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A Coding Scheme for Additive Noise Channels with 
Feedback-Part I: No Bandwidth Constraint 

J. I’. M. SCHALKWIJK? MEMBER, IEEE AND T. KAILATH, MEMBER, IEEE 

Abstract-In some communication problems, it is a good assump- 
tion that the channel consists of an additive white Gaussian noise 
forward link and an essentially noiseless feedback link. In this 
paper, we study channels where no bandwidth constraint is placed 
on the transmitted signals. Such channels arise in space communica- 
tions. 

It is known that the availability of the feedback link cannot in- 
crease the channel capacity of the noisy forward link, but it can 
considerably reduce the coding effort required to achieve a given 
level of performance. We present a coding scheme that exploits the 
feedback to achieve considerable reductions in coding and decoding 
complexity and delay over what would be needed for comparable 
performance with the best known (simplex) codes for the one-way 
channel. Our scheme, which was motivated by the Robbins-Monro 
stochastic approximation technique, can also be used over channels 
where the additive noise is not Gaussian but is still independent 
from instant to instant. An extension of the scheme for channels 
with limited signal bandwidth is presented in a companion paper 
(Part II). 

I. INTRODUCTION 

I 

N CERTAIN COMMUNICATION problems we 
have the possibility of using a noiseless “feedback” 
link to improve communication over a noisy forward 

link. A good example is communication with a space 

satellite-the power in the ground-to-satellite direction 
can be so much larger than in the reverse direction that 
the first link can be taken to be an (essentially) noiseless 
link. Similar possibilities may also arise in special ter- 
restrial situations. 

It seems reasonable that the availability of a noiseless 
feedback link should substantially improve communica- 
tion over the noisy forward link. Therefore, Shannon’s 
result 141, Theorem 6, that the channel capacity of a 
memoryless noisy channel is not increased by noiseless 
feedback, is rather surprising. Still, some advantage should 
accrue from the presence of a noiseless feedback link 
and, in fact, the advantage is that noiseless feedback 
enables a substantial reduction in the complexity of 
coding and decoding required to achieve a given per- 
formance over the noisy link. 

In this paper, we shall illustrate the simplifications 
obtained when the noisy link is an additive white Gaussian 
noise channel operated under an average power con- 
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straint. No restrictions are placed on the usable signal 
bandwidth. Such channels seem to be typical of those in 
space communications. In terrestrial communications we 
are often forced to impose bandwidth limitations on the 
transmitted signals. Channels with bandwidth constraints 
are discussed in a companion paper [17]. The communica- 
tion scheme we shall present can also be used over non- 
Gaussian white noise channels. However, it is difficult to 
evaluate the effect of the feedback link in such cases be- 
cause very few results are available for non-Gaussian 

(one-way) channels. We shall now briefly review the 
known results for the Gaussian case. 

A. Additive White Gaussian Noise Channels 

We shall assume that the noise in the channel is Gaussian 
and white with a (two-sided) spectral density No/2. 
The transmitted signals are required to have an average 
power P,, but no constraints are imposed on their band- 
width and peak power. 

For this channel, the channel capacity is given by (e.g., 

Fano [9], Ch. VI) 

C= & bits/second 
0 

P =&v 
NO 

nats/second . 

(1) 

If one of M messages is to be transmitted over such a 
channel, the best code is universally believed to be a 
“regular-simplex” set of codewords (i.e., a set of M 

equal-energy signals with mutual cross-correlations of 
-l/M - 1). For large M, an orthogonal signal set 
(for which the cross-correlations are zero rather than 
-l/M - 1) performs almost as well. The ideal receiver 
for such signals is a bank of M correlation detectors, 
whose outputs are scanned to determine the correlator 
yielding the largest output. The error probability for an 
orthogonal (or simplex) signal set has been evaluated 
numerically for values of M from 2 to 106. For larger 
values of M, the following asymptotic expression can be 
used. If T is the duration of each of the M signals, assumed 
equally likely a priori, then (cf. Fano [9], Chapter VI, 
and Zetterberg [12]) 
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where 

C/2 - R, 0 < R I C/4 
E(R) = (3) 

(V’C - v5)“, ;<R<C 

lIPC2 

R = the signalling rate = ln M/T nats/second 

C = the channel capacity = PJN, nats/second. 

Equation (2) shows that the error probability for 
orthogonal codes decreases essentially exponentially with 
T. As a result, for large T (low P.), the choice of a suitable 
pair of values R and T to achieve a given P, is essentially 
determined by the quantity E(R). Equations (2) and (3) 
specify the ‘%radeoffs” that can be made between the 
signal duration T and the signaling rate R-for rates 
near channel capacity, E(R) is small and we need a large 
T to achieve a given P,; if we are required to use a small 
value of T, the rate R must be suitably reduced. 

