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Abstract—We present a novel technique for encoding and de-
coding constant weight binary vectors that uses a geometric in-
terpretation of the codebook. Our technique is based on embed-
ding the codebook in a Euclidean space of dimension equal to the
weight of the code. The encoder and decoder mappings are then
interpreted as a bijection between a certain hyper-rectangle and
a polytope in this Euclidean space. An inductive dissection algo-
rithm is developed for constructing such a bijection. We prove that
the algorithm is correct and then analyze its complexity. The com-
plexity depends on the weight of the vector, rather than on the block
length as in other algorithms. This approach is advantageous when
the weight is smaller than the square root of the block length.

Index Terms—Constant weight codes, encoding algorithms,
dissections, polyhedral dissections, bijections, mappings, Dehn
invariant.

I. INTRODUCTION

W E consider the problem of encoding and decoding bi-
nary vectors of constant Hamming weight and block

length . Such sets of vectors (hereafter referred to as codes)
are useful in a variety of applications: a few examples are fault-
tolerant circuit design and computing [15], pattern generation
for circuit testing [25], identification coding [28], and optical
overlay networks [26].

The problem of interest is that of designing the encoder and
decoder, i.e., the problem of mapping all binary (information)
vectors of a given length onto a subset of length- vectors
of constant Hamming weight in a one-to-one manner. In
this work, we propose a novel geometric method in which
information and code vectors are represented by vectors in

-dimensional Euclidean space, covering polytopes for the
two sets are identified, and a one-to-one mapping is established
by dissecting the covering polytopes in a specific manner. This
approach results in an invertible integer-to-integer mapping,
thereby ensuring unique decodability. The proposed algorithm
has a natural recursive structure, and an inductive proof is
given for unique decodability. The issue of efficient encoding
and decoding is also addressed. We show that the proposed
algorithm has complexity , where is the weight of the
codeword, independent of the codeword length .

Compared to a linear-time encoding algorithm [16], the algo-
rithm presented here is faster only when , in which
case the rate of the resulting code, , approaches
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zero as . However, we view this paper as the starting
point of a new approach to the classic problem of encoding and
decoding constant-weight codes, and we believe there is consid-
erable room for improvement. Some steps in this direction can
be found in [22], [27]. Further, the geometric view advanced
here is also of potential significance to areas such as source
coding and simulation.

Dissections are of considerable interest in geometry, partly
as a source of puzzles, but more importantly because they are
intrinsic to the notion of volume. Of the 23 problems posed by
David Hilbert at the International Congress of Mathematicians
in 1900, the third problem dealt with dissections. Hilbert asked
for a proof that there are two tetrahedra of the same volume
with the property that it is impossible to dissect one into a finite
number of pieces that can be rearranged to give the other, i.e.,
that the two tetrahedra are not equidecomposable. The problem
was immediately solved by Dehn [6]. In 1965, after 20 years of
effort, Sydler [24] completed Dehn’s work. The Dehn–Sydler
theorem states that a necessary and sufficient condition for two
polyhedra to be equidecomposable is that they have the same
volume and the same Dehn invariant. This invariant is a certain
function of the edge lengths and dihedral angles of the polyhe-
dron. An analogous theorem holds in four dimensions (Jessen
[11]), but in higher dimensions it is known only that equality
of the Dehn invariants is a necessary condition. In two dimen-
sions, any two polygons of equal area are equidecomposable, a
result due to Bolyai and Gerwein (see Boltianskii [1]). Among
other books dealing with the classical dissection problem in two
and three dimensions we mention in particular Frederickson [7],
Lindgren [13], and Sah [19].

The remainder of the paper is organized as follows. We
provide background and review relevant previous work in
Section II. Section III describes our geometric approach and
gives some low-dimensional examples. Encoding and decoding
algorithms are then given in Section IV, and the correctness of
the algorithms is established. Section V summarizes the paper.

II. BACKGROUND AND PREVIOUS METHODS

Let us denote the Hamming weight of a length- binary se-
quence by , where

is the cardinality of a set.

Definition 1: An constant-weight binary code is a
set of length- sequences such that any sequence has
weight .

