundancy (i.e., R =
1.33). Round 1 begins for the first (blue) generation at time t =
1 with the transmission of n3 = 4 dofs. In this example, the

first two packets are delivered, but the remaining two are lost

resulting in a decoding error. The client sends feedback, which

is received by the server at t = 8 indicating that l = 1 dof is

still needed. Round 2 begins at t = 9 with the transmission of

n1 = 1 dof , and round 3 begins at t = 14. Since the final dof
required to decode the generation is obtained during round

3, no subsequent rounds are required. Likewise, the second

(green) generation begins its round 1 at t = 5. Three dofs
are received and the generation can be immediately decoded.

However, the second generation cannot be delivered until the

first generation is decoded and delivered at t = 16.

Before proceeding, several assumptions are needed due to

the complexity of the process. First, retransmissions occur

immediately after feedback is obtained indicating additional

dofs are needed without waiting for the coding window to

shift to a new generation. Second, the time to transmit packets

after the first round does not increase the delay. For example,

the packet transmission time is ts seconds. Assuming l dof
retransmissions are needed, the additional nlts seconds needed

to transmit these packets are not taken into account. Third, the

number of previously transmitted generations that can cause

head-of-line blocking is limited to b�1 where b = dBDP/nke.

It is important to note that these assumptions lower bound

the delay. The first two assumptions ensure feedback is acted

upon immediately and does not impact the delay experi-

enced by other generations. The third assumption limits the

possibility of a previously transmitted generation preventing

delivery, thereby decreasing the overall delay. Finally, we make

two additional assumptions that do not explicitly affect the

delay. All packets within a generation are available to the

transport layer without delay (i.e., we assume an infinite packet

source); and the coding window/generation size with the added

redundancy is smaller than the BDP (i.e., nk < BDP ).

Without the final assumption, feedback will be received prior

to the transmission of the coded packets allowing for the use

of SR-ARQ without a large impact to the performance.

IV. PRELIMINARIES

We first define several probability distributions and random

variables that will be used extensively in later sections. Define

[P ] 2 R
(k+1)×(k+1) to be the transition matrix of a Markov

chain. Each transition within the chain represents the number

of dofs, or packets, successfully received after a round of

transmissions, and each state represents the number of dofs
still needed by the client to decode. As a result, the elements

of [P ] can be defined as follows:

[Pij ] =

8

>

<

>

:

B (ni, i� j, 1� ✏) for i 2 [1, k], 0 < j  i
Pni

m=i B (ni,m, 1� ✏) for i 2 [1, k], j = 0

1 for i = 0, j = 0,
(1)

where B(n, k, p) =
�

n
k

�

pk(1� p)n−k. Let Xr be the state of

the chain at time r. It follows that Pr{Xr = j|X0 = i} =
⇥

P r
ij

⇤

for r � 1 and
⇥

P 0
ij

⇤

= 0. In our model, X0 = k
with probability equal to 1 and a generation is successfully

decoded when state 0 is entered at time r � 1. Furthermore,

the probability [P r
i0] is the probability that all packets within a

single generation have been successfully received in or before

r transmission rounds.

Using this Markov chain, define Y to be the number of

transmission rounds required to transfer a single generation.

The distribution on Y is:

pY (y) =

(

[P y
k0]�

h

P y−1
k0

i

for y � 1

0 otherwise.
(2)

Next, define Zi to be the number of transmission rounds

required to transfer i generations. The distribution on Zi is

provided by the following lemma (see appendix for proof):

Lemma 3. Let N independent processes defined by the

transition matrix [P ] start at the same time. The probability

that all processes complete in less than or equal to z rounds,

or transitions, with at least one process completing in round

z is Pr{Z = z} = [P z
k0]

N
�
⇥

P z−1
k0

⇤N
.

Specifically, pZi
(zi) is:

pZi
(zi) =

(

[P zi
k0]

i
�
⇥

P zi−1
k0

⇤i
for zi � 1, i  b� 1

0 otherwise.
(3)

Also define S to be the number of uncoded packets that are

successfully transferred within a generation prior to the first

packet loss. The distribution on S is:



pS|Y (s|y) =

8

>

>

>

>

<

>

>

>

>

:

✏ (1� ✏)
s

for s 2 [0, k � 1], y = 1

(1� ✏)
s

for s = k, y = 1
✏(1−✏)s

1−(1−✏)k
for s 2 [0, k � 1], y 6= 1,

0 otherwise,

(4)

and its first three moments are given by the following lemma
(see appendix for proof).

