
24

A Coding Approach to Event Correlation

S. Kliger, S. Yemini

System Management Arts (SMARTS),

199 Main St., White Plains. NY 10601

kliger, yemini@smarts.com

Y. Yemini,lD. Ohsie,2 S. Stolfo

450 Computer Science Building,

Columbia University, NY 10027

yemini, ohsie, sal@cs.columbia.edu

Abstract
This paper describes a novel approach to event correlation in networks based on coding

techniques. Observable symptom events are viewed as a code that identifies the problems that
caused them; correlation is performed by decoding the set of observed symptoms. The coding
approach has been implemented in SMARTS Event Management System (SEMS), as server
running under Sun Solaris 2.3. Preliminary benchmarks of the SEMS demonstrate that the coding
approach provides a speedup at least two orders of magnitude over other published correlation
systems. In addition, it is resilient to high rates of symptom Joss and false alarms. Finally, the
coding approach scales well to very large domains involving thousands of problems.

1 INTRODUCTION

Detecting and handling exceptional events (alarms)3 play a central role in network management
(Leinwand and Fang 1993, Stallings 1993, Lewis 1993, Dupuy et. al. 1989, Feldkuhn and
Erickson 1989). Alarms indicate exceptional states or behaviors, for example, component
failures, congestion, errors, or intrusion attempts. Often, a single problem will be manifested
through a large number of alarms. These alarms must be correlated to pinpoint their causes so that
problems can be handled effectively.

Effective correlation can lead to great improvements in the quality and costs of network
operations management. For example, in a recent report on AT&T's Event Correlation Expert

(ECXpert™), Nygate and Sterling (1993) report, " .. labor savings at a typical US network

operations center are between $500,000 and $1,000,000 a year. In addition, at least this amount
is saved due to decreased network downtime." The alarm correlation problem has thus attracted
increasing interest in recent years as described in a recent survey (Ohsie and Kliger 1993).

A generic alarm correlation system is depicted in Figure 1. Monitors typically collect managed
data at network elements and detect out of tolerance conditions, generating appropriate alarms.
The correlator uses an event model to analyze these alarms. The event model represents

I Work performed while the author was on sabbatical leave at Systems Management Arts.

2 This author's research was supported in part by NSF grant IRI-94-13847

3 Henceforth we use the terms problem events to indicate events requiring handling and symptom events (also

symptoms or alarms) to indicate observable events. The terms event-correlation or alarm-correlation are used
interchangeably to indicate a process where observed symptoms are analyzed to identify their common causes.

A. S. Sethi et al. (eds.), Integrated Network Management IV

© Springer Science+Business Media Dordrecht 1995

A coding approach to event correlation 267

knowledge of various events and their causal relationships. The correlator determines the

common problems that caused the observed alarms.

Configuration ...

Model
Event Model

problems
Correlator ..

Monitors ----'
alarms

Figure 1: Generic Architecture of an Event Correlation System

An alarm correlation system must address a few technical challenges. First, it must be

sufficiently general to handle a rapidly changing and increasing range of network systems and

scenarios. Second, it must be scalable to large networks involving increasingly complex elements.

As elements become more complex, the number of problems associated with their operations as

well as the number of symptoms that they can cause increases rapidly. Furthermore, propagation

of events among related elements can cause dramatic increase in the number of symptoms caused

by a single problem. Finally, an alarm correlation system must be resilient to "noise " in the inputs

to the correlator. This is because alarms may be lost or spuriously generated forming observation

noise in the alarms input stream. The event-model may also be inconsistent with the actual

network, due to insufficient or incorrect knowledge of the configuration model. These

inconsistencies form model noise in the event model input to the correlator. An alarm correlation

system must be robust with respect to both observation and model noise.

Current alarm correlation systems typically fall short of meeting the goals described above

(Ohsie and Kliger 1993). Alarms are typically correlated through searches over the event model

knowledge base. The complexity of the search seriously limits scalability. To control the search

complexity, often the event model knowledge base is carefully designed to take advantage of

specific specialized domain characteristics. This limits generality. There are no techniques to

select an optimum set of symptoms to monitor or to determine whether observed symptoms

provide sufficient information to determine problems. Finally, search techniques derive their

computations from the data stored in the knowledge base and arriving alarms. Noise in this data

can guide the search in the wrong direction. A more detailed analysis of current correlation

systems is pursued in (Ohsie and Kliger 1993).