If is an constant-weight code, then its rate
. For fixed and

, we have

(1)
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Fig. 1. Efficiency � as a function of block length when � � ���.

where is the en-
tropy function. Thus, is maximized when , i.e., the
asymptotic rate is highest when the code is balanced.

The (asymptotic) efficiency of a code relative to an infinite-
length code with the same weight to length ratio , given by

, can be written as where
and . The first term, , is the efficiency of a
particular code relative to the best possible code with the same
length and weight; the second term, , is the efficiency of the
best finite-length code relative to the best infinite-length code.

From Stirling’s formula we have

(2)

A plot of as a function of is given in Fig. 1 for .
The slow convergence visible here is the reason one needs codes
with large block lengths.

The problem of finding efficient algorithms for encoding
and decoding constant-weight vectors has been considered by
several authors. We briefly discuss two previous methods that
are relevant to our work. The first, a general-purpose technique
based on the idea of lexicographic ordering and enumeration
of codewords in a codebook (Schalkwijk [20], Cover [2]) is an
example of ranking/unranking algorithms that are well studied
in the combinatorial literature (Nijenhuis and Wilf [14]). We
refer to this as the enumerative approach. The second (Knuth
[12]) is a special-purpose, highly efficient technique that works

for balanced codes, i.e., when , and is referred to
as the complementation method.

The enumerative approach orders the codewords lexicograph-
ically (with respect to the partial order defined by ), as in
a dictionary. The encoder computes the codeword from its dic-
tionary index, and the decoder computes the dictionary index
from the codeword. The method is effective because there is a
simple formula involving binomial coefficients for computing
the lexicographic index of a codeword. The resulting code is
fully efficient in the sense that . However, this method
requires the computation of the exact values of binomial coef-
ficients , and requires registers of length , which limits
its usefulness.

An alternative is to use arithmetic coding (Rissanen and
Langdon [18], Rissanen [17]; see also Cover and Thomas
[3, Sec. 13.3]). Arithmetic coding is an efficient variable
length source coding technique for finite alphabet sources.
Given a source alphabet and a simple probability model for
sequences , let and denote the probability distri-
bution and cumulative distribution function, respectively. An
arithmetic encoder represents by a number in the interval

. The implementation of such a coder can
also run into problems with very long registers, but elegant
finite-length implementations are known and are widely used
(Witten, Neal and Cleary [30]). For constant-weight codes, the
idea is to reverse the roles of encoder and decoder, i.e., to use
an arithmetic decoder as an encoder and an arithmetic encoder
as a constant-weight decoder (Ramabadran [16]). Ramabadran
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gives an efficient algorithm based on an adaptive probability
model, in the sense that the probability that the incoming bit is
a depends on the number of ’s that have already occurred.
This approach successfully overcomes the finite-register-length
constraints associated with computing the binomial coefficients
and the resulting efficiency is often very high, in many cases
the loss of information being at most one bit. The encoding
complexity of the method is .

Knuth’s complementation method [12] relies on the key ob-
servation that if the bits of a length- binary sequence are com-
plemented sequentially, starting from the beginning, there must
be a point at which the weight is equal to . Given the
transformed sequence, it is possible to recover the original se-
quence by specifying how many bits were complemented (or the
weight of the original sequence). This information is provided
by a (relatively short) constant-weight check string, and the re-
sulting code consists of the transformed sequence followed by
the constant-weight check bits. In a series of papers, Bose and
colleagues extended Knuth’s method in various ways, and de-
termined the limits of this approach (see [31] and references
therein). The method is simple and efficient, and even though
the overall complexity is , for we found it to
be eight times as fast as the method based on arithmetic codes.
However, the method only works for balanced codes, which re-
stricts its applicability.

The two techniques that we have described above both have
complexity that depends on the length of the codewords. In
contrast, the complexity of our algorithm depends only on the
weight , which makes it more suitable for codes with relatively
low weight.

As a final piece of background information, we define what
we mean by a dissection. We assume the reader is familiar with
the terminology of polytopes (see, for example, Coxeter [4],
Grünbaum [8], Ziegler [32]). Two polytopes and in
are said to be congruent if can be obtained from by a trans-
lation, a rotation, and possibly a reflection in a hyperplane. Two
polytopes and in are said to be equidecomposable if
they can be decomposed into finite sets of polytopes
and , respectively, for some positive integer , such
that and are congruent for all (see Freder-
ickson [7]). That is, is the disjoint union of the polytopes ,
and similarly for . If this is the case then we say that can be
dissected to give (and that can be dissected to give ).

