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Abstract 
This paper describes a novel approach to event correlation in networks based on coding 

techniques. Observable symptom events are viewed as a code that identifies the problems that 
caused them; correlation is performed by decoding the set of observed symptoms. The coding 
approach has been implemented in SMARTS Event Management System (SEMS), as server 
running under Sun Solaris 2.3. Preliminary benchmarks of the SEMS demonstrate that the coding 
approach provides a speedup at least two orders of magnitude over other published correlation 
systems. In addition, it is resilient to high rates of symptom Joss and false alarms. Finally, the 
coding approach scales well to very large domains involving thousands of problems. 

1 INTRODUCTION 

Detecting and handling exceptional events (alarms)3 play a central role in network management 
(Leinwand and Fang 1993, Stallings 1993, Lewis 1993, Dupuy et. al. 1989, Feldkuhn and 
Erickson 1989). Alarms indicate exceptional states or behaviors, for example, component 
failures, congestion, errors, or intrusion attempts. Often, a single problem will be manifested 
through a large number of alarms. These alarms must be correlated to pinpoint their causes so that 
problems can be handled effectively. 

Effective correlation can lead to great improvements in the quality and costs of network 
operations management. For example, in a recent report on AT&T's Event Correlation Expert 

(ECXpert™), Nygate and Sterling (1993) report, " .. labor savings at a typical US network 

operations center are between $500,000 and $1,000,000 a year. In addition, at least this amount 
is saved due to decreased network downtime." The alarm correlation problem has thus attracted 
increasing interest in recent years as described in a recent survey (Ohsie and Kliger 1993). 

A generic alarm correlation system is depicted in Figure 1. Monitors typically collect managed 
data at network elements and detect out of tolerance conditions, generating appropriate alarms. 
The correlator uses an event model to analyze these alarms. The event model represents 

I Work performed while the author was on sabbatical leave at Systems Management Arts. 

2 This author's research was supported in part by NSF grant IRI-94-13847 

3 Henceforth we use the terms problem events to indicate events requiring handling and symptom events (also 

symptoms or alarms) to indicate observable events. The terms event-correlation or alarm-correlation are used 
interchangeably to indicate a process where observed symptoms are analyzed to identify their common causes. 
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knowledge of various events and their causal relationships. The correlator determines the 

common problems that caused the observed alarms. 

Configuration ... 

Model 
Event Model 

problems 
Correlator .. 

Monitors ----' 
alarms 

Figure 1: Generic Architecture of an Event Correlation System 

An alarm correlation system must address a few technical challenges. First, it must be 

sufficiently general to handle a rapidly changing and increasing range of network systems and 

scenarios. Second, it must be scalable to large networks involving increasingly complex elements. 

As elements become more complex, the number of problems associated with their operations as 

well as the number of symptoms that they can cause increases rapidly. Furthermore, propagation 

of events among related elements can cause dramatic increase in the number of symptoms caused 

by a single problem. Finally, an alarm correlation system must be resilient to "noise " in the inputs 

to the correlator. This is because alarms may be lost or spuriously generated forming observation 

noise in the alarms input stream. The event-model may also be inconsistent with the actual 

network, due to insufficient or incorrect knowledge of the configuration model. These 

inconsistencies form model noise in the event model input to the correlator. An alarm correlation 

system must be robust with respect to both observation and model noise. 

Current alarm correlation systems typically fall short of meeting the goals described above 

(Ohsie and Kliger 1993). Alarms are typically correlated through searches over the event model 

knowledge base. The complexity of the search seriously limits scalability. To control the search 

complexity, often the event model knowledge base is carefully designed to take advantage of 

specific specialized domain characteristics. This limits generality. There are no techniques to 

select an optimum set of symptoms to monitor or to determine whether observed symptoms 

provide sufficient information to determine problems. Finally, search techniques derive their 

computations from the data stored in the knowledge base and arriving alarms. Noise in this data 

can guide the search in the wrong direction. A more detailed analysis of current correlation 

systems is pursued in (Ohsie and Kliger 1993). 

This paper describes a novel approach to correlation based on coding techniques (Kliger et. a!. 