This paper describes a novel approach to correlation based on coding techniques (Kliger et. a!.

1994a). The underlying idea of the coding technique is simple. Problem events are viewed as

messages generated by the system and "encoded" in sets of alarms that they cause. The problem

of correlation is viewed as decoding these alarms to identify the message. The coding technique

proceeds in two phases. In the codebook selection phase, an optimal subset of alarms, the

codebook is selected to be monitored. This codebook is selected to optimally pinpoint the

problems of interest and ensure a required level of noise insensitivity. In the decoding phase,

observed alarms are analyzed to identify the problems that caused them. The coding approach

thus reduces the complexity of real-time correlation analysis through preprocessing of the event

knowledge model. The codebook selection dramatically reduces the number of alarms that must

268 Part Two Peiformance and Fault Management

s

(a) (b)

Figure 2: A Causality graph (a) and its labeling (b)

be monitored. It also establishes the relations among these alarms and their causes in a manner

that reduces the complexity of the decoding phase.

In what follows we describe the mathematical basis of the coding approach (section 2),

develop the technique and establish its properties (section 3), describe a commercial

implementation of the coding techniques and a benchmarking of the implementation (section 4)

and conclude (section 5).

2 THE MATHEMATICAL BASIS OF EVENT CORRELATION

2.1 Causality Graph Models

Correlation is concerned with analysis of causal relations among events. We use the notation e~f

to denote causality of the event f by the event e. Causality is a partial order relation between

events. The relation ~may be .. described by a causality graph whose nodes represent events and

whose directed edges represent causality. Figure 2(a) depicts a causality graph on a set of 11

events.

To proceed with correlation analysis, it is necessary to identify the nodes in the causality graph

corresponding to symptoms and those corresponding to problems. A problem is an event that

may require handling while a symptom (alarm) is an event that is observable. Nodes of a causality

graph may be marked as problems (P) or symptoms (S) as in Figure 2(b). Note that some events

may be neither problems nor symptoms (e.g., event 8) while some other events are both

symptoms and problems.

The causality graph may include information that does not contribute to correlation analysis.

For example, a cycle (such as events 3,4,5) represents causal equivalence. A cycle of events may

thus be aggregated into a single event. Similarly, certain symptoms are not directly caused by any

problem (e.g., symptoms 7,10) but only by other symptoms. They do not contribute any

information about problems that is not already provided by these other symptoms that cause them.

These indirect symptoms may be eliminated without loss of information. Henceforth, we will

assume that a cauality graph has been appropriately pruned.

2.2 Modeling Causal Likelihood

The causality graphs described so far do not include a model of the likelihood (strength) of

causality. The causal implication e~f can be considered as a representation of a proposition "e

A coding approach to event correlation 269

may-cause f." Often, richer information is available describing the likelihood of such causality.

Various approaches and measures have been pursued to model such likelihood. A probabilistic

model, for example, associates a conditional probability with a causal implication while fuzzy

logic associates a fuzzy measure. Each of these models includes operations to compute the

strength of a causal chain between two events or to combine the strength of multiple chains

between two events. It is useful to have a general model of likelihood that captures these various

techniques as special cases. This model must include a set of causal likelihood measures and

operations to compute strength of chains and combine them. We proceed to define and

demonstrate such a general model of likelihood.

Defme a semi-ring as a partially ordered set L with an order ~ and two operations *

(catenation) and+ (combination) such that:

(i) <L, *>is a semi-group with a unit 1 (a monoid)

(ii) <L, +> is a commutative semi-group with a unit 0

(iii) Va,beL, a*b~a,b a,b~a+b

(iv) VaEL, 0~~1

A semi-ring is used to provide a measure of causality. Elements of L provide measures of causal

strength with 1 indicating the strongest causality and 0 the weakest. The ordering of likelihood

measures is used to compare relative strength of likelihood. The catenation operation is used to

compute ihe strength of causal chains. The combination operation is used to compute the strength

of multiple causal chains leading from one event to another.