Lemma 4. Define si1 = E
⇥

Si|Y = 1
⇤

and si2 =
E
⇥

Si|Y 6= 1
⇤

. Then given Y = y, the first three moments

of S are

s11 =
1� ✏

✏

⇣

1� (1� ✏)
k
⌘

, (5)

s21 =
2 (1� ✏)

✏2

⇣

1� (k✏+ 1) (1� ✏)
k
⌘

� s11, (6)

s31 =
6 (1� ✏)

3

✏3

�

1� (k✏+ 1) (1� ✏)k
�

+ 3 (1� ✏) s21

�
3k

✏
(k + 1) (1� ✏)

k+1
+ (4� 3✏) s11, (7)

and

si2 =
si1 � ki (1� ✏)

k

1� (1� ✏)
k

, (8)

for i = 1, 2, 3.

Finally, let Vi, i  b � 1, describe the position of the

last received generation preventing delivery in round zi. The

following lemma helps to define the distribution on Vi (see

appendix for proof).

Lemma 5. Let N independent processes defined by the

transition matrix [P ] start at the same time, and all processes

complete in or before round zN with at least one process

completing in round zN . The probability that the jth process

is the last to complete is defined by the distribution

pVN |ZN
(vN |zN ) =

[P zN
k0 ]

N−vN−1 ⇥
P zN−1
k0

⇤vN
pY (zN )

pZN
(zN )

(9)

for vN = 0, . . . N�1, j = N�vN , pY (y) defined by (2), and

pZi
(zi) defined by (3). Furthermore, define viN = E

⇥

V i
N |ZN

⇤

.

Then

v1N =

⇥

P zN−1
k0

⇤

pY (zN )
�

N
⇥

P zN−1
k0

⇤N

pZN
(zN )

, (10)

and

v2N =

⇥

P zN−1
k0

⇤

pY (zN )
+

2
⇥

P zN−1
k0

⇤2

p2Y (zN )
�

N2
⇥

P zN−1
k0

⇤N

pZN
(zN )

�
2N
⇥

P zN−1
k0

⇤N+1

pY (zN ) pZN
(zN )

. (11)

Now that we have the distributions and relevant moments

for the random variables Y , Zi, S, and Vi, we have the tools

needed to derive E [D] and E
⇥

D2
⇤

.

V. EXPECTED IN-ORDER DELIVERY DELAY

A lower bound on the expected delay, E[D], can be derived

using the law of total expectation:

E[D] = EY

⇥

EZb−1
[ED [D|Y, Zb−1]]

⇤

. (12)

From (12), there are four distinct cases that must be con-
sidered. These are shown in Figure 2. For each case, define

d̄Y=y,Z=z = E [D|Y = y, Zb−1 = z].
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Figure 2: Example of cases 1-4. The delay di of each packet is listed
next to the time when it is delivered to the application layer in cases
1 and 2. The number of in-flight generations is b = 3 for cases 3
and 4.

A. Case 1: Y = 1, Zb−1 = 1

The latest generation in transit completes within the first

round of transmission and no previously transmitted gen-

erations prevent delivery. As a result, all packets received

prior to the first loss (i.e., packets p1, . . .ps) are immediately

delivered. Once a packet loss is observed, packets received

after the loss (i.e., packets ps+1, . . . ,pk) are buffered until the

entire generation is decoded. An example is given in Figure

2(a) where nk = 6, k = 4, the number of packets received

prior to the first loss is s = 2, and the number of coded

packets needed to recover from the two packet losses is c = 2.

Taking the expectation over all S and all packets within the

generation, the mean delay is provided by (16) where s11 and

s21 are given by Lemma 4; and E [C|S] is the expected number

of coded packets needed to recover from all packet erasures

occurring in the first k packets. When s < k, the number

of coded packets required is at least one (i.e., E [C|S] � 1)

leading to the bound in (15).

B. Case 2: Y > 1, Zb−1 = 1

All packets {p1, . . .ps} are delivered immediately until

the first packet loss is observed. Since Y > 1, at least one

retransmission event is needed to properly decode. Once all k
dofs have been received and the generation can be decoded,

the remaining packets
�

ps+1, . . . ,pk

 

are delivered in-order.