1994a). The underlying idea of the coding technique is simple. Problem events are viewed as 

messages generated by the system and "encoded" in sets of alarms that they cause. The problem 

of correlation is viewed as decoding these alarms to identify the message. The coding technique 

proceeds in two phases. In the codebook selection phase, an optimal subset of alarms, the 

codebook is selected to be monitored. This codebook is selected to optimally pinpoint the 

problems of interest and ensure a required level of noise insensitivity. In the decoding phase, 

observed alarms are analyzed to identify the problems that caused them. The coding approach 

thus reduces the complexity of real-time correlation analysis through preprocessing of the event 

knowledge model. The codebook selection dramatically reduces the number of alarms that must 
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s 

(a) (b) 

Figure 2: A Causality graph (a) and its labeling (b) 

be monitored. It also establishes the relations among these alarms and their causes in a manner 

that reduces the complexity of the decoding phase. 

In what follows we describe the mathematical basis of the coding approach (section 2), 

develop the technique and establish its properties (section 3), describe a commercial 

implementation of the coding techniques and a benchmarking of the implementation (section 4) 

and conclude (section 5). 

2 THE MATHEMATICAL BASIS OF EVENT CORRELATION 

2.1 Causality Graph Models 

Correlation is concerned with analysis of causal relations among events. We use the notation e~f 

to denote causality of the event f by the event e. Causality is a partial order relation between 

events. The relation ~may be .. described by a causality graph whose nodes represent events and 

whose directed edges represent causality. Figure 2(a) depicts a causality graph on a set of 11 

events. 

To proceed with correlation analysis, it is necessary to identify the nodes in the causality graph 

corresponding to symptoms and those corresponding to problems. A problem is an event that 

may require handling while a symptom (alarm) is an event that is observable. Nodes of a causality 

graph may be marked as problems (P) or symptoms (S) as in Figure 2(b). Note that some events 

may be neither problems nor symptoms (e.g., event 8) while some other events are both 

symptoms and problems. 

The causality graph may include information that does not contribute to correlation analysis. 

For example, a cycle (such as events 3,4,5) represents causal equivalence. A cycle of events may 

thus be aggregated into a single event. Similarly, certain symptoms are not directly caused by any 

problem (e.g., symptoms 7,10) but only by other symptoms. They do not contribute any 

information about problems that is not already provided by these other symptoms that cause them. 

These indirect symptoms may be eliminated without loss of information. Henceforth, we will 

assume that a cauality graph has been appropriately pruned. 

2.2 Modeling Causal Likelihood 

The causality graphs described so far do not include a model of the likelihood (strength) of 

causality. The causal implication e~f can be considered as a representation of a proposition "e 
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may-cause f." Often, richer information is available describing the likelihood of such causality. 

Various approaches and measures have been pursued to model such likelihood. A probabilistic 

model, for example, associates a conditional probability with a causal implication while fuzzy 

logic associates a fuzzy measure. Each of these models includes operations to compute the 

strength of a causal chain between two events or to combine the strength of multiple chains 

between two events. It is useful to have a general model of likelihood that captures these various 

techniques as special cases. This model must include a set of causal likelihood measures and 

operations to compute strength of chains and combine them. We proceed to define and 

demonstrate such a general model of likelihood. 

Defme a semi-ring as a partially ordered set L with an order ~ and two operations * 

(catenation) and+ (combination) such that: 

(i) <L, *>is a semi-group with a unit 1 (a monoid) 

(ii) <L, +> is a commutative semi-group with a unit 0 

(iii) Va,beL, a*b~a,b a,b~a+b 

(iv) VaEL, 0~~1 

A semi-ring is used to provide a measure of causality. Elements of L provide measures of causal 

strength with 1 indicating the strongest causality and 0 the weakest. The ordering of likelihood 

measures is used to compare relative strength of likelihood. The catenation operation is used to 

compute ihe strength of causal chains. The combination operation is used to compute the strength 

of multiple causal chains leading from one event to another. 

We give a few examples of semi-rings used to model causal likelihood. The deterministic 

model, uses L=D={O,l} with the order 0~1. The catenation operation is the Boolean and A, with 

the unit 1, while the combination operation is the Boolean or v with the unit 0. Consider now a 

causality graph whose edges are all labeled with elements from D. An edge marked 0 represents a 

highly unlikely causality while an edge marked 1 represents a sure causality. For simplicity assume 

that all edges marked 0 have been eliminated. The semi-ring structure permits us to assign 

likelihood to causal chains between two events. The deterministic likelihood of a causal chain 

such as l--78--79 in Figure 2 is obtained by catenation (and) and is trivially 1. Now consider the 

set of causal chains between two events. The likelihood of this set is obtained by applying the 

combination operation to the likelihood of all causal chains in the set. 