We give a few examples of semi-rings used to model causal likelihood. The deterministic

model, uses L=D={O,l} with the order 0~1. The catenation operation is the Boolean and A, with

the unit 1, while the combination operation is the Boolean or v with the unit 0. Consider now a

causality graph whose edges are all labeled with elements from D. An edge marked 0 represents a

highly unlikely causality while an edge marked 1 represents a sure causality. For simplicity assume

that all edges marked 0 have been eliminated. The semi-ring structure permits us to assign

likelihood to causal chains between two events. The deterministic likelihood of a causal chain

such as l--78--79 in Figure 2 is obtained by catenation (and) and is trivially 1. Now consider the

set of causal chains between two events. The likelihood of this set is obtained by applying the

combination operation to the likelihood of all causal chains in the set.

The deterministic model is a simple and commonly used likelihood model. We now introduce

another semi-ring, denoted P, to model probabilistic causality. P consists of the set [0, 1] with an

ordinary numerical order. The label q on e--?f models the conditional probability of the event f

when e occurs. The catenation operation is the product of probabilities while the combination

operation is defined as q1+q2=l-(l-qi)(l-q2).

The temporal model is denoted T. The elements of T are non-negative real numbers

representing the expected duration for the respective causality to happen. For example, a label of

8.5 on l--73 indicates that this causal implication is expected to occur within 8.5 time units (e.g.,

seconds). The catenation operator * is addition of times (along a causal chain) while the

combination operator + is the min operator on real numbers. 0 is the unit with respect to

catenation, and oo the unit with respect to addition, where oo indicates that the causality is unlikely

to happen (in any fmite time). We use the inverted numerical order as the order on T, modeling

270 Part Two Performance and Fault Management

"sooner" occurrence of events in time. For example, 6.32:8.5 should be read as "6.3 happens

sooner than 8.5".

Similarly, one can establish fuzzy logic models of causal likelihood or other calculus of

uncertainty measures such as the Shafer-Dempster model. Furthermore, by combining various

models, more complex likelihood measures may be obtained. For example, the semi-ring defined

by PxT ascribes to a causal edge both probability and expected time of occurrence.

We are now ready to define a causal likelihood model as a triplet <N, L,<!» where N is a

normal form causality graph, L is a semi-ring describing a likelihood model and <)> is a m apping

from the edge-set of N to L assigning a likelihood measure to each causal implication. By varying

the semi-ring L , a spectrum of models is obtained.

Figure 3: A Correlation Graph

2.3 The Correlation Problem

Correlation analysis is concerned with the relationships among problems and the symptoms that

they may cause. Consider the correlation relation among problems and symptoms, defined as the

closure of the relation ---7 and denoted by ~ . A correlation p~s means that problem p can cause

a chain of events leading to the symptom s. This correlation relation may be represented in terms

of a bipartite correlation graph. Figure 3 depicts the correlation graph corresponding to the

causality graph of Figure 2 after pruning indirect symptoms and aggregating cycles.

For a given causal likelihood model <N,L,<j>> one can derive a correlation graph N*

corresponding to the causality graph N. Using the catenation operation one can associate a

likelihood measure with every causal chain leading from a problem p to a symptom s. The

likelihoods of various chains leading from p to s may be combined using the combination operator

to provide a likelihood measure of the correlation p~s. Thus, for a given causal likelihood model

<N,L,<)>> there is a corresponding correlation likelihood model <N*,L,<)> > over the correlation

graph.

3 THE CODING APPROACH TO ALARM CORRELATION

3.1 Problems, Codes and Correlation

The problem of alarm correlation may be now described in terms of the correlation likelihood

model. For each problem p, the correlation graph provides a vector of correlation likelihood

measures associated with the various symptoms. We denote this likelihood vector as p and call it

the code of the problem p. Codes summarize the information available about correlation among

symptoms and problems. Code vectors can be best considered as points in an lSI-dimensional

A coding approach to event correlation 271

space associated with the set of symptoms S, which we call the symptom space. Alarms too may

be described as alarm vectors in symptom space assigning likelihood measures 1 and 0 to

observed and unobserved symptoms respectively. A very useful reference for coding theory and

techniques is provided by [Roman 1992].