Note that we allow reflections in the dissection: there are at
least four reasons for doing so. i) It makes no difference to the
existence of the dissection, since if two polytopes are equide-
composable using reflections they are also equidecomposable
without using reflections. This is a classical theorem in two and
three dimensions [7, Ch. 20] and the proof is easily generalized
to higher dimensions. ii) When studying congruences, it is sim-
pler not to have to worry about whether the determinant of the
orthogonal matrix has determinant or . iii) Allowing re-
flections often reduces the number of pieces. iv) Since our dis-
sections are mostly in dimensions greater than three, the ques-
tion of “physical realizability” is usually irrelevant. Note also
that we do not require that the can be obtained from by a
succession of cuts along infinite hyperplanes. All we require is
that be a disjoint union of the .

One final technical point: when defining dissections using co-
ordinates, as in (3), (4) below, we use a mixture of and signs
in order to have unambiguously defined maps. This is essential
for our application. On the other hand, it means that the “pieces”
in the dissection may be missing certain boundaries. It should
therefore be understood that if we were focusing on the dissec-
tions themselves, we would replace each piece by its topological
closure.

For further information about dissections see the books men-
tioned in Section I.

III. THE GEOMETRIC INTERPRETATION

In this section, we first consider the problem of encoding and
decoding a binary constant-weight code of weight and
arbitrary length , i.e., where there are only two bits set to in
any codeword. Our approach is based on the fact that vectors
of weight two can be represented as points in two-dimensional
Euclidean space, and can be scaled, or normalized, to lie in a
right triangle. This approach is then extended, first to weight

, and then to arbitrary weights .
For any weight and block length , let denote the set of

all weight vectors, with . Our codebook will be
a subset of , and will be equal to for a fully efficient code,
i.e., when . We will represent a codeword by the -tuple

, where
is the position of the th in the codeword, counting from the

left. If we normalize these indices by dividing them by , the
codebook becomes a discrete subset of the polytope , the
convex hull of the points .

is a right triangle, is a right tetrahedron, and in general
we will call a unit orthoscheme.1

The set of inputs to the encoder will be denoted by : we as-
sume that this consists of -tuples which
range over a -dimensional hyper-rectangle or “brick.” After
normalization by dividing the by , we may assume that the
input vector is a point in the hyper-rectangle or “brick”

We will use and
to denote the normalized ver-

sions of the input vector and codeword, respectively, defined by
and for .

The basic idea underlying our approach is to find a dissection
of that gives . The encoding and decoding algorithms are
obtained by tracking how the points and move during the
dissection.

The volume of is . This is also
the volume of , as the following argument shows. Classify the
points in the unit cube into regions
according to their order when sorted; the regions are congruent,
so all have volume , and the region where the are in
nondecreasing order is .

We now return to the case . There are many ways
to dissect the rectangle into the right triangle . We will

1An orthoscheme is a �-dimensional simplex having an edge path consisting
of� totally orthogonal vectors (Coxeter [4]). In a unit orthoscheme these edges
all have length �. Hadwiger [9] showed that � is equidissectable with a cube.
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Fig. 2. Two ways to dissect rectangle � to give triangle � . Piece 1 may be rotated to its new position, or reflected and translated.

consider two such dissections, both two-piece dissections based
on Fig. 2.

In the first dissection, the triangular piece marked 1 in Fig. 2 is
rotated clockwise about the center of the square until it reaches
the position shown on the right in Fig. 2. In the second dissec-
tion, the piece marked 1 is first reflected about the main diag-
onal of the square and then slid down until it reaches the posi-
tion shown on the right in Fig. 2. In both dissections the piece
marked 2 is fixed.

The two dissections can be specified in terms of coordinates2

as follows. For the first dissection, we set
if
if

(3)

and for the second, we set
if
if (4)

The first dissection involves only a rotation, but seems harder
to generalize to higher dimensions. The second one is the one we
will generalize; it uses a reflection, but as mentioned at the end
of Section II, this is permitted by the definition of a dissection.