The deterministic model is a simple and commonly used likelihood model. We now introduce 

another semi-ring, denoted P, to model probabilistic causality. P consists of the set [0, 1] with an 

ordinary numerical order. The label q on e--?f models the conditional probability of the event f 

when e occurs. The catenation operation is the product of probabilities while the combination 

operation is defined as q1+q2=l-(l-qi)(l-q2). 

The temporal model is denoted T. The elements of T are non-negative real numbers 

representing the expected duration for the respective causality to happen. For example, a label of 

8.5 on l--73 indicates that this causal implication is expected to occur within 8.5 time units (e.g., 

seconds). The catenation operator * is addition of times (along a causal chain) while the 

combination operator + is the min operator on real numbers. 0 is the unit with respect to 

catenation, and oo the unit with respect to addition, where oo indicates that the causality is unlikely 

to happen (in any fmite time). We use the inverted numerical order as the order on T, modeling 
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"sooner" occurrence of events in time. For example, 6.32:8.5 should be read as "6.3 happens 

sooner than 8.5". 

Similarly, one can establish fuzzy logic models of causal likelihood or other calculus of 

uncertainty measures such as the Shafer-Dempster model. Furthermore, by combining various 

models, more complex likelihood measures may be obtained. For example, the semi-ring defined 

by PxT ascribes to a causal edge both probability and expected time of occurrence. 

We are now ready to define a causal likelihood model as a triplet <N, L,<!» where N is a 

normal form causality graph, L is a semi-ring describing a likelihood model and <)> is a m apping 

from the edge-set of N to L assigning a likelihood measure to each causal implication. By varying 

the semi-ring L , a spectrum of models is obtained. 

Figure 3: A Correlation Graph 

2.3 The Correlation Problem 

Correlation analysis is concerned with the relationships among problems and the symptoms that 

they may cause. Consider the correlation relation among problems and symptoms, defined as the 

closure of the relation ---7 and denoted by ~ . A correlation p~s means that problem p can cause 

a chain of events leading to the symptom s. This correlation relation may be represented in terms 

of a bipartite correlation graph. Figure 3 depicts the correlation graph corresponding to the 

causality graph of Figure 2 after pruning indirect symptoms and aggregating cycles. 

For a given causal likelihood model <N,L,<j>> one can derive a correlation graph N* 

corresponding to the causality graph N. Using the catenation operation one can associate a 

likelihood measure with every causal chain leading from a problem p to a symptom s. The 

likelihoods of various chains leading from p to s may be combined using the combination operator 

to provide a likelihood measure of the correlation p~s. Thus, for a given causal likelihood model 

<N,L,<)>> there is a corresponding correlation likelihood model <N*,L,<)> > over the correlation 

graph. 

3 THE CODING APPROACH TO ALARM CORRELATION 

3.1 Problems, Codes and Correlation 

The problem of alarm correlation may be now described in terms of the correlation likelihood 

model. For each problem p, the correlation graph provides a vector of correlation likelihood 

measures associated with the various symptoms. We denote this likelihood vector as p and call it 

the code of the problem p. Codes summarize the information available about correlation among 

symptoms and problems. Code vectors can be best considered as points in an lSI-dimensional 
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space associated with the set of symptoms S, which we call the symptom space. Alarms too may 

be described as alarm vectors in symptom space assigning likelihood measures 1 and 0 to 

observed and unobserved symptoms respectively. A very useful reference for coding theory and 

techniques is provided by [Roman 1992]. 

The alarm correlation problem is that of finding problems whose codes optimally match an 

observed alarm vector. We illustrate these considerations using the example of Figure 3. Figure 

4(a) depicts a deterministic correlation likelihood model and Figure 4(b) depicts a probabilistic 

model. Code vectors correspond to the likelihood of the symptoms 3,6,9 in this order. They are 

given by 1=(1,0,1), 2=(1,1,0) and 11= (1,0,1) for the deterministic model and by 1=(0.8,0,0.3), 

(a) Deterministic model (b) Probabilistic model 

Figure 4: Correlation Likelihood Models 

2=(0.4, 0.9,0) and 11=(0.5,0,0.9) for the probabilistic model. 