The alarm correlation problem is that of finding problems whose codes optimally match an

observed alarm vector. We illustrate these considerations using the example of Figure 3. Figure

4(a) depicts a deterministic correlation likelihood model and Figure 4(b) depicts a probabilistic

model. Code vectors correspond to the likelihood of the symptoms 3,6,9 in this order. They are

given by 1=(1,0,1), 2=(1,1,0) and 11= (1,0,1) for the deterministic model and by 1=(0.8,0,0.3),

(a) Deterministic model (b) Probabilistic model

Figure 4: Correlation Likelihood Models

2=(0.4, 0.9,0) and 11=(0.5,0,0.9) for the probabilistic model.

Suppose that alarms consisting of symptoms 3 and 9 have been observed. This may be

described by an alarm vector f\=(1,0,1). In the deterministic model either 1 or 11 match the

observation fl and one would infer that the two alarms are correlated with either problem 1 or I I.

Note that these two problems have identical codes and are indistinguishable. Similarly, an alarm

vector f!=(l, 1 ,0) would match the code of problem 2. How should an alarm vector f\=(0, I ,0) be

interpreted? One possibility is that this is just a spurious false alarm. Another possibility is that

problem 2 occurred but the symptom 3 was lost. The choice of interpretation depends on whether

loss is more likely than spurious generation of alarms. There are, of course, other more remote

possibilities.

Now, suppose that spurious or lost symptoms are unlikely. The information provided by

symptom 9 is redundant. If only symptoms 3 and 6 are observed the respective projections of the

codes 1=11=(1,0) and 2=(l,I) are sufficient to distinguish and correlate alarm vectors. Since real

alarm correlation problems typically involve significantredundancy. The number of symptoms

associated with a single problem may be very large. A much smaller set of symptoms can be

selected to accomplish a desired level of distinction among problems. We call such a subset of

symptoms a codebook. The complexity of correlation is a function of the number of symptoms in

the codebook. An optimal codebook can thus reduce the complexity of correlation substantially.

To illustrate this consider an example of 6 problems and 20 symptoms depicted in Figure 5(a).

The correlation likelihood model is compactly described in terms of a matrix. Matrix elements

represent the correlation likelihood parameters of respective problem-symptom pairs.

272 Part Two Performance and Fault Management

p P, P, p p< p

I I 0 0 I 0 I

2 I I I I 0 0

3 I I 0 I 0 0

4 I 0 I 0 I 0

5 I 0 I I I 0

6 I I I 0 0 I

7 I 0 I 0 0 0

8 I 0 0 I I I

9 0 I 0 0 I I

10 0 I I I 0 0

II 0 0 0 I I 0

12 0 I 0 I 0 0

13 0 I 0 I I I

14 0 0 0 0 0 I
p P, p p p"- P,;_

15 0 0 I 0 I I I 1 0 0 I 0 I

16 0 I I 0 0 I

17 0 I 0 I I 0
p P, P, p p< p<

3 I 1 0 I 0 0
4 I 0 I 0 I 0

18 0 I I I 0 0 I I 0 0 I 0 I 6 I I I 0 0 I

19 0 I I 0 I 0 2 I I 1 I 0 0 9 0 I 0 0 I I

20 0 0 0 0 1 I 4 I 0 I 0 I 0 18 0 I I I 0 0

(a) Correlation Matrix (b) A Code book of Radius 0.5 (c) A Code book of Radius I .5

Figure 5: A deterministic correlation matrix and codebooks

Figure 5(b) depicts a code book consisting of 3 symptoms {I ,2,4}. This code book
distinguishes among all 6 problems. However, it can only guarantee distinction by a single
symptom. For example, problems p2 and p3 are distinguished by symptom 4. A loss or a spurious
generation of this symptom will result in potential decoding error. Distinction among problems is

measured by the Hamming distance between their codes. The radius of a codebook is one half of
the minimal Hamming distance among codes. When the radius is 0.5, the code provides distinction

among problems but is not resilient to noise. To illustrate resiliency to noise consider the
codebook of Figure 5(c) where 6 symptoms are used to produce a codebook of radius 1.5. This
means that a loss or a spurious generation of any two symptoms can be detected and any single­

symptom error can be corrected.