We can now present the results we have obtained by 
assuming that a noiseless feedback link is available. 

B. Summary of Our Results 

We have developed a coding scheme that exploits the 
presence of the noiseless feedback link. The scheme was 
suggested by the Robbins-Monro stochastic approxima- 
tion procedure for determining the zero of a function 
by noisy observations of its values at chosen points [2]. 
While we do not know if this coding scheme is “optimum,” 

it has the virtue of great simplicity both in encoding and 
decoding. It also enables us to achieve the channel 
capacity P.,/N, of the white Gaussian channel (the 
capacity is the same, as we mentioned above, whether 
or not a noiseless feedback link is available). And most 
important it provides a dramatic reduction in the rate 
at which the error probability varies with signaling dura- 
tion. Thus, for our scheme, we have 

P e,fb = 1 (4) 

showing that the error probability goes down much 
faster than exponentially with T, which is how the error 
probability behaves for one-way channels [cf. (2) and (3)]. 
ils a sample comparison between the feedback and non- 
feedback cases, consider the values of T required to 
achieve, for example, 

P. = 10-7, R = 0.X’, C = 1 bit/second. 

We have 

Tr.,. = 15 and Torth = 2030. 

It is natural to wonder how our results are affected by 
delay and noise in the feedback link. The effect of the 
delay is merely a small increase in the error probability. 

The effects of noise are more serious-we find that, 
provided the noise is smaller than a certain threshold 
value, the error probability is essentially unaffected; 
however, with noisier feedback, our scheme deteriorates 
rapidly and other coding techniques must be devised. 

Our coding scheme does not depend upon the Gaussian 
nature of the additive white noise. It can be applied to 
any additive white’ noise channel and will enable us to 
signal, with arbitrarily low error probability, at rates up 
to P,,/N, nats/second. (We recall that N,/2 is defined 
as the (two-sided) spectral density of the white noise.) 
This result thus yields a lower bound of P,JN,, for the 
channel capacity of additive white noise channels of 
spectral density No/2 and transmitter power P,,. The 
actual capacity of such channels may be much larger than 
this, but the capacity is usually too complicated to 
evaluate analytically. The capacity is the same with or 
without feedback. The error probabilities will, however, 
be considerably different. No results on the error prob- 
abilities seem to be available for one-way non-Gaussian 
white noise channels; when a noiseless feedback channel 
is available, the expression given above for P, , fb will con- 
tinue to be valid, for large T, for non-Gaussian channels. 
Some further remarks on such chanels are made in Sec- 
tion IV. 

We should also mention that our coding scheme does 
not depend upon knowledge of NJ2 (the noise spectral 
density) for its operation. Of course, this knowledge 
will be necessary for evaluating the performance of the 
scheme. 

Before proceeding to the derivation of our results, we 
shall give a brief discussion of related work. 

C. Other Studies of Noiseless Feedback Channels 

A general discussion of feedback communication sys- 
tems, with reference to earlier work by Chang and others, 
is given by Green [lo] who distinguishes between post- 
and predecision feedback systems. In postdecision feed- 
back systems the transmitter is informed only about 
the receiver’s decision; in predecision feedback systems, 
the state of uncertainty of the receiver as to which mes- 
sage was sent is fed back. Postdecision feedback systems 
require less capacity in the backward direction; however, 
the improvement over one-way transmission will also 
be less than that obtainable with predecision feedback. 

Viterbi 1171 discusses a postdecision feedback system 
for the white Gaussian noise channel. The receiver com- 
putes the likelihood ratio as a function of time and makes 
a decision when the value of the likelihood ratio crosses 
one of a pair of thresholds. The transmitter is informed 
by means of postdecision feedback that the receiver has 
made a decision, and it then starts sending the next 
message. For rates higher than half the channel capacity, 

1 By white noise, we shall mean noise whose values at any 
two instants of time are statistically independent. 
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the reliability is increased roughly by a fact.or of four as 
compared to one-way communication. 