Suppose that alarms consisting of symptoms 3 and 9 have been observed. This may be 

described by an alarm vector f\=(1,0,1). In the deterministic model either 1 or 11 match the 

observation fl and one would infer that the two alarms are correlated with either problem 1 or I I. 

Note that these two problems have identical codes and are indistinguishable. Similarly, an alarm 

vector f!=(l, 1 ,0) would match the code of problem 2. How should an alarm vector f\=(0, I ,0) be 

interpreted? One possibility is that this is just a spurious false alarm. Another possibility is that 

problem 2 occurred but the symptom 3 was lost. The choice of interpretation depends on whether 

loss is more likely than spurious generation of alarms. There are, of course, other more remote 

possibilities. 

Now, suppose that spurious or lost symptoms are unlikely. The information provided by 

symptom 9 is redundant. If only symptoms 3 and 6 are observed the respective projections of the 

codes 1=11=(1,0) and 2=(l,I) are sufficient to distinguish and correlate alarm vectors. Since real 

alarm correlation problems typically involve significantredundancy. The number of symptoms 

associated with a single problem may be very large. A much smaller set of symptoms can be 

selected to accomplish a desired level of distinction among problems. We call such a subset of 

symptoms a codebook. The complexity of correlation is a function of the number of symptoms in 

the codebook. An optimal codebook can thus reduce the complexity of correlation substantially. 

To illustrate this consider an example of 6 problems and 20 symptoms depicted in Figure 5(a). 

The correlation likelihood model is compactly described in terms of a matrix. Matrix elements 

represent the correlation likelihood parameters of respective problem-symptom pairs. 
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p P, P, p p< p 

I I 0 0 I 0 I 

2 I I I I 0 0 

3 I I 0 I 0 0 

4 I 0 I 0 I 0 

5 I 0 I I I 0 

6 I I I 0 0 I 

7 I 0 I 0 0 0 

8 I 0 0 I I I 

9 0 I 0 0 I I 

10 0 I I I 0 0 

II 0 0 0 I I 0 

12 0 I 0 I 0 0 

13 0 I 0 I I I 

14 0 0 0 0 0 I 
p P, p p p"- P,;_ 

15 0 0 I 0 I I I 1 0 0 I 0 I 

16 0 I I 0 0 I 

17 0 I 0 I I 0 
p P, P, p p< p< 

3 I 1 0 I 0 0 
4 I 0 I 0 I 0 

18 0 I I I 0 0 I I 0 0 I 0 I 6 I I I 0 0 I 

19 0 I I 0 I 0 2 I I 1 I 0 0 9 0 I 0 0 I I 

20 0 0 0 0 1 I 4 I 0 I 0 I 0 18 0 I I I 0 0 

(a) Correlation Matrix (b) A Code book of Radius 0.5 (c) A Code book of Radius I .5 

Figure 5: A deterministic correlation matrix and codebooks 

Figure 5(b) depicts a code book consisting of 3 symptoms {I ,2,4}. This code book 
distinguishes among all 6 problems. However, it can only guarantee distinction by a single 
symptom. For example, problems p2 and p3 are distinguished by symptom 4. A loss or a spurious 
generation of this symptom will result in potential decoding error. Distinction among problems is 

measured by the Hamming distance between their codes. The radius of a codebook is one half of 
the minimal Hamming distance among codes. When the radius is 0.5, the code provides distinction 

among problems but is not resilient to noise. To illustrate resiliency to noise consider the 
codebook of Figure 5(c) where 6 symptoms are used to produce a codebook of radius 1.5. This 
means that a loss or a spurious generation of any two symptoms can be detected and any single­

symptom error can be corrected. 

We illustrate the error-correction capabilities of the codebook of Figure S(c). A minimal­

distance decoder will decode as P1 all alarms that contain a single-symptom perturbation of PI· 

The alarm vectors {OI I 100, 101100, 110100, 111000} will be decoded as a single symptom loss 
in p~, while { 11 I 110, I 11101} will be interpreted as occurrence of a spurious symptom. The 
total number of alarms that can be generated due to a single symptom perturbation (loss or 
spurious one) in the 6 problems codes +the null problem p0=000000 is 42. Therefore, a total of 

48 alarm vectors (out of possible 63) will be correctly decoded despite single-symptom 
observation errors. When two symptom errors occur a minimal distance decoder can detect that 
errors have occurred but may not decode the alarm vector uniquely. 