An example is provided in Figure 2(b). The generation cannot

be decoded because there are too many packet losses during



d̄Y=1,Z=1 =

k−1
X

s=0

 

(ts + tp)
s

k
+

1

k

k−s−1
X

i=0

✓

tp +
�

k � s� i+ E [C|S]
�

ts

◆

!

pS|Y (s|1) + (ts + tp) pS|Y (k|1) (13)

= tp +
ts
2k

✓

s21 � (2k � 1) s11 + k (k + 1) + 2

k−1
X

s=0

(k � s)E [C|S] pS|Y (s|1)

◆

(14)

� tp +
ts
2k

✓

s21 � (2k � 1) s11 + k (k + 1) + 2

k−1
X

s=0

(k � s) pS|Y (s|1)

◆

(15)

=
ts
2k

✓

s21 � (2k + 1) s11 + k (k + 3)

◆

+ tp, (16)

d̄Y >1,Z=1 =
1

k

k−1
X

s=0

✓

(tp + ts) s+

k−s−1
X

i=0

⇣

tp + 2 (y � 1) tp + (k � s� i+ (nk � k)) ts

⌘

◆

pS|Y (s|y) (17)

=

✓

1

2k
s22 �

1

2k
(2nk � 1) s12 + nk �

1

2
k +

1

2

◆

ts �

✓

2

k
(y � 1) s12 � 2y + 1

◆

tp, (18)

d̄Z>Y≥1,Z>1 =
1

k

k
X

i=1

✓

(nk � k + i) ts + tp + 2tp (z � 1)�
⇣

v1b−1 + 1
⌘

nkts

◆

(19)

= (2z � 1) tp �

✓

v1b−1nk +
k � 1

2

◆

ts, (20)

d̄Y≥Z,Z>1 =
1

k

k−1
X

s=0

 

k
X

i=1

(nk � i+ 1) ts +
s
X

i=1

✓

2tp

✓

z �
1

2

◆

�
⇣

v1b−1 + 1
⌘

nkts

◆

+
k
X

j=s+1

⇣

2tp

⇣

y �
1

2

⌘⌘

!

pS|Y (s|y)

(21)

=

✓

2 (z � y)

k
s12 + 2y � 1

◆

tp �

✓

nk

k

⇣

v1b−1 + 1
⌘

s12 � nk +
1

2
k �

1

2

◆

ts. (22)

the first transmission attempt. As a result, one additional dof is

retransmitted allowing the client to decode in round two (i.e.,

Y = 2). Taking the expectation over all S and all packets

within the generation, the expected delay is provided by (18)

where s12 and s22 are given by Lemma 4. It is important to note

that we do not take into account the time to transmit packets

after the first round (see the assumptions in Section III).

C. Case 3: Zb−1 > Y � 1, Zb−1 > 1

In this case, generation Gj completes prior to a

previously sent generation. As a result, all packets
n

p(j−1)k+1, . . . ,pjk

o

2 Gj are buffered until all previous

generations have been delivered. Once there are no earlier

generations preventing in-order delivery, all packets in Gj

are immediately delivered. Figure 2(c) provides an example.

Consider the delay experienced by packets in G3. While G3

is successfully decoded after the first transmission attempt,

generation G1 cannot be decoded forcing all packets in G3 to

be buffered until G1 is delivered. Taking the expectation over

all packets within the generation and all possible locations of

the last unsuccessfully decoded generation, the expected delay

is provided by (20) where v1b−1 is given by Lemma 5.

D. Case 4: Y � Zb−1, Zb−1 > 1

Finally, this case is a mixture of the last two. The generation

Gj completes after all previously transmitted generations,

but it requires more than one transmission round to decode.

Packets received before the first packet loss are buffered until

all previous generations are delivered, and packets received

after the first packet loss are buffered until Gj can be

decoded. An example is provided in Figure 2(d). Consider

the delay of packets in G3. Both G1 and G3 cannot be

decoded after the first transmission attempt. After the second

transmission attempt, G1 can be decoded allowing packets
�

p2k+1, . . . ,p2k+s+1

 

2 G3 to be delivered; although pack-

ets
�

p2k+s+2, . . . ,p3k

 

2 G3 must wait to be delivered until

after G3 is decoded. Taking the expectation over all S, all

packets within the generation, and all possible locations of the

last unsuccessfully decoded generation, the expected delay is

provided by (22). The expectations s12 and v1b−1 are given by

Lemmas 4 and 5 respectively.