We illustrate the error-correction capabilities of the codebook of Figure S(c). A minimal­

distance decoder will decode as P1 all alarms that contain a single-symptom perturbation of PI·

The alarm vectors {OI I 100, 101100, 110100, 111000} will be decoded as a single symptom loss
in p~, while { 11 I 110, I 11101} will be interpreted as occurrence of a spurious symptom. The
total number of alarms that can be generated due to a single symptom perturbation (loss or
spurious one) in the 6 problems codes +the null problem p0=000000 is 42. Therefore, a total of

48 alarm vectors (out of possible 63) will be correctly decoded despite single-symptom
observation errors. When two symptom errors occur a minimal distance decoder can detect that
errors have occurred but may not decode the alarm vector uniquely.

The considerations above generalize simply to correct observation errors in k symptoms and
detect 2k errors as long as k is smaller than the radius of the codebook. Consider now the
problem of model errors. That is, what happens when the correlation model itself is incorrect?

For example, suppose problem p4 in Figure 5 can actually cause symptom 6 even though the
model fails to reflect this. This will cause a single symptom error with respect to the code of P4·
Symptom 6 will appear as a spurious symptom whenever p4 occurs. In other words, an error in

A coding approach to event correlation 273

the correlation model is entirely equivalent to an observation error. In contrast to random

observation errors, model errors would appear as persistent observation noise. This persistence

may be automatically detected by analyzing correlation logs and then used to correct the

correlation model.

In summary, one seeks to design minimal codebooks that accomplish a desired level of

insensitivity to observation and model errors. This insensitivity to observation errors is measured

by the degree to which codes are distinct. In the case of the deterministic model, distinction

among codes is measured by the Hamming distance among code vectors. We will soon see that

similar measures of distinction may be used to select optimum codebooks in the case of other

likelihood models.

3.2 Coding and Decoding

The coding technique accomplishes significant correlation speeds. Most of the complexity of

correlation computations is handled during the pre-processing of codebook selection. The

decoding of alarms in real-time can be very fast. Precise complexity evaluation is beyond the

scope of this paper and is left for future publications. However, even crude estimates can usefully

illustrate the speed gains. The complexity of decoding is logarithmic in the number of direct

decodes (alarm vectors whose errors with respect to codes are less than half the radius of the

code book). The number of direct decodes is bounded by o(p,c,k)= (p +I) m ~ J:) where p is the

number of problems, c is the code book size (number of symptoms in the codebook) and k is the

number of error symptoms to be corrected ('radius' - 1). The complexity of decoding is

bounded by A(p,c,k)=lg[(p +I) m ~
0
[:)]. For k<<p, this is of order (k+l)lgp.

In the example of Figure 5(c) p=6, c=6, k=l, the decoding complexity is

A.(6,6,1)=lg[7(1+6)]=1g49-6 search operations. When p=100 and k=1, c may be of the order 10-

30 and the complexity of decoding is of the order of 10-12 search operations. Even when p=106,

decoding complexity is of a manageable order of 20(k+ 1) search operations. In contrast, other

knowledge based approaches typically requires an exponential, or even doubly exponential, search

in the total number of problems p and symptoms s (s>>c). For p=lOO the search complexity may

be practically infeasible. For example, Nygate and Sterling (1993) report alarm correlation speeds

of ECXpertTM at 0.25 alarms per second for a model involving 10 problems.

We proceed to complete the details of codebook design and decoding for a general correlation

likelihood model. The point of departure in codebook design is to defme a metric of distinction

among codes, generalizing the Hamming distance. This is accomplished by using a distance

measure on the likelihood semi-ring L. We call a real function d(a,b) on La distance measure on

L if it is symmetric, non-negative and satisfies d(a,a)=O and d(a,c):s;d(a,b)+d(b,c) for all a:s;b:s;c in

L. Given a distance measure d(a,b) on L, one can extend it to a measure of distinction among

code vectors. Define the distance between two code vectors _i!=(aJ,a2, ... an) and b=(b1,b2, ... bn) as

d(.i!.b)=:Ek=I.n d(ak.bk). For example, in the case of the deterministic model define d(l,l)=d(O,O)=O

and d(l,O)=l to obtain the Hamming distance.