We next illustrate how these dissections can be converted
into encoding algorithms for constant-weight (weight ) binary
codes. Again there may be several solutions, and the best al-
gorithm may depend on arithmetic properties of (such as its
parity). We work now with the unnormalized sets and .
In each case, the output is a weight- binary vector with ’s in
positions and .

A. First Dissection, Algorithm 1

1) The input is an information vector with
and .

2) If , we set , otherwise we set
and .

For even, this algorithm generates all possible
codewords. For odd it generates only codewords,
leading to a slight inefficiency, and the following algorithm is to
be preferred.

2For our use of a mixture of � and � signs, see the remark at the end of
Section II.

B. First Dissection, Algorithm 2

1) The input is an information vector with
.

2) If , we set , otherwise we set
.

For odd, this algorithm generates all codewords,
but for even it generates only codewords, again
leading to a slight inefficiency.

C. Second Dissection

1) The input is an information vector with
and .

2) If , we set , otherwise we set
.

For even, this algorithm generates all codewords,
but for odd it generates only codewords, leading
to a slight inefficiency. There is a similar algorithm, not given
here, which is better when is odd.

Note that only one test is required in any of the encoding algo-
rithms. The mappings are invertible, with obvious decoding al-
gorithms corresponding to the inverse mappings from to

We now extend this method to weight . Fortu-
nately, the Dehn invariants for both the brick and our
unit orthoscheme , which is the tetrahedron3 with vertices

and , are zero (since in both
cases all dihedral angles are rational multiples of ), and so
by the Dehn–Sydler theorem, the polyhedra and are
equidecomposable. As already mentioned in Section I, the
Dehn–Sydler theorem applies only in three dimensions. But it
will follow from the algorithm given in the next section that

and are equidecomposable in all dimensions.
We will continue to describe the encoding step (the map from

to ) first. We will give an inductive dissection (see Fig.
3), transforming to in two steps, effectively reducing the
dimension by one at each step. In the first step, the brick is
dissected into a triangular prism (the product of a right triangle,

, and an interval), and in the second step, this triangular prism

3To solve Hilbert’s third problem, Dehn showed that this tetrahedron is not
equidecomposable with a regular tetrahedron of the same volume.
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Fig. 3. Transformation from tetrahedron to rectangular prism.

Fig. 4. Four-piece dissection of tetrahedron to triangular prism. Pieces 2 and 3
must be reflected, piece 4 is fixed.

is dissected into the tetrahedron . Note that the first step has
essentially been solved by the dissection given in (4).

For the second step, we use a four-piece dissection of the
triangular prism to the tetrahedron . This dissection, shown
with the tetrahedron and prism superposed in Fig. 4 appears to
be new.

There is a well-known dissection of the same pair of poly-
hedra that was first published by Hill in 1896 [10]. This also
uses four pieces, and is discussed in several references: see
Boltianskii [1, p. 99], Cromwell [5, p. 47], Frederickson [7,
Fig. 20.4], Sydler [23], Wells [29, p. 251]. However, Hill’s
dissection seems harder to generalize to higher dimensions.
Sydler’s dissection does have the advantage over ours that
it can be accomplished purely by translations and rotations,
whereas in our dissection, two of the pieces (pieces labeled 2
and 3 in Fig. 4) must also be reflected. However, as mentioned
at the end of Section II, this is permitted by the definition of
a dissection, and is not a drawback for our application. Apart
from this, our dissection is simpler than Hill’s, in the sense that
his dissection requires a cut along a skew plane ,
whereas all our cuts are parallel to coordinate axes.

To obtain the four pieces shown in Fig. 4, we first make two
horizontal cuts along the planes and , dividing
the tetrahedron into three slices. We then cut the middle slice
into two by a vertical cut along the plane .