Combining the cases above, we obtain the following:

Theorem 6. The expected in-order delivery delay for the

proposed coding scheme is lower bounded by

E[D] �
X

zb−1≥1

X

y≥1

d̄Y=y,Z=zb−1
pY (y)pZb−1

(zb−1). (23)

where d̄Y=y,Z=zb−1
is given in equations (16), (18), (20), and

(22); and the distributions pY (y) and pZb−1
(zb−1) are given

in equations (2) and (3) respectively.

VI. IN-ORDER DELIVERY DELAY VARIANCE

The second moment of the in-order delivery delay can be

determined in a similar manner as the first. Again, we can use



d̄2Y=1,Z=1 � t2p + (k + 3) tpts +
1

6

�

2k2 + 9k + 13
�

t2s �

✓✓

k + 3 +
7

6k

◆

t2s +

✓

2k + 1

k

◆

tpts

◆

s11

+

 

✓

2k + 3

2k

◆

t2s +
1

k
tpts

!

s21 �
1

3k
t2ss

3
1, (25)

d̄2Y >1,Z=1 =

✓

nk (nk � k + 1) +
1

6k

�

2k3 � 3k2 + k + 6
�

◆

t2s +

✓

2nk (2y � 1)� 2y (k � 1) + k � 1 +
2

k

◆

tpts

+

✓

(2y � 1)
2
+

1

k

◆

t2p �
1

3k
t2ss

3
2 +

1

2k

�

(2nk + 1) t2s + 2 (2y � 1) tpts
�

s22

�
1

k

✓✓

n2
k + nk +

1

6

◆

t2s + (2y � 1) (2nk + 1) tpts + (2y � 1)
2
t2p

◆

s12, (26)

d̄2Z>Y≥1,Z>1 =

✓

n2
kv

2
b−1 + (k � 1)

✓

nkv1b−1 +
1

3
k �

1

6

◆◆

t2s � (2z � 1)

✓

2nkv1b−1 + k � 1

◆

tpts + (2z � 1)
2
t2p, (27)

d̄2Y≥Z,Z>1 = (2y � 1)

✓

(2nk � k + 1) tstp + (2y � 1) t2p

◆

+

✓

nk (nk � k + 1) +
1

6

�

2k2 � 3k + 1
�

◆

t2s

+
1

k

✓

nk

⇣

v1b−1 + 1
⌘

t2s + 2 (y � z) tpts

◆

s22 +
1

k

✓

nk

⇣

nk

⇣

v2b−1 � 1
⌘

� v1b−1 � 1
⌘

t2s

�2

✓

nk

⇣

v1b−1 (2z � 1) + (2y � 1)
⌘

+ y � z

◆

tpts � 4 (y � z) (y + z � 1) t2p

◆

s12. (28)

the law of total expectation to find the moment:

E[D2] = EY

⇥

EZb−1

⇥

ED

⇥

D2|Y, Zb−1

⇤⇤⇤

. (24)

As with the first moment, four distinct cases exist that must

be dealt with separately. For each of the cases in Section V,

define d̄2Y=y,Z=z = E
⇥

D2|Y = y, Zb−1 = z
⇤

. While we omit

the initial step in the derivation of each case, d̄2Y,Z can be

determined using the same assumptions as above and is shown

in equations (25)-(28). The expectations sji and vib−1 for i =
{1, 2} and j = {1, 2, 3} are provided in Lemmas 4 and 5

respectively; and the bound in (25) follows from assuming that

the number of coded packets needed to decode a generation

is limited to one packet (i.e., c = 1 for all s).

Combining equations (24) through (28):

Theorem 7. The second moment of the in-order delivery delay

for the proposed coding scheme is lower bounded by

E[D2] �
X

zb−1≥1

X

y≥1

d̄2Y=y,Z=zb−1
pY (y)pZb−1

(zb−1), (29)

where d̄2Y=y,Z=zb−1
is given in equations (25) through (28);

and the distributions pY (y) and pZb−1
(zb−1) are given in (2)

and (3) respectively. Furthermore, the in-order delay variance

is �2
D = E[D2]� E[D]2 where E [D] is given in (23).