For the probabilistic model P, a distance measure is given by the log-likelihood measure

d(a,b)=llg(a!b)l (with lg(0/0)=0 and lg(O/a)=l for a;toO). For example, in the probabilistic model of

274 Part Two Performance and Fault Management

Figure 5(b), 1=(0.8,0,0.3), 11=(0.5,0,0.9) and thus d(l,11)= lg(8/5)+lg(9/3)=lg(24/5). Therefore,

in the probabilistic model problems 1 and 11 are distinct, in contrast to the deterministic model.

Note that the log-likelihood distance measure generalizes the Hamming distance. When all

probabilities are 1 or 0 the two measures yield the same distance.

The radius of a set of codes P is defined as the one half of the minimal distance among pairs of

codes. The radius provides worst case measure of distinction among code vectors. A codebook C

is a subset of the set of symptoms S. The code space defined by C is the respective projection of

code vectors in the symptom space defmed by S. The radius of the codebook, rc(P) is the

respective radius among the projections of codes. Clearly, rc(P):::; rs(P). Given a desired level of

distinction d:::; rs(P), the codebook design problem is that of finding a minimal codebook C for

which d:::;rc(P). Such codebook provides a guaranteed distinction of at least d among the codes of

different problems.

The codebook design problem may be solved by a variety of algorithms. A pruning algorithm,

for example, can start with the correlation matrix model and eliminate symptoms until an optimal

codebook has been establi~hed. The algorithm may be designed independently of the specific

likelihood model (semi-ring) and distance measure. This may be used to construct a correlator of

great generality.

Given a codebook C, consider now an alarm vector !! describing observed symptoms. The

problem of decoding, as discussed above, is to find problem codes that maximally match !!· It is

useful to utilize a correlation measure Jl(!!,J2) for decoding that is, in general, different from the

measure of distinction. We illustrate this through the example of Figure 5(a). Suppose the

codebook consists of the symptoms C={3,6}. The codes are 1=11=(1,0) and 2=(1,1). Now

consider an alarm vector !!=(0,1). The Hamming distances are d@,1)=d(!!,Q)=1 and d@,2)=2,

where Q =(0,0) is the null problem. Thus the Hamming distance does not distinguish between a

lost symptom (correlating!! with 1) and a spurious symptom (correlating!! with Q).

In general, a symmetric measure does not distinguish lost from spurious symptoms. We thus

permit the correlation measure to be asymmetric. A correlation measure on L consists of two

non-negative functions, Jl(l,a) and Jl(O,a) defined for all ae L such that Jl(l,l)= J.1(0,0)=0 and if

a:::;b, Jl(l,a);::: Jl(l,b) while Jl(O,a):::; Jl(O,b). For example, in the deterministic case define

!l(0,1)=a as the correlation level between an observation of no symptom when the codebook

predicts its occurrence, i.e., a lost symptom. Define J.1(1,0)=~ as the correlation measure between

an observation of a symptom that is not included in a code, i.e., a spurious symptom. A

correlation measure on L may be easily extended to a correlation measure Jl(!!,J2) between alarm

vectors and code vectors. The problem of decoding is to find for a given alarm vector !! the

problem codes that minimize the correlation measure Jl(!!,J1) -- best match problems.

In the probabilistic case let !l(l,a)= llgal (correlation of occurrence) Jl(O,a)=llg(l-a)l

(correlation of non-occurrence). The correlation measure Jl(!!,I!) is given by the logarithm of the

product of probabilities assigned by 11 to events occurring in !! and the complements of the

probabilities assigned to events that do not occur in !!.

To illustrate the use of correlation measure in decoding consider again the codebook of Figure

5(c). The correlation measure for the deterministic model is given by !l(0,1)=a (loss) and

!l(1,0)=~ (spurious). The codebook provides guaranteed error-correction for all single symptom

errors.

A coding approach to event correlation 275

Consider the case when two possible symptom errors occurred. For example, let the alarm

vector observed be f!=lOlOOO. The respective values of the correlation measure for the six

problems are 2a, 2a+4~, 2a+~, 2a+~. a+~. 2a+~. Under all choices of a.~ the two candidates

decodes are PI (two lost symptoms) and Ps (one lost symptom and one spurious). If a<~ (loss is

more likely) problem PI will be decoded and if spurious symptoms are more likely, p5 will be

decoded. If both observation errors are equally likely (a=~) both problems will be decoded.