There appears to be a tradition in geometry books that dis-
cuss dissections of not giving coordinates for the pieces. To an
engineer this seems unsatisfactory, and so in Table I we list the
vertices of the four pieces in our dissection. Piece 1 has four ver-
tices, while the other three pieces each have six vertices. (In the
Hill dissection, the numbers of vertices of the four pieces are 4,
5, 6, and 6, respectively.) Given these coordinates, it is not dif-
ficult to verify that the four pieces can be reassembled to form

TABLE I
COORDINATES OF VERTICES OF PIECES IN DISSECTION OF TETRAHEDRON

SHOWN IN FIG. 4

the triangular prism, as indicated in Fig. 4. As already remarked,
pieces 2 and 3 must be reflected (or “turned over” in a fourth di-
mension). The correctness of the dissection also follows from
the alternative description of this dissection given below.

The dissection shown in Fig. 4 can be described algebraically
as follows. We describe it in the more logical direction, going
from the triangular prism to the tetrahedron since this is what
we will generalize to higher dimensions in the next section. The
input is a vector with ;
the output is a vector with ,
given by

if
if
if
if

(5)

The four cases in (5), after being transformed, correspond to
the pieces labeled 4, 3, 2, 1, respectively, in Fig. 4. We see from
(5) that in the second and third cases the linear transformation
has determinant , indicating that these two pieces must be
reflected.

Since it is hard to visualize dissections in dimensions greater
than three, we give a schematic representation of the above dis-
section that avoids drawing polyhedra. Fig. 5 shows a repre-
sentation of the transformation from the triangular prism to the
tetrahedron , equivalent to that given in (5). The steps shown
in Fig. 5 may be referred to as “cut and paste” operations, be-
cause, as Fig. 5 shows, the vector in the triangular prism is liter-
ally cut up into pieces which are rearranged and relabeled. Note
that, to complete the transformation, we precede this operation
by the dissection given in (4), finally establishing the bijection
between and .

We now describe the mapping shown in Fig. 5 in more de-
tail. The triangular prism is represented by the set of partially
ordered triples with and

, and we wish to transform this into the tetrahedron con-
sisting of the points with .

We divide the interval into equal segments of
length , and consider where the points and

fall in this interval, given that is in the triangular
prism. There are three possibilities for where lies in relation
to , and we further divide the case

into two subcases depending on whether or
. These are the four cases shown in Fig. 5, and correspond

one-to-one with the four dissection pieces in Fig. 4. Fig. 5 shows
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Fig. 5. Cut-and-paste description of the inverse transformation from triangular prism to tetrahedron.

how the triples (reindexed according to their relative
positions) are mapped to the triples .

The last column of Fig. 5 shows the ranges of the in the four
cases; the fact that these ranges are disjoint guarantees that the
mapping from to is invertible. The ranges
of the will be discussed in more detail in the following section
after the general algorithms are presented.

This operation can now be described without explicitly men-
tioning the underlying dissection. Each interval of length ,
together with the given values within it, is treated as a single
complete unit. In the “cut and paste” operations, these units are
rearranged and relabeled in such a way that the operation is in-
vertible.

IV. ALGORITHMS AND PROOF OF CORRECTNESS

In the previous section, we provided an encoding and de-
coding algorithm for weights and , based on
our geometric interpretation of and as points in . In
this section, the algorithm is generalized to larger values of the
weight . We start with the geometry, and give a dissection of
the “brick” into the orthoscheme . We work with the
normalized coordinates (for a point in ) and

(for a point in ), where . Later in
this section, we discuss the modifications needed to take into
account the fact that the must be integers.

Before we proceed, we make a few remarks. i) The algorithm
is described assuming the source word is represented as a point
in the “brick.” In practice, one may need to convert a given
source word or index (possibly in its binary representation) to
such a representation; this is a straightforward process—we
shall return to this at the end of this section. ii) When calcu-
lating the complexity, we assume the computation is performed
on operands of length . iii) In the complexity analysis,
we do not include the cost of setting positions to during
encoding, and extracting the positions of the ’s in the length
constant weight codewords during decoding, for two reasons:
a) this is part of the transmission/reception process (or the
write/read process), and does not contribute to the overall com-
putation load, and b) during encoding, setting certain positions
to can be done efficiently on a codeword preset to all zeros.

A. An Inductive Decomposition of the Orthoscheme

Restating the problem, we wish to find a bijection be-
tween the sets and . The inductive approach developed
for (where the case was a subproblem) will
be generalized. Of course the bijection between and

is trivial. We assume that a bijection is known between
and , and show how to construct a bijection be-

tween and .
The last step in the induction uses a map from the prism

to ( is the map described in (4) and is
described in (5)). The mapping from to is then given
recursively by ,
where

(6)

For we set

By iterating (6), we see that is obtained by successively ap-
plying the maps .