APRIL 

Turin [15] has a predecision feedback scheme applying 
to the white Gaussian noise channel, and giving an even 
greater improvement over one-way communication than 
Viterbi’s scheme does. The receiver again computes the 
likelihood ratio as a function of time, but now the value 
of the likelihood ratio is fed back continuously to the 
transmitter. The transmitted signal is a function of the 
binary digit (that is, 0 or 1) being sent and of the value of 
the likelihood ratio? and is adjusted so as to make this 
ratio cross, as quickly as possible, one of a pair of decision 
thresholds. Average and peak power constraints on the 
transmitted signals are studied. The average time p for 
deciding on a binary digit turns out to be 

T = (In 2)(P,,/N,)-1 seconds, 
Fig. 1. The Robbins-Monro procedure. 

where P,, is the average power and N, is the (one-sided) 
noise power spectral density. The possibility of error 
P. vanishes if infinite peak power and infinite bandwidth 

are allowed. Hence, a rate is achieved that is equal to 
the channel capacity 

C = ‘$ nats/second. 
0 

In this scheme, the actual time required to make a decision 
is variable (though the mean value is T). The variance 
and other parameters of this variable time do not appear 
to be readily computable. As opposed to this, our feedback 
scheme is a ‘Lblock” scheme, with a decision being made 
after a preassigned interval, the interval being deter- 
mined by the desired rate and error probability. 

II. THE CODING SCHEME AND ITS EVALUATION 

Our coding scheme was mot,ivated by the Robbins- 
Monro [2] stochastic approximation procedure which we 
shall describe briefly. 

A. The Robbins-Monro Procedure 

Consider the situation indicated in Fig. 1. One wants 
to determine 0, a zero of F(x), without, knowing the shape 
of the function F(x). It is possible to measure the values 
of the function F(z) at any desired point x. The observa- 
tions are noisy, however, so that instead of F(x) one 
obtains Y(r) = F(x) + 2, where 2 is some additive 
disturbance. The “noise” Z is assumed to be independent 
and identically distributed from trial to trial. To estimate 
8, Robbins and Monro proposed the following recursive 
scheme. Start with an arbitrary initial guess X, and 
make successive guesses according to 

X 9%+1 = x, - ~~Y&L), n = 1, 2, 0.. . 

The following additional requirements are needed on 
the function F(x) and on 2. 

1) F(x) 2 0 according to x 2 8. 
2) inf {IF(x E < Ix - 01 < l/c] > 0 for all E > 0. 
3) IF(x)/ 5 K, Ix - 01 + K,, where K, and K, arc 

constants. 
4) If (T’(Z) = E[Y(x) - F(x)]‘, then sup, c”(x) = 

a2< a. 
With these requirements, the following theorem can be 
established. 

Theorem: When the above conditions on the a,, the 
F(z), and the 2, are met, 2, -+ 0 almost surely; and 
furthermore, if E /X,1’ < ~0, then E [X, - 8i2 -+ 0. 

Robbins and Monro proved the convergence in mean. 
square. The “convergence almost surely” was first proved 
by Wolfowitz [5]. A good proof of the preceding theorem 
is Dvoretzky’s [3], where several types of stochastic- 
approximation procedures are treated in a unified manner.’ 

The Robbins-Monro procedure is nonparametric, that 
is, no assumptions concerning the distribution of the 
additive disturbance, except for zero mean and finite 
variance, are necessary. However, it was shown by 
Sacks [6] that 6(X,+, - 0) is normally distributed 
for large n. In fact, let the following assumptions, which 
complement the earlier requirements, be fulfilled. 

5) CJ”(X) --f CT”(O) as 2 -+ 0. 
6) F(x) = a(x - 0) + 6(x), where a! > 0 and 6(r) = 

0(/x - O/““), p > 0. 

7) There exist t>O and 6>0 such that sup {E jZ(x)jzi-*; 
Ix - 81 _< t} < 00. 

8) a, = l/an, and 2cr > a. 
Then we have the theorem [6]: Fulfillment of all the 
conditions (1-8) yields 

z/n (-K+, - 6)-N 0, 
CT2 

* a(2ct - a) 1 
For the procedure to work, that is, for X,,, to tend to 8, This result will be used presently. 
the coefficients a, must satisfy a, 2 0, c a, = ~0, and 

c alf.< 0~. A sequence (a,) fulfilling these requirements 
is a, = l/an, a > 0. 

2 A recent general survey of stochastic approximation methods 
is given by Venter [14]. 
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B. An Equivalent Discrete-Time Channel 

To apply the stochastic approximation procedure to 
the communication channel, we shall need to obtain a 
discrete-time equivalent of the additive white Gaussian 
noise channel. This can be done in many ways. We shall 
present a mathematically convenient method-later we 
shall comment on its physical viability. 