The considerations above generalize simply to correct observation errors in k symptoms and 
detect 2k errors as long as k is smaller than the radius of the codebook. Consider now the 
problem of model errors. That is, what happens when the correlation model itself is incorrect? 

For example, suppose problem p4 in Figure 5 can actually cause symptom 6 even though the 
model fails to reflect this. This will cause a single symptom error with respect to the code of P4· 
Symptom 6 will appear as a spurious symptom whenever p4 occurs. In other words, an error in 
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the correlation model is entirely equivalent to an observation error. In contrast to random 

observation errors, model errors would appear as persistent observation noise. This persistence 

may be automatically detected by analyzing correlation logs and then used to correct the 

correlation model. 

In summary, one seeks to design minimal codebooks that accomplish a desired level of 

insensitivity to observation and model errors. This insensitivity to observation errors is measured 

by the degree to which codes are distinct. In the case of the deterministic model, distinction 

among codes is measured by the Hamming distance among code vectors. We will soon see that 

similar measures of distinction may be used to select optimum codebooks in the case of other 

likelihood models. 

3.2 Coding and Decoding 

The coding technique accomplishes significant correlation speeds. Most of the complexity of 

correlation computations is handled during the pre-processing of codebook selection. The 

decoding of alarms in real-time can be very fast. Precise complexity evaluation is beyond the 

scope of this paper and is left for future publications. However, even crude estimates can usefully 

illustrate the speed gains. The complexity of decoding is logarithmic in the number of direct 

decodes (alarm vectors whose errors with respect to codes are less than half the radius of the 

code book). The number of direct decodes is bounded by o(p,c,k)= (p +I) m ~ J:) where p is the 

number of problems, c is the code book size (number of symptoms in the codebook) and k is the 

number of error symptoms to be corrected ('radius' - 1). The complexity of decoding is 

bounded by A(p,c,k)=lg[(p +I) m ~ 
0
[: )]. For k<<p, this is of order (k+l)lgp. 

In the example of Figure 5(c) p=6, c=6, k=l, the decoding complexity is 

A.(6,6,1)=lg[7(1+6)]=1g49-6 search operations. When p=100 and k=1, c may be of the order 10-

30 and the complexity of decoding is of the order of 10-12 search operations. Even when p=106, 

decoding complexity is of a manageable order of 20(k+ 1) search operations. In contrast, other 

knowledge based approaches typically requires an exponential, or even doubly exponential, search 

in the total number of problems p and symptoms s (s>>c). For p=lOO the search complexity may 

be practically infeasible. For example, Nygate and Sterling (1993) report alarm correlation speeds 

of ECXpertTM at 0.25 alarms per second for a model involving 10 problems. 

We proceed to complete the details of codebook design and decoding for a general correlation 

likelihood model. The point of departure in codebook design is to defme a metric of distinction 

among codes, generalizing the Hamming distance. This is accomplished by using a distance 

measure on the likelihood semi-ring L. We call a real function d(a,b) on La distance measure on 

L if it is symmetric, non-negative and satisfies d(a,a)=O and d(a,c):s;d(a,b)+d(b,c) for all a:s;b:s;c in 

L. Given a distance measure d(a,b) on L, one can extend it to a measure of distinction among 

code vectors. Define the distance between two code vectors _i!=(aJ,a2, ... an) and b=(b1,b2, ... bn) as 

d(.i!.b)=:Ek=I.n d(ak.bk). For example, in the case of the deterministic model define d(l,l)=d(O,O)=O 

and d(l,O)=l to obtain the Hamming distance. 

For the probabilistic model P, a distance measure is given by the log-likelihood measure 

d(a,b)=llg(a!b)l (with lg(0/0)=0 and lg(O/a)=l for a;toO). For example, in the probabilistic model of 
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Figure 5(b), 1=(0.8,0,0.3), 11=(0.5,0,0.9) and thus d(l,11)= lg(8/5)+lg(9/3)=lg(24/5). Therefore, 

in the probabilistic model problems 1 and 11 are distinct, in contrast to the deterministic model. 