The following algorithm defines for . We begin
with an algebraic definition of the mapping and its inverse,
and then discuss it further in the following section. The input
to the mapping is a vector , with

and ; the output
is a vector .

Forward mapping
1) Let

2) Let

3) Set equal to

for
for
for
for

(7)
Equation (7) identifies the “cut and paste” operations required
to obtain for different ranges of the variable . If the initial
index in one of the four cases in (7) is smaller than the final
index, that case is to be skipped. A case is also skipped if the
subscript for an is not in the range . Note in Step 1
that if is the largest of the ’s. This implies that

, and then Step 3 is the identity map.
The inverse mapping from to has a similar re-

cursive definition. The th step in the induction is the map
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defined below. For we
set

The map is obtained by successively applying the maps
.

Inverse mapping
1) Let

2) If , let , otherwise, let

in either case, let .
3) Set equal to

for

for

for

for

(8)

Note that the transformations in (7) and (8) are formal in-
verses of each other, and that these transformations are volume-
preserving. The underlying linear transformations are orthog-
onal transformations with determinant or .

Before proceeding further, let us verify that in the case ,
the mapping agrees with that given in (5).

• If , then and the map is the
identity, as mentioned above.

• If , there are two subcases:
If then .
If then .

• If , then .
The transformations in (7) now exactly match those in (5).

B. Interpretations and Explanations

In Fig. 6, we give a graphical interpretation of the algorithm,
which can be regarded as a generalization of the “cut and paste”
description given above. This figure shows the transformation
defined by the th step in the algorithm. At this step, we
begin with a list of numbers in in-
creasing order, and a further number which may be anywhere
in the interval . This list of numbers is plotted in
the plane as the set of points for (in-
dicated by the solid black circles in Fig. 6). In the first step in the
forward algorithm, the augmented list is sorted
into increasing order. In the sorted list, now occupies posi-
tion , so the point moves to the left, to the new posi-
tion , and the points for
move to the right. This is indicated by the arrows in the figure.
The new positions of these points are marked by hollow circles.

The point now lies between the grid points
and (it may coincide with the latter point), since

. We draw the line (shown as the
dashed-and-dotted line in Fig. 6). This has unit slope and passes
through the points and . The algorithm

then computes to be the smallest index for which is
on or above this line. Once and have been determined, the
forward mapping proceeds as follows. The points for

are shifted to the right of the figure and are moved
upwards by the amount , their new positions being
indicated by crosses in the figure. Finally, the origin is moved
to the grid point and the points are reindexed.
The points which originally had indices

become points after reindexing. In the new
coordinates, the final positions of the points lie inside the square
region . The reader can check that this process
is exactly equivalent to the algebraic description of given
above.

To recover and , we first determine the value of
. This can indeed be done since is precisely the index

of the largest that lies on or above the line in the
new coordinate system. Note that the position of this line is inde-
pendent of and and . This works because
the points in the original coordinate system, be-
fore the origin is shifted, are moved right by units and upwards
by units, so points below the dashed-and-dotted line remain
below the line. Furthermore, observe that in the new coordinate
system the number of points below the line is
equal to . Thus, the correct and values may be recov-
ered, and the inverse mapping can be successfully performed.

The following remarks record two properties of the algorithm
that will be used later.

Remark 1: Step 2 of the forward algorithm implies that
and . It follows that there is no

in the range for which

Remark 2: The forward algorithm produces a vector
whose components satisfy

(9)

(10)

and

for (11)

Equations (9) and (10) follow from the minimizations in Steps
1 and 2 of the forward algorithm, respectively. The right-hand
side of (11) expresses the fact, already mentioned, that the first

points remain below the dotted-and-dashed line after they are
shifted.

C. Proof of Correctness

We now give the formal proof that the algorithm is correct.
This is simply a matter of collecting together facts that we have
already observed.

Theorem 1: For any , the forward mapping is
a one-to-one mapping from to with in-
verse .