To obtain a discrete-time equivalent, we shall assume 
that the message information is transmitted by suitably 
modulating the amplitude of a known basic waveform, 
4(t). The signal in the channel (see Fig. 2) will thus be of 

the form 

s(t) = c z,$(t - iA), i=O,l . . . 7 
* 

where A is a time interval that will be suitably chosen 
later. We shall require the basic waveform 4(t) to have 
unit energy and to be orthogonal for shifts A, i.e., 4(t) 
should satisfy 

s +(t - iA)c$(t - jA) dt. = aij. (5) 

The integral extends over all values of t for which the in- 
tegrand is different from zero. 

Reception will be achieved using a filter matched to 
(p(t), that is, h(t) = 4(-t). The output of this matched 
filter at t = iA, i = 1,2, . . * , will be the sequence { Yi (Xi) } 

where Yi(XJ = Xi + Zi, and 

Zi = / n(t)$(t - iA) dt. 

It can be easily be checked that the {Z,} will be uncor- 
related zero mean random variables with 

E[ZiZj] = 2 6ij. 

When the additive noise is Gaussian, the {Zi) will be 
Gaussian and, therefore, also independent. In the Gaussian 
case, it is easy to see that the discrete-time channel thus 
obtained (where a sequence of numbers (Xi ) is trans- 
mitted and sequence ( Yi(Xi) = Xi + Zi) is received) 
is completely equivalent to the original continuous-time 
channel. This follows from the fact that the matched 
filter for Gaussian white noise channels computes the 
likelihood ratio, which is a sufficient statistic and there- 
fore preserves all the information in the received wave- 
form that is relevant to the decision making process. 

Finally, we note that by virtue of the orthonormality of 

+(t - iA) and &t - jA), i # j, the transmitted energy 
in s(t) = c x,+(t - iA) is c xz. 

We can now describe our coding scheme. 

C. The Coding Scheme 

The transmitter has to send one of M possible mes- 
sages to a receiver. A noiseless feedback channel is avail- 
able. We shall proceed as follows (see also Fig. 3). 

Divide the unit interval into M disjoint, equal-length 
“message intervals.” Pick as the “message point” 0, 

n (1) 

Fig. 2. Model for the additive noise channel. 

= F(X,l +Z, 

x,- l/an Y,(X,) 

TRANSMITTER RECEIVER 

Fig. 3. Proposed coding scheme for wideband signals. 

the midpoint of the message interval corresponding to 
the particular message being transmitted. Through this 
message point 8, put a straight line F(x) = OC(X: - 0), 
with slope a! > 0. Start out with X, = 0.5 and send to 
the receiver the ‘number” F(X,) = ol(X1 - e), as dis- 
cussed in Section II-B. At the receiver one obtains the 
‘%umber” Y1(X,) = LY(X~ - 0) + Z,, where 2, is a 
Gaussian random variable with zero mean and variance 
NJ2 = u2, say. The receiver now computes X, = X, - 
(a/l) Y, (X1), where a is a constant which will be specified 
soon, and retransmits this value to the transmitter which 
then sends F(X,) = ar(X, - 0). In general, one receives 

Y,(X,) = F(X,) + 2, and computes X,,, = X, - 
(a/n)Y,(X,). The number X,,, is sent back to the trans- 
mitter, which then will send F(X,+,) = OL(X,+~ - I!?). 

From Sacks’ theorem [6], quoted earlier, on asymptotic 
distributions of stochastic approximation procedures, it 
follows that the best value for a is a = l/a and that in 
this case z/n(X,+, - 0) converges in distribution to a 

normal random variable with zero mean and variance 

(u/42. 
In the Gaussian case, the distribution of (X,,, - 0) 

ca,n be computed directly for any n without reference to 
Sacks’ theorem. With a, = l/an, the recursion relation 

X 73+1 = x, - J- Yn(X,), Y,(x,) = 4x, - e) + 2, 

is easily solved to yield 

Since the 2; are independent, N(0, c”), X,,, will be 
Gaussian with mean e and variance (r’/(r’n. We may also 

point out here that X,,, is (in the Gaussian case) the 
maximum likelihood estimate of 8, given Y,(X,), * . . 
Y,(X,). The estimate X,+1 is also unbiased and efficient 

(i.e., it achieves the Cramer-Rao lower bound on the 



176 IEEE TRANSACTIONS ON 

variance of any estimate of S). This interpretation of 

X,,, will be used in Section III-C; it also leads to the 
coding algorithm for the band-limited signal case (see 
Schalkwijk [16]). 