VII. EFFICIENCY

The above results show adding redundancy into a packet

stream decreases the in-order delivery delay. However, doing

so comes with a cost. We characterize this cost in terms of

efficiency. Before defining the efficiency, let Mi, i 2 [0, k],
be the number of packets received at the sink as a result of

transmitting a generation of size i. Alternatively, Mi is the total

number of packets received by the sink for any path starting

in state i and ending in state 0 of the Markov chain defined

in Section III. Furthermore, define Mij to be the number of

packets received by the sink as a result of a single transition

from state i to state j (i.e., i ! j). Mij is deterministic (e.g.,

mij = i � j) when i, j � 1 and i � j. For any transition

i ! 0, i � 1, mi0 2 [i, ni] has probability

pMi0
(mi0) =

B (ni,mi0, 1� ✏)
Pni

j=i B (ni, j, 1� ✏)
(30)

= 1/ai0B (ni,mi0, 1� ✏) . (31)

Therefore, the expected number of packets received by the

sink is

E[Mij ] =

(

i� j for i, j � 1, i � j
1
ai0

Pni

x=i x ·B (ni, x, 1� ✏) for i � 1, j = 0.
(32)

Given E[Mij ] 8i, j, the total number of packets received by

the sink when transmitting a generation of size i is

E [Mi] =
1

1� aii

0

@

i−1
X

j=0

(E [Mij ] + E [Mj ]) aij

1

A (33)

where E[M0] = 0. This leads us to the following theorem.

Theorem 8. The efficiency ⌘k, defined as the ratio between the

number of information packets or dofs within each generation

of size k and the expected number of packets received by the

sink, is

⌘k ,
k

E [Mk]
. (34)

VIII. NUMERICAL RESULTS

Unfortunately, the complexity of the process prevents us

from determining a closed form expression for the in-order

delay. However, we now provide numerical results that show
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Figure 3: The in-order delay for two erasure rates ✏ as a function of
the generation size k on a 10 Mbps link. The error bars show 2�D

above and below the mean and Rx = (1+x)/(1−✏). The analytical
and simulated results are represented using solid and dotted lines
respectively. Note the log scale of both the x-axis and y-axis.

(23) and (29) are fairly tight for most cases, which allows us

to use it as a fairly accurate estimate of E [D] and E
⇥

D2
⇤

.

Before proceeding, several items need to be noted. First, the

terms where pY (y) pZb−1
(zb−1) < 10−6 when calculating

E[D] and E
⇥

D2
⇤

are not considered since they have little

effect on the overall calculation. Second, the analytical curves

are sampled at local maxima. As the code generation size

increases, the number of in-flight generations, b = dBDP/ke,

incrementally decreases. Upon each decrease in b, a dis-

continuity occurs that causes an artificial decrease in E[D]
that becomes less noticeable as k increases towards the next

decrease in b. This transient behavior in the analysis is more

prominent when R ⇡ 1/1−✏ and less so when R � 1/1−✏. Re-

gardless, the figures show an approximation with this behavior

removed. Third, we note that Rk may not be an integer. To

overcome this issue, dRke � k and bRkc � k coded packets

are generated and transmitted with probability Rk�bRkc and

dRke�Rk respectively. Finally, comparisons with the schemes

shown in Figure 1 are not provided due to considerably

worse performance or lack of specific implementation details.

Instead, we only compare our results with those of SR-ARQ,

which we assume is a valid baseline.

A. Coding Window Size and Redundancy Selection

Results for four different networks/links are shown in Figure

3. The simulation was developed in Matlab using a model
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Figure 4: k∗ as a function of the BDP .

similar to that presented in Section III, although several of

the assumptions are relaxed. The time it takes to retransmit

coded packets after feedback is received is taken into account.

Furthermore, the number of generations preventing delivery

is not limited to a single BDP of packets, which increases

the probability of head-of-line blocking. Both of these relax-

ations effectively increases the delay experienced by a packet.

Finally, the figure shows the delay of an idealized version

of SR-ARQ where we assume infinite buffer sizes. This is

intended to provide a baseline with other proposed schemes

such as those shown in Figure 1.

Figure 3 illustrates that adding redundancy and/or choosing

the correct coding window/generation size can have major

implications on the in-order delay. Not only does choosing

correctly reduce the delay, but doing so can also reduce the

jitter. However, it is apparent that the proper selection of k
for a given R is critical for minimizing E [D] and E

⇥

D2
⇤

. In

fact, Figure 3 indicates that adding redundancy and choosing a

moderately sized generation is needed in most cases to ensure

both are minimized.

The shape of the curves in the figure also indicate that there

are two major contributors to the in-order delay that need to

be balanced. Let k∗ be the generation size where E [D] is

minimized for a given ✏ and R, i.e.,

k∗ = argmin
k

E [D] . (35)

To the left of k∗, the delay is dominated by head-of-

line blocking and resequencing delay created by previous

generations. To the right of k∗, the delay is dominated by the

time it takes to receive enough dofs to decode the generation.