Decoding can be accomplished through very fast algorithms. A range of fast decoding

algorithms is provided by coding theory. See (Roman 1992) for several possible algorithms with

varying tradeoffs. For example, block-decoding techniques aggregate symptoms over a time

window and then decode them to find minimal distance codes.

4 IMPLEMENTATION AND BENCHMARKS

The coding technique has been implemented in SMARTS Event Management System (SEMS). In

this section we briefly describe the SEMS and the benchmarks used to test its performance. A full

description of the benchmarks can be found in (Kliger et. al. 1994b)

SEMS is organized as an event management server and its current implementation runs on Sun

Sparcstations under Solaris 2.3. The SEMS server presents interfaces allowing clients to

subscribe to problem events of interest, and provides clients with notification upon the detection

of problems. Typical SEMS clients include various networked systems managers. For example, a

fault manager may subscribe to various fault events, a performance manager may need to handle

various congestion events or excessive delay events, while a security manager may need to

detect intrusion events. Clients may also include applications running under umbrella management

systems such as HP Open View, Sunnet Manager, or ffiM Netview/6000.

A model of a satellite based communications network was used to benchmark the performance

of the SEMS. The modelled domain includes close to 4000 managed objects involving some

9500 problems and 6000 symptoms. Random scenarios were created by selecting random subsets

of the model. For example, experiments involving 100 problems proceeded by selecting a random

choice of 100 problems (out of 9500) to be monitored. All symptoms irrelevant to these problems

were discarded, leaving a random number of symptoms from which a codebook was selected.

The model makes two conservative assumptions unfavorable to codebook correlation. It

assumes an under-instrumented system where the number of observed symptoms is much smaller

9000

g 8000

.e 7000
<i
~ 6000

i :~~~
!5 3000

~ 2000

~ 10001---+---+---+---+-~::==:=~
1000 2000 3000 4000 5000 6000 7000

Domain Size

(a)

-0.0016

~ 0.0014

-; 0.0012

~ 0.001

g 0.0008

~ 0.0006

~ 0.0004

~ 0.0002

1 ! I
T

1

w 0-~~--~-+--~-+--~-+--+--+~

200 400 600 BOO 1000 1200 1400 1600 1800 2000

Domain Size

(b)

Figure 6: (a) Symptom Processing Rate (b) Symptom Processing Time with Standard Deviation

276 Part Two Performance and Fault Management

than the number of problems. Typical systems are over-instrumented. It assumes a sparse

propagation model where only a small number of symptoms is caused by a typical problem. In a

system with complex dependencies, problems can propagate very widely. Real-world situations

typically monitor many more symptoms, yielding smaller codebooks, a larger reduction in the

number of symptoms to monitor, and faster correlation.

The most important measure of the effectiveness of the coding approach is correlation speed.

Figure 6(a) shows the effective event correlation rate measured in symptoms per second of actual

elapsed time (the effective event correlation rate includes symptoms which were generated by a

problem but not processed by the correlator because codebook reduction removed them from the

codebook). In domains with fewer than 4000 problems, symptom processing was measured in

thousands of symptoms per second. This is 2-4 orders of magnitude faster than the published

figures of 0.25 events per second for ECXPERT (Nygate 1993) and 15 symptoms per second for

IMPACT (Jakobson and Weissman 1993).

The fundamental measurement underlying the curve of Figure 6(a) is the elapsed time for

processing symptoms. Figure 6(b) depicts these time measurements and the intervals defined by

the standard deviation of the measurements. The figures shows that the average speed measures

provide a fairly accurate estimate of the actual correlation rates.

Another important aspect of the coding approach its resilience to symptom loss. Figure 7(a)

shows the correlation error rates when the probability of symptom loss ranges up to 20%. Even

substantial loss or spurious symptoms cause only minimal error probability, falling under 5% when

the codebook radius exceeds 1.5.

Our final measure of code book performance is what reduction is accomplished in the number

of symptoms that must be monitored, compared with the total number of relevant symptoms

available. The compression factor represents the ratio of the two numbers. This compression is an

important feature of the coding approach as it reduces the amount of monitoring and real-time

processing of events needed. Figure 7(b) depicts the behavior of the compression factor as the

domain size grows. The figure shows that substantial compression is achieved by the codebook.