Now suppose that N iterations are made before the 
receiver makes its decision as to which of the ik? messages 
was sent. What is the probability of error? The situation 
is presented in Fig. 4. After N iterations, 

X N+l - N(e, u~,‘cY~N). 

The length of the message interval is l/M. Hence, the 
probability of X,,, lying outside the correct message 
interval is 

P, = 2 erfc ($==) , (6) 

where 

erfc z = $=g lrn evt”’ dt. 

I 9 I 

I+--- I/M--l 
Fig. 4. The error probability is the shaded area. 

D. Achieving Channel Capacity 

Equation (6) shows, not unexpectedly, that P, can 
be driven to zero by increasing the number N of itera- 
tions. However, if this is done without increasing &I, 
the signaling rat’e (which we shall define as R = In M/T’ 
nats/second) will go to zero. This tradeoff of rate for 
reliability had seemed quite natural and inevitable, until 
Shannon pointed out 1) that a constant rate R could be 
maintained if M was increased along with T (which is 
monotonically related to N), according to the formula 
M = eTR, 2) that if R were not too high, i.e., M did not 
increase too rapidly with T (or N), then the degradation 
in performance introduced by increasing M could be 
more than compensated for by the good effects of in- 
creasing T, and therefore, 3) that for such rates, arbitrarily 
low error probability could be achieved by taking T 
(or N) large enough. The largest such rate? at which 
arbitrarily low error probabilities can be achieved, was 
called the channel capacity [ll]. 

To apply Shannon’s observations to our problem, we 
inquire how rapidly we can increase M with N while still 
enabling the probability of error to vanish for increasing 
N. The distribution in Fig. 4 squeezes in at a rate l/dF 
(this being the standard deviation). Therefoe, if l/M 
is decreased at a rate slightly less than l/z/N, one can 
“trap” the Gaussian distribution within the message 
interval and thus make the probability of correct detec- 
tion go to unity. We therefore set 

M(N) = N1”(-. (7) 

INFORMATION THEORY 

The consequent error probability is 

P, = 2 erfc 

andasN-+ m, 

APRIL 

(8) 

lim P, = i 
0 for e > 0 

N-m 
I 1 for e<O. 

The critical rate (determined by E = 0) in nats per second 

will be 

Rc,it = [In T(N)] r=O = gnats/second. (9) 

However, in order to keep Rcrit finite as T + a, N must 
grow exponentially with T. Thus, setting N = ezaT, 
with A being some constant, gives 

Ro,it = g = A nats/second. (10) 

But what prevents us from choosing A arbitrarily large 
and thereby achieving an arbitrarily high rate of error- 
free transmission? The answer is that A is limited by 
the average power constraint P,,, which has not as yet, 
been taken into account. The effect of P,, on A can be 
seen by calculating the average transmitted power with 
the proposed scheme. The transmitted power will depend 
upon the additive noise. Therefore, using E[ .] to denote 
averaging over the noise process gives 

P,,(N) = $ E[u’(s, - 0)” + ‘2 a~“(Xi+, - 0)” . (11) i=1 1 
If we assume a uniform prior distribution for the mes- 
sage point 8, E(X, - 0)2 will be &. Furthermore, we have 
seen that E(X;+, - e)” = a2/a2i. Substitution in the 

formula for the average power leads to [also using (lo)] 

P,,(N) = $$ $ + u2 (12) 

Therefore, 

r 

P,, = 

! 
_____ 

A = N, GN,aln N + 

lim P,,(N) = 202A = N,A or A = ‘F. (13) 
N-m 0 

Therefore, A cannot be arbitrarily large but is constrained 
to be less than or equal to PJN,. The critical rate, 
therefore, is 

Rcrit = A = ‘$nats/second 
0 

which is just the channel capacity of the (one-way) 
additive white Gaussian noise channel. 

It may be useful to view this result in the following 
way. The noise variance in our scheme goes down as 
l/N, which is no faster than the rate at which the noise 
variance goes down with a simple repetitive coding scheme 
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(i.e., sending each message N times). However, with simple 
repetition the signal power increases with N (and would 

therefore violate any average power constraint for large 
enough N), while with our scheme the transmitted power 
decreases suitably with N so as to meet the average power 
constraint. Figure 5 is a sketch of the behavior of the 
expected instantaneous transmitter power as a function 
of time. 