While there are gains in efficiency for k > k∗, the benefits

are negligible for most time-sensitive applications. As a result,

we show k∗ for a given ✏ and R as a function of the BDP
in Figure 4 and make three observations. First, the coding

window size k∗ increases with ✏, which is opposite of what

we would expect from a typical erasure code [25]. In the case

of small ✏, it is better to try and quickly correct only some

of the packet losses occurring within a generation using the

initially transmitted coded packets while relying heavily on

feedback to overcome any decoding errors. In the case of

large ✏, a large generation size is better where the majority

of packet losses occurring within a generation are corrected

using the initially transmitted coded packets and feedback is
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Figure 5: Rate-delay trade-off for a 10 Mbps link with a RTT of
100 ms. The error bars represent 2�D above and below the mean,
and the delay for ARQ is shown for ⌘ = 1. Note the log scale of the
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relied upon to help overcome the rare decoding error. Second,

increasing R decreases k∗. This due to the receiver’s increased

ability to decode a generation without having to wait for

retransmissions. Third, k∗ is not very sensitive to the BDP
(in most cases) enabling increased flexibility during system

design and implementation.

Before proceeding, it is important to note that a certain level

of redundancy is needed to see benefits. Each curve shows

results for R > 1/1−✏. For R  1/1−✏, it is possible to see in-

order delays and jitter worse than the idealized ARQ scheme.

Consider an example where a packet loss is observed near

the beginning of a generation that cannot be decoded after

the first transmission attempt. Since feedback is not sent/acted

upon until the end of the generation, the extra time waiting

for feedback can induce larger delays than what would have

occurred under a simple ARQ scheme. We can reduce this

time by reacting to feedback before the end of a generation;

but it is still extremely important to ensure that the choice of

k and R will decrease the probability of a decoding failure

and provide improved delay performance.

B. Rate-Delay Trade-Off

While transport layer coding can help meet strict delay con-

straints, the decreased delay comes at the cost of throughput,

or efficiency. Let E [D∗], �∗
D, and ⌘∗ be the expected in-

order delay, the standard deviation, and the expected efficiency

respectively that corresponds to k∗ defined in eq. (35). The

rate-delay trade-off is shown by plotting E [D∗] as a function

of ⌘∗ in Figure 5. The expected SR-ARQ delay (i.e., the data

point for ⌘ = 1) is also plotted for each packet erasure rate as

a reference.

The figure shows that an initial increase in R (or a decrease

in ⌘) has the biggest effect on E [D]. In fact, the majority of

the decrease is observed at the cost of just a few percent (2-

5%) of the available network capacity when ✏ is small. As

R is increased further, the primary benefit presents itself as

a reduction in the jitter (or E
⇥

D2
⇤

). Furthermore, the figure

shows that even for high packet erasure rates (e.g., 20%), strict

delay constraints can be met as long as the user is willing to

sacrifice throughput.
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Figure 6: Experimental (solid lines) and analytical (dotted lines)
results for various k over a 25 Mbps link with RTT = 60 ms and
✏ = 0.1.

C. Real-World Comparison

We finally compare the analysis with experimentally ob-

tained results in Figure 6 and show that our analysis provides

a reasonable approximation to real-world protocols. The ex-

periments were conducted using Coded TCP (CTCP) over an

emulated network similar to the one used in [7]. The only

difference between our setup and theirs was that we fixed

CTCP’s congestion control window size (cwnd) to be equal

to the BDP of the network in order to eliminate the affects

of fluctuating cwnd sizes.

There are several contributing factors for the differences

between the experimental and analytical results shown in the

figure. First, the analytical model approximates the algorithm

used in CTCP. Where we assume feedback is only acted

upon at the end of a generation, CTCP proactively acts upon

feedback and does not wait until the end of a generation to

determine if retransmissions are required. Second, the experi-

ments include additional processing time needed to accomplish

tasks such as coding and decoding, while the analysis does not.

Finally, the assumptions made in Sections III and V effectively

lower bounds E [D] and E
⇥

D2
⇤

. The bounds are fairly tight

for large k and R, but they can be very loose for either

small k or small R. An example of this is evident in Figure

6 for k = 16 and R = 1.65 where there is a significant

difference between the experimental and analytical results.