20%

16%

12%

8%

4%

" ~
~

~

~ R ft R A 1~1R1ft1R1R~%

Symptom Loss Rate

(a)

1000 2000 3000 4000 5000 6000 7000

Domain Size

(b)

Figure 7: (a) Correlation Error Rate (b) Codebook Compression

5 CONCLUSIONS

This paper provides an overview of the coding approach to event correlation and its mathematical

foundations. The coding approach accomplishes the three goals described in the introduction:

generality, scalability and resilience to noise. Generality is accomplished through the use of an

abstract mathematical formulation of the event correlation process. Scalability is accomplished

A coding approach to event correlation 277

through a substantial reduction in real time correlation processing due to optimizing symptom sets

and fast decoding mechanisms. The complex searches through causality models are performed

during the pre-processing phase of codebook design. Resilience to noise is accomplished by

selecting codebook symptoms to provide a desired level of guaranteed noise insensitivity.

The coding approach has been implemented in SMARTS Event Management System. The

current implementation runs as a server under Sun Solaris 2.3. Preliminary benchmarks confirm

the advantages promised by the theoretical analysis.

6 REFERENCES

Dupuy, A., Schwartz, J., Yemini, Y., Barzilai, G. and Cahana, A. (1989) Network Fault

Management: A User's View, in Proc. IFIP Symposium on Integrated Network Management,

North Holland.

Feldkuhn, L. and Erickson, J. (1989) Event Management as a Common Functional Area of Open

Systems Management, in Proc. IFIP Symposium on Integrated Network Management, North

Holland.

Jakobson, G., Weissman, M. (1993) Alarm Correlation, IEEE Network, Vol. 7, No.6.

Kliger, S., Yemini, Y. and Yemini, S. (1994a) Apparatus and Method for Event Correlation and

Problem Reporting, Patent Application.

Kilger, S., Ohsie, D., Yemini, Y., Hwang W. (1994b) Decs Performance Benchmarks Summary,

SMARTS Technical Report.

Leinwand, A., Fang, K. (1993) Network Management: A Practical Perspective Addison Wesley.

Lewis, L. (1993) A Case Base Reasoning Approach to The Resolution of Faults in

Communications Networks, in Proceedings Third International Symposium on Integrated

Network Management.

Nygate, Yossi and Sterling, Leon (1993) ASPEN- Designing Complex Knowledge Based

Systems in Proceedings of the lOth Israeli Symposium on Artificial Intelligence, Computer

Vision, and Neural Networks, pp. 51-60.

Ohsie, D. and S. Kliger (1993) Network Event Management Survey, SMARTS Technical Report.

Roman, Steve (1992) Coding and Information Theory, Springer Verlag.

Stallings, W. (1993) SNMP, SNMPv2, and CMIP The Practical Guide to Network­

Management Standards, Addison Wesley.

Yemini, Y., Dupuy, A., Kliger, S., Yemini, S. (1993) Semantic Modeling of Managed

Information in Second IEEE Workshop on Network Management and Control, Tarrytown,

NY.

7 BIOGRAPHY

Professor Yechiam Yemini is the director of the Distributed Computing and Communications Lab at Columbia University and

a co-founder of SMARTS. His interests include broad areas distributed networked systems technologies; he has published over

100 articles and edited 3 books in these areas. Dr. Shaula Alexander Yemini is president and co-founder SMARTS. Her

past work includes the design of the Hermes Distributed Programming Language, the Concert high level language system and

the co-invention (with Rob Strom) of Optimistic Recovery, a technique for transparent fault tolerance in distributed systems.

Dr. Shmuel Kliger leads the development of SEMS at SMARTS. His research experience includes designing and

implementing distributed concurrent logic programming languages and environments. Professor Salvatore Stolfo heads the

Parallel and Distributed Intelligent Sytems Laboratory at Columbia University, where he led the development of the

PARADISER parallel and distributed database rule processing system. David Ohsie is a Phd. candidate at Columbia

University, where he is currently pursuing his thesis research in causal analysis.