-T- 

EXPECTED 

INSTANTANEOUS 

TRANSMITTED 

POWER 

Fig. 5. The expected instantat;;;;,ransmitted power as a function 

Our feedback scheme cannot signal at a higher rate 
than is possible for the one-way channel, but it can achieve 
the same performance with considerably less coding and 
decoding complexity. As far as the coding goes, our 
recursive scheme for determining the transmitted wave- 
form is somewhat simpler than the scheme for generating 
orthogonal waveforms. However, the real simplicity is 
in the decoding: with M orthogonal signals, ideal de- 
coding requires searching for the largest of M matched 
filter outputs, a laborious operation for large M; in our 
scheme, we just have to check in what amplitude range 
the output of a single matched filter lies. 

We can make our complexity comparisons more quan- 
titative by comparing the expressions for the error prob- 
ability with and without feedback. Before making this 
comparison we note that we have not as yet specified the 
slope OL of our straight-line coding function. As far 

as achieving the rate P,,/No, any value of a! will do. How- 
ever, in evaluating the error probability for a fixed 
number of iterations N there is an optimum value of 01. 

E. Optimum P. for Finite N 

The value of the slope a, given R/C and given N, 
that minimizes the probability of error is easily deter- 
mined. From (8), minimizing the probability of error is 
equivalent to maximizing 

Now, differentiating with respect to a’, 
optimum (Y, 

one has for the 

2Nf+“zE ” 
2N, de d(c?/N,) = ” 

To compute de/d(a’/NJ, an expression for e is needed. It will be convenient to make the comparison with 

Using (7) to get R = In M(N)/T = (1 - E)A and setting orthogonal codes on the basis of a “blocklength L” in 

a2 = N,/2, we get from (12), binary digits, which will be defined as follows. Let 2L = M. 

R = (1 - E)A = (1 - c)C”[& + Ng +]-I In N 

from which 

Hence, de/[d(c-r’/N,)] 
this, we will have 

& + ‘g +](ln N)-‘. (14) 

= - (R/6C)(ln N)-‘, and using 

Therefore, the optimum value of a’, say &, is 

Substituting for cr,” in the formula for the probability 
of error we finally have 

P, = 2 erfc [(3: N’>““]. (16) 

Figure 6 gives curves for the probability of error as a 
function of the number N of iterations. The parameter 
R/C is the rate relative to channel capacity. The curves 

start at that value of N beyond which e as given by (14) 
is positive. Note that for relative rates approaching 
unity, the number of transmissions per message becomes 

very high. 
Equation (15) gives the optimum value of the slope 

a as a function of the relative rate R/C and the noise 
power spectral density N0/2. Figure 7 shows curves of 
the probability of error vs. the slope squared relative to 
its optimum value. 

We can also write down an asymptotic expression for 
the probability of error, similar to the expression quoted 
in Section I for orthogonal codes. From (S), and sub- 
stituting c2 = N,/2, the probability of error is 

P, = 2 erfc [(&NE)“‘]. 

By using the optimum a,” of 01’ given by (15) and using 
the well-known asymptotic formula for the erfc function, 
we obtain (asymptotically for large N) 

Furthermore, N = ezaT and R = (1 - e)A, where A 
is asymptotically equal to C. We therefore have 

P .= (17) 
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After N iterations, M will be Ni(‘-‘), and hence, L = For example, let the relative rate--be R/C = 0.8. 

3(1 - 6) log, N. Figure 8 gives-curves of the probability Suppose a probability of error P, = 10m7 is required. 
of error vs. the blocklength L. + The asymptotic expression for the probability of error 

Similar curves can be obtained for orthogonal codes by for orthogonal codes indicates a blocklength of approxi- 
using the relations mately L = 1625 binary digits (see Fig. 9). Figure 8 

TECR) 
shows that the WB coding scheme requires a block- 

log,, P, E -- 
In 10 

and 2L = M = eET, length of only L = 12 binary digits. For relative rates 
closer to unity an even more marked difference is obtained. 

which yield If C = 1 bit/second, these blocklengths correspond to a 

E(R) 
coding delay T: 

log,, P, E L 7 log,, 2. (18) 
= 2031 seconds (orthogonal codes) 

This expression for log,, P, is plotted in Fig. 9 for several T = 
values of R/C. 

NUMBER OF ITERATIONS N 

Fig. 6. The probability of error as a function 
of the number of iterations. 

= 15 seconds (with our feedback scheme). 