Note that the log-likelihood distance measure generalizes the Hamming distance. When all 

probabilities are 1 or 0 the two measures yield the same distance. 

The radius of a set of codes P is defined as the one half of the minimal distance among pairs of 

codes. The radius provides worst case measure of distinction among code vectors. A codebook C 

is a subset of the set of symptoms S. The code space defined by C is the respective projection of 

code vectors in the symptom space defmed by S. The radius of the codebook, rc(P) is the 

respective radius among the projections of codes. Clearly, rc(P):::; rs(P). Given a desired level of 

distinction d:::; rs(P), the codebook design problem is that of finding a minimal codebook C for 

which d:::;rc(P). Such codebook provides a guaranteed distinction of at least d among the codes of 

different problems. 

The codebook design problem may be solved by a variety of algorithms. A pruning algorithm, 

for example, can start with the correlation matrix model and eliminate symptoms until an optimal 

codebook has been establi~hed. The algorithm may be designed independently of the specific 

likelihood model (semi-ring) and distance measure. This may be used to construct a correlator of 

great generality. 

Given a codebook C, consider now an alarm vector !! describing observed symptoms. The 

problem of decoding, as discussed above, is to find problem codes that maximally match !!· It is 

useful to utilize a correlation measure Jl(!!,J2) for decoding that is, in general, different from the 

measure of distinction. We illustrate this through the example of Figure 5(a). Suppose the 

codebook consists of the symptoms C={3,6}. The codes are 1=11=(1,0) and 2=(1,1). Now 

consider an alarm vector !!=(0,1). The Hamming distances are d@,1)=d(!!,Q)=1 and d@,2)=2, 

where Q =(0,0) is the null problem. Thus the Hamming distance does not distinguish between a 

lost symptom (correlating!! with 1) and a spurious symptom (correlating!! with Q). 

In general, a symmetric measure does not distinguish lost from spurious symptoms. We thus 

permit the correlation measure to be asymmetric. A correlation measure on L consists of two 

non-negative functions, Jl(l,a) and Jl(O,a) defined for all ae L such that Jl(l,l)= J.1(0,0)=0 and if 

a:::;b, Jl(l,a);::: Jl(l,b) while Jl(O,a):::; Jl(O,b ). For example, in the deterministic case define 

!l(0,1)=a as the correlation level between an observation of no symptom when the codebook 

predicts its occurrence, i.e., a lost symptom. Define J.1(1,0)=~ as the correlation measure between 

an observation of a symptom that is not included in a code, i.e., a spurious symptom. A 

correlation measure on L may be easily extended to a correlation measure Jl(!!,J2) between alarm 

vectors and code vectors. The problem of decoding is to find for a given alarm vector !! the 

problem codes that minimize the correlation measure Jl(!!,J1) -- best match problems. 

In the probabilistic case let !l(l,a)= llgal (correlation of occurrence) Jl(O,a)=llg(l-a)l 

(correlation of non-occurrence). The correlation measure Jl(!!,I!) is given by the logarithm of the 

product of probabilities assigned by 11 to events occurring in !! and the complements of the 

probabilities assigned to events that do not occur in !!. 

To illustrate the use of correlation measure in decoding consider again the codebook of Figure 

5(c). The correlation measure for the deterministic model is given by !l(0,1)=a (loss) and 

!l(1,0)=~ (spurious). The codebook provides guaranteed error-correction for all single symptom 

errors. 
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Consider the case when two possible symptom errors occurred. For example, let the alarm 

vector observed be f!=lOlOOO. The respective values of the correlation measure for the six 

problems are 2a, 2a+4~, 2a+~, 2a+~. a+~. 2a+~. Under all choices of a.~ the two candidates 

decodes are PI (two lost symptoms) and Ps (one lost symptom and one spurious). If a<~ (loss is 

more likely) problem PI will be decoded and if spurious symptoms are more likely, p5 will be 

decoded. If both observation errors are equally likely (a=~) both problems will be decoded. 

Decoding can be accomplished through very fast algorithms. A range of fast decoding 

algorithms is provided by coding theory. See (Roman 1992) for several possible algorithms with 

varying tradeoffs. For example, block-decoding techniques aggregate symptoms over a time 

window and then decode them to find minimal distance codes. 