However, simulation results suggest neither small k nor small

R result in k∗ therefore making a tight bound in these regimes

less important. For all other choices of k and R, the analysis

can provide a fairly good estimate of the in-order delay and

can be used to help inform system decisions.

IX. CONCLUSION

In this paper, we addressed the use of transport layer

coding to improve application layer performance. A coding

algorithm and an analysis of the in-order delivery delay’s first

two moments were presented, in addition to numerical results

addressing when and how much redundancy should be added

to a packet stream to meet a user’s delay constraints. These

results showed that the coding window size that minimizes the

expected in-order delay is fairly insensitive to the network’s

BDP for some cases. Finally, we compared our analysis with



the measured delay of an implemented transport protocol,

CTCP. While our analysis and the behavior of CTCP do not

provide a one-to-one comparison, we illustrated how our work

can be used to help inform system decisions when attempting

to minimize delay.
APPENDIX

Proof: (Lemma 3) Let f (z) = 1 �
Pz−1

j=1 pY (j). The

probability of N independent processes completing in less than

or equal to z rounds with at least one process completing in

round z is:

Pr{Z = z} =

N
X

i=1

B (N, i, f (z))

✓

pY (z)

f (z)

◆i

(36)

=

N
X

i=1

✓

N

i

◆

(pY (z))
i ⇥

P z−1
k0

⇤N−i
(37)

=

⇥

P z−1
k0

⇤N+1
⇣

[P z
k0]

N+1
�
⇥

P z−1
k0

⇤N+1
⌘

⇥

P z−1
k0

⇤N+1
[P z

k0]

�

⇥

P z−1
k0

⇤2N+1 �
[P z

k0]�
⇥

P z−1
k0

⇤�

⇥

P z−1
k0

⇤N+1
[P z

k0]
(38)

= [P z
k0]

N
�
⇥

P z−1
k0

⇤N
. (39)

Proof: (Lemma 4) Define the moment generating function

of S when Y = 1 to be

MS|Y (t) = E[etS |Y = 1] (40)

=
✏
⇣

1� ekt (1� ✏)
k
⌘

1� et + ✏et
+ ekt (1� ✏)

k
. (41)

The first, second, and third moments of S when Y = 1 are then
�/�tMS|Y (0), �

2

/�t2MS|Y (0), and �
3

/�t3MS|Y (0) respectively.

For Y 6= 1, scale the above expectations by subtracting the

term ki (1� ✏)
k

from each of the moments above and dividing

by 1� (1� ✏)
k
.

Proof: (Lemma 5) Let �zN = pY (zN )/[P zN
k0 ], be the

probability of a generation finishing in round zN given all of

the N generations have completed transmission in or before

round zN . The distribution on VN 2 [0, N � 1] is

pVN |ZN
(vN |zN ) =

�zN (1� �zN )
vN

PN−1
j=0 �zN (1� �zN )

j
(42)

=
�zN (1� �zN )

vN+1

1� (1� �zN )
N

(43)

=
[P zN

k0 ]
N−vN−1 ⇥

P zN−1
k0

⇤vN
pY (zN )

pZN
(zN )

.

(44)

Define the moment generating function of VN given ZN to be

MVN |ZN
(t) = E[etVN |ZN = zN ]

=

⇣

[P zN
k0 ]

N
�
⇥

P zN−1
k0

⇤N
eNt
⌘

pY (zN )
�

[P zN
k0 ]�

⇥

P zN−1
k0

⇤

et
�

pZN
(zN )

. (45)

The first and second moments of VN given ZN are
�/�tMVN |ZN

(0) and �
2

/�t2MVN |ZN
(0) respectively.

REFERENCES

[1] Sandvine, “Global Internet Phenomena.” Online, May 2014.
[2] Y. Xia and D. Tse, “Analysis on Packet Resequencing for Reliable

Network Protocols,” in INFOCOM, vol. 2, pp. 990–1000, Mar. 2003.
[3] J. K. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzen-

macher, and J. Barros, “Network Coding Meets TCP: Theory and
Implementation,” Proc. of the IEEE, vol. 99, pp. 490–512, Mar. 2011.

[4] V. Subramanian, S. Kalyanaraman, and K. K. Ramakrishnan, “Hybrid
Packet FEC and Retransmission-Based Erasure Recovery Mechanisms
for Lossy Networks: Analysis and Design,” in COMSWARE, 2007.