1 

BLOCKLENGTH L IN BINARY DIGITS 

Fig. 8. The probability of error as a function of the 
blocklength in binary digits. 

lO-b-t,-+2 1.5 1.75 

SLOPE SQUARED RELATIVE TO OPTIMUM VALUE .%a; 

IO-; I I I / I I 
IO00 2000 3000 4000 5000 6000 

BiOCKLENGTH L IN BINARY DIGITS 

Co 

Fig. 7. The probability of error vs. the slope squared relative to Fig. 9. The asymptotic expression for the probability of error for 
its optimum value. orthogonal codes as a function of the blocklength in binary digits. 
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Therefore, the use of feedback provides a considerable 
reduction in coding delay (and hence, coding and decoding 
complexity).’ The savings due to feedback become even 
more pronounced as we go to lower values of P. and to 
rates closer to the channel capacity. However, we should 
point out two ways in which the comparison above is 
somewhat unfair. The first, and less important, is that 
we have obtained the value T = 15 seconds for the feed- 
back channel by using the exact formula for P,, fb, 
whereas the value T = 2031 seconds was obtained from 
the asymptotic formula for P,, orth. However, for the 
error probability (10e7) we are considering, the exact 
calculation for 1’ (which is difficult to perform) would not 
give results much different from T=2031. The second, and 
more serious objection, is that the value for orthogonal 
codes is based on a strict power limitation of P,, for all code 
words, whereas in the feedback scheme, it is only the 
expected average power that is limited to P,,. (The ex- 
pectation is over the Gaussian noise variables.) The in- 

stantaneous average (over the time interval T) power is 
the sum of a large number of squared Gaussian variates 
(11); the expected (or mean) value of the average power 
is P,, and using a well-known relation (Ex4 = 3Ex’ for 

a Gaussian random variable z), we see that the variance 
is 3P,,. If we make allowance for this variation by using, 
say, P,, + 32/3P,, for the power with the feedback 
scheme, we will need a larger coding delay T and the 
reduction will not be in the ratio 2000 to 15. However, 
without making any recalculations, we feel it is fair to 
say that the use of feedback definitely produces an “order 
of magnitude” reduction in the necessary coding delay T. 

III. FURTHER PROPERTIES AND EXTENSIONS 

In this section we shall examine the bandwidth and 
peak power requirements of our coding scheme, study 
the effects of loop delay and feedback noise, and consider 
extensions to channels where the spectral density NJ2 
may not be known and/or where the additive white noise 
is not Gaussian. 

A. Bandwidth of the Transmitted Signals 

The feedback communication system described in this 
section has no constraint on the bandwidth of the trans- 
mitted signals. It will be shown presently why it is not 
possible to cope with a bandwidth constraint. 

From Section II-D, N = ezaT iterations are made in 
T seconds. Suppose the transmitted signals have band- 
width W, then the number of iterations is at most equal 
to the number of degrees of freedom. The number of 
degrees of freedom of a waveform of bandwidth W and 
duration T is approximately equal to 2WT. Putting 
N = 2WT, 

3 As we mentioned in the Introduction, wit,h C = 1, Turin’s 
scheme [l-5] would require only an azlerage coding delay of 1 second 
and t.he averaye signaling rate will be 1 bit/second. However, the 
actual coding delays may fluctuate considerably from the average 
value. 

W = & ezAT 

where 
I 

A = c(& + Ng $)-’ In N 09) 

which follows from substituting n2 = NJ2 into (12). 
From (19) we see that A is asymptotically equal to C for 
large N, and hence, W M l/(2T)eZCT. That is, W grows 
exponentially with T and lim,,, W(T) = ~0. 

Substituting T = 1/(2A) In N into (19) leads to an 
expression for W in terms of the number of iterations: 

N 
W = AInc/s. cm 

B. Peak Power 

It is known a priori that 0 must lie in the interval [O, I]. 
Restricting the Robbins-Monro procedure to this in- 
terval will limit the peak power for fixed bandwidth W. 
This can be done with the aid of the following theorem 
from Venter [ 141. 

Theorem: Suppose D is a closed convex subset of BP, 
P-dimensional Euclidean space, and it is known a priori 
that 0 E D. Then modify the stochastic approximation 
procedure in the following way: 

ix, + a,Y,(X,) if X, + a,Y,(X,) e D 

X n+1 = 

‘L 

the point on the 

I 

boundary of D clos- 
1 

if X, + a,Y,(X,) # D. 
est to Xn+a,Y,(X,) 1 

Whenever the original procedure converges, so does its 
restriction to D. The asymptotic rate of convergence for 
both procedures is the same. 

A special case of this theorem, in which the closed 
convex subset is equal to the unit interval [0, l] and p = 1, 
is applicable to our coding scheme. Hence, the modified 
procedure is as follows. 

0 if X, + a,Y&Q 5 0 

x n+1 = 

.i 

X, + a,Y,(X,) if 0 < X, + a,Y,(X,) < 1. 