4 IMPLEMENTATION AND BENCHMARKS 

The coding technique has been implemented in SMARTS Event Management System (SEMS). In 

this section we briefly describe the SEMS and the benchmarks used to test its performance. A full 

description of the benchmarks can be found in (Kliger et. al. 1994b) 

SEMS is organized as an event management server and its current implementation runs on Sun 

Sparcstations under Solaris 2.3. The SEMS server presents interfaces allowing clients to 

subscribe to problem events of interest, and provides clients with notification upon the detection 

of problems. Typical SEMS clients include various networked systems managers. For example, a 

fault manager may subscribe to various fault events, a performance manager may need to handle 

various congestion events or excessive delay events, while a security manager may need to 

detect intrusion events. Clients may also include applications running under umbrella management 

systems such as HP Open View, Sunnet Manager, or ffiM Netview/6000. 

A model of a satellite based communications network was used to benchmark the performance 

of the SEMS. The modelled domain includes close to 4000 managed objects involving some 

9500 problems and 6000 symptoms. Random scenarios were created by selecting random subsets 

of the model. For example, experiments involving 100 problems proceeded by selecting a random 

choice of 100 problems (out of 9500) to be monitored. All symptoms irrelevant to these problems 

were discarded, leaving a random number of symptoms from which a codebook was selected. 

The model makes two conservative assumptions unfavorable to codebook correlation. It 

assumes an under-instrumented system where the number of observed symptoms is much smaller 
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Figure 6: (a) Symptom Processing Rate (b) Symptom Processing Time with Standard Deviation 
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than the number of problems. Typical systems are over-instrumented. It assumes a sparse 

propagation model where only a small number of symptoms is caused by a typical problem. In a 

system with complex dependencies, problems can propagate very widely. Real-world situations 

typically monitor many more symptoms, yielding smaller codebooks, a larger reduction in the 

number of symptoms to monitor, and faster correlation. 

The most important measure of the effectiveness of the coding approach is correlation speed. 

Figure 6(a) shows the effective event correlation rate measured in symptoms per second of actual 

elapsed time (the effective event correlation rate includes symptoms which were generated by a 

problem but not processed by the correlator because codebook reduction removed them from the 

codebook). In domains with fewer than 4000 problems, symptom processing was measured in 

thousands of symptoms per second. This is 2-4 orders of magnitude faster than the published 

figures of 0.25 events per second for ECXPERT (Nygate 1993) and 15 symptoms per second for 

IMPACT (Jakobson and Weissman 1993). 

The fundamental measurement underlying the curve of Figure 6(a) is the elapsed time for 

processing symptoms. Figure 6(b) depicts these time measurements and the intervals defined by 

the standard deviation of the measurements. The figures shows that the average speed measures 

provide a fairly accurate estimate of the actual correlation rates. 

Another important aspect of the coding approach its resilience to symptom loss. Figure 7(a) 

shows the correlation error rates when the probability of symptom loss ranges up to 20%. Even 

substantial loss or spurious symptoms cause only minimal error probability, falling under 5% when 

the codebook radius exceeds 1.5. 

Our final measure of code book performance is what reduction is accomplished in the number 

of symptoms that must be monitored, compared with the total number of relevant symptoms 

available. The compression factor represents the ratio of the two numbers. This compression is an 

important feature of the coding approach as it reduces the amount of monitoring and real-time 

processing of events needed. Figure 7(b) depicts the behavior of the compression factor as the 

domain size grows. The figure shows that substantial compression is achieved by the codebook. 
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Figure 7: (a) Correlation Error Rate (b) Codebook Compression 

5 CONCLUSIONS 

This paper provides an overview of the coding approach to event correlation and its mathematical 

foundations. The coding approach accomplishes the three goals described in the introduction: 

generality, scalability and resilience to noise. Generality is accomplished through the use of an 

abstract mathematical formulation of the event correlation process. Scalability is accomplished 
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through a substantial reduction in real time correlation processing due to optimizing symptom sets 

and fast decoding mechanisms. The complex searches through causality models are performed 

during the pre-processing phase of codebook design. Resilience to noise is accomplished by 

selecting codebook symptoms to provide a desired level of guaranteed noise insensitivity. 

The coding approach has been implemented in SMARTS Event Management System. The 

current implementation runs as a server under Sun Solaris 2.3. Preliminary benchmarks confirm 

the advantages promised by the theoretical analysis. 
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