1058 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 3, MARCH 2009

Fig. 6. A graphical illustration of the forward and inverse mapping.

Proof: First, it follows from Remark 2 that, for
, satisfies

, and so is an element of .
Suppose there were two different choices for , say and

, such that

We know that determines and . So and
have the same associated values of and . But for a given
pair , (7) is invertible. Hence, , and is
one-to-one.

Note that the transformations in (7) and (8) are inverses of
each other. Hence, is also an onto map, and is its in-
verse.

D. Number of Pieces

The map , which dissects the prism to
give the orthoscheme , has one piece for each pair . If

then , while if takes all values
from to . (It is easy to write down an explicit point in the

interior of the piece corresponding to a specified pair of values
of and . Assume and set . Take the point
with coordinates given by ;

for ;
for ;

for .) The total number of pieces in the
dissection is therefore

which is for . This is a well-
known sequence, entry A124 in [21], which by coincidence also
arises in a different dissection problem: it is the maximal number
of pieces into which a circular disk can be cut with straight
cuts. For example, with three cuts, a pizza can be cut into a
maximum of seven pieces, and this is also the number of pieces
in the dissection defined by .

E. The Algorithms for Positive Integers

To apply the above algorithm to the problem of encoding and
decoding constant-weight codes, we must work with positive
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integers rather than real numbers, which entails a certain loss
in rate, although the algorithms remain largely unchanged. Let

, and let and be given with . In
a manner analogous to the real-valued case, we find a bijection
between a finite hyper-rectangle or brick and a subset
of the finite orthoscheme , where is the set of
vectors satisfying

for , and is the set of vectors
satisfying

Note that usually , which entails a loss in rate.
The forward mapping is now replaced by the map ,

which sends with
and to an element of . Let us write

, where and . We partition the
range into parts, where the first parts
each have elements, the next parts each have elements,
and the last part has elements (giving a total of elements).
This is similar to the real-valued case, where each interval had
length .

1) Let

2) Let

where .
3) Set equal to

for
for
for
for

The inverse mapping is similarly replaced by the map

, defined as follows. Again, assume
.

1) Let

where .
2) If , let , otherwise, let

in either case, let .
3) Set equal to

for
for
for
for

We omit the proofs, since they are similar to those for the
real-valued case.

F. Comments on the Algorithm

The overall complexity of the transform algorithm is ,
because at each induction step, the complexity is linear in the
weight at that step. Recall that the complexities of the arithmetic
coding method and Knuth’s complementation method are both

. Thus, when the weight is larger than , the geometric
approach is less competitive. When the weight is low, the pro-
posed geometric technique is more efficient, because Knuth’s
complementation method is not applicable, while the dissection
operations of the proposed algorithm makes it faster than the
arithmetic coding method. Furthermore, due to the structure of
the algorithm, it is possible to parallelize part of the computa-
tion within each induction step to further reduce the computa-
tion time.

So far little has been said about mapping a binary sequence
to an integer sequence such that ,
where and are the lower and upper bound of the valid
range as specified by the algorithm. A straightforward method
is to treat the binary sequence as an integer number and then
use “quotient and remainder” method to find such a mapping.
However, this requires a division operation, and when the binary
sequence is long, the computation is not very efficient. A simpli-
fication is to partition the binary sequence into short sequences,
and map each short binary sequence to a pair of integers, as in
the case of a weight two constant-weight codes. Through proper
pairing of the ranges, the loss in the rate can be minimized.

The overall rate loss has two components, the first from the
rounding involved in using natural numbers, the second from the
loss in the above simplified translation step. However, when the
weight is on the order of , and is in the range of – ,
the rate loss is usually 1–3 bits/block. For example, when

, then the rate loss is 2 bits/block compared to the
best possible code which would encode information
bits.

V. CONCLUSION

We propose a novel algorithm for encoding and decoding
constant-weight binary codes, based on dissecting the polytope
defined by the set of all binary words of length and weight

, and reassembling the pieces to form a hyper-rectangle cor-
responding to the input data. The algorithm has a natural recur-
sive structure, which enables us to give an inductive proof of
its correctness. The proposed algorithm has complexity ,
independent of the length of the codewords . It is especially
suitable for constant weight codes of low weight.
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