[5] O. Tickoo, V. Subraman, S. Kalyanaraman, and K. K. Ramakrishnan,
“LT-TCP: End-to-End Framework to Improve TCP Performance Over
Networks with Lossy Channels,” in IWQoS, pp. 81–93, 2005.

[6] B. Ganguly, B. Holzbauer, K. Kar, and K. Battle, “Loss-Tolerant TCP
(LT-TCP): Implementation and Experimental Evaluation,” in MILCOM,
2012.

[7] M. Kim, J. Cloud, A. ParandehGheibi, L. Urbina, K. Fouli, D. J. Leith,
and M. Médard, “Congestion Control for Coded Transport Layers,” in
ICC, June 2014.

[8] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A Random Linear Network Coding Approach to Multicast,”
IEEE Trans. on Info. Theory, vol. 52, no. 10, pp. 4413–4430, 2006.

[9] A. Heidarzadeh, Design and Analysis of Random Linear Network Coding

Schemes: Dense Codes, Chunked Codes and Overlapped Chunked

Codes. Ph.D. Thesis, Carleton University, Ottawa, Canada, Dec. 2012.
[10] D. Lucani, M. Médard, and M. Stojanovic, “Broadcasting in Time-

Division Duplexing: A Random Linear Network Coding Approach,” in
NetCod, pp. 62–67, June 2009.

[11] D. Lucani, M. Médard, and M. Stojanovic, “Online Network Coding for
Time-Division Duplexing,” in GLOBECOM, Dec. 2010.

[12] D. Lucani, M. Stojanovic, and M. Médard, “Random Linear Network
Coding For Time Division Duplexing: When To Stop Talking And Start
Listening,” in INFOCOM, pp. 1800–1808, Apr. 2009.

[13] T. Dikaliotis, A. Dimakis, T. Ho, and M. Effros, “On the Delay of
Network Coding Over Line Networks,” in ISIT, June 2009.

[14] M. Nistor, R. Costa, T. Vinhoza, and J. Barros, “Non-Asymptotic
Analysis of Network Coding Delay,” in NetCod, June 2010.

[15] E. Drinea, C. Fragouli, and L. Keller, “Delay with Network Coding and
Feedback,” in ISIT, pp. 844–848, June 2009.

[16] A. Eryilmaz, A. Ozdaglar, and M. Médard, “On Delay Performance
Gains From Network Coding,” in CISS, pp. 864–870, Mar. 2006.

[17] B. Swapna, A. Eryilmaz, and N. Shroff, “Throughput-Delay Analysis
of Random Linear Network Coding for Wireless Broadcasting,” IEEE

Trans. on Information Theory, vol. 59, pp. 6328–6341, Oct. 2013.
[18] H. Yao, Y. Kochman, and G. W. Wornell, “A Multi-Burst Transmission

Strategy for Streaming Over Blockage Channels with Long Feedback
Delay,” IEEE JSAC, vol. 29, pp. 2033–2043, Dec. 2011.

[19] M. Nistor, J. Barros, F. Vieira, T. Vinhoza, and J. Widmer, “Network
Coding Delay: A Brute-Force Analysis,” in ITA, Jan. 2010.

[20] J. Sundararajan, P. Sadeghi, and M. Médard, “A Feedback-Based Adap-
tive Broadcast Coding Scheme for Reducing In-Order Delivery Delay,”
in NetCod, June 2009.

[21] W. Zeng, C. Ng, and M. Médard, “Joint Coding and Scheduling
Optimization in Wireless Systems with Varying Delay Sensitivities,” in
SECON, pp. 416–424, June 2012.

[22] G. Joshi, Y. Kochman, and G. W. Wornell, “On Playback Delay in
Streaming Communication,” in ISIT, pp. 2856–2860, July 2012.

[23] G. Joshi, Y. Kochman, and G. Wornell, “Effect of Block-Wise Feed-
back on the Throughput-Delay Trade-Off in Streaming,” in INFOCOM

Workshop on Contemporary Video, Apr. 2014.
[24] M. Tömösközi, F. H. Fitzek, F. H. Fitzek, D. E. Lucani, M. V.

Pedersen, and P. Seeling, “On the Delay Characteristics for Point-to-
Point Links using Random Linear Network Coding with On-the-Fly
Coding Capabilities,” in European Wireless 2014, May 2014.

[25] R. Koetter and F. Kschischang, “Coding for Errors and Erasures in
Random Network Coding,” IEEE Trans. on Information Theory, vol. 54,
pp. 3579–3591, Aug. 2008.