1 if 1 < X, + a,Y,(X,) 

In investigating how the peak power PPelLk depends 
on the bandwidth W, let us consider a basic signal $(t), 

This signal has bandwidth W and satisfies the ortho- 
normality condition (5) for A = 1/2W. With N = ezAT 

[A given by (19)], 

P xm.k 
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Hence, for large T (or N), the PpeaL goes to infinity while 
the average power remains finite. A similar phenomenon 
will be discovered if the basic signal 4(t) is chosen to have 
a duration A. Of course, this exponentially growing 
(with T) peak power also occurs with one-way channels 
if orthogonal signals of finite duration or of the form 
sin 2uWtjd2Wrt are used. Since we are using matched 
filter reception, we can use pulse compression techniques 
t.o alleviate the peak power problem. However, this topic 
is somewhat apart from the main theme of this paper, 
and we shall therefore not pursue it any further. 

C. Loop Delay 

Up to this point, only instantaneous feedback has been 
considered. In a practical situation there will be feedback 
delay. 

Let F(z) = 01(x - e), and let the additive random vari- 
ables 2, be identically distributed. From the iterative 
relation, 

X TL+1 = x, - & Y&Y,) 

where Y,(X,) = F(X,) + Z,, it can easily be shown that 

x,+1 - e = --& 2 zj. 
z 1 

(21) 

This means that (when the 2, are Gaussian) X,,, is the 
maximum likelihood estimate of 8, based on the observa- 
tions Y,(X,) through Y,,(X,). 

Now suppose there are d units of loop delay, so that 
Y,,(X,) can first be used to determine X,,,,,. The first 
time one can use received information is when computing 
X d+2* 

Let us choose as X,,,,, the maximum likelihood esti- 
mate of 8, based on observations Y,(X,) through Y,(X,). 
The iterative relation now becomes 

X (n - l>X,+d + X, 
n+d+1 = - 

n J- y7L@-J. (22) 

It follows easily that 

X n+d+1 - e = -& $ zj. 
% 1 

One must complete d more transmissions in order to 
obtain the same variance as in the case of instantaneous 
feedback, and thus, the influence of the delay will be- 
come negligible for large values of n. 

D. Non-Gaussian Noise 

If the additive white noise is Gaussian, our coding 
scheme will permit error-free transmission at any rate 
less than channel capacity. For the scheme to work it is 
not necessary to know the noise power spectral density 
N,/2. However, as shown in Section II, knowledge of 
No/2 permits one to choose the slope a! in an optimum 
fashion in the nonasymptotic case. 

Stochastic approximation, in general, and the Robbins- 
hfonro procedure, in particular, are nonparametric. There- 
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fore, the coding scheme will also work in the case of 
non-Gaussian white noise. 

What about the probability of error? Sacks’ theorem 
[6] on the asymptotic distribution of X,,,, implies that 
X tt+1 is asymptotically Gaussian with the required vari- 
ance. Hence, all the calculations given earlier in this 
Section are still valid for large N. 

Finally, does one achieve channel capacity when the 
additive noise is non-Gaussian The critical rate of our 
system is still Re,it = P,,/N,, and this gives a lower 
bound on the channel capacity for all non-Gaussian white 
noise channels with noise of spectral density N,/2. 

E. InJEuence on Feedback Noise on Wideband Coding 
Scheme 

In the case of noiseless feedback it is immaterial whether 
X,,, or Y,(X,) is sent back to the transmitter. This is 
not true in the case of noisy feedback. The following 
notation is adopted for this case: a single prime refers to 
the forward direction and a double prime to the feedback 
link. Thus, N;/2 is the (two-sided) power spectral density 
of the additive white Gaussian noise in the forward 
channel, and we shall write NLf/2 for the spectral density 
of the white Gaussian noise n”(t) in the feedback link. 
The noises in the forward and feedback links are assumed 
to be independent. 

The estimates of e obtained by the receiver and trans- 
mitter are denoted by XL and X,!,‘, respectively. Y;(X:‘) 
is the noisy observation made by the receiver. This value 
is sent back to the transmitter which obtains Yr(XA’) = 
YA(XA’) + ZA’, where 2;’ is the additive noise in the 
feedback link. 

The influence of feedback noise is mainly a reduction 
in relative rate R/C in the case where the receiver’s 
estimate X,,, is sent back to the transmitter. The prob- 
ability of error increases only slightly. When the receiver’s 
observation YL(XL’) is sent back to the transmitter, the 
feedback noise reduces the rate only slightly and its main 
effect is an increase in the error probability. 

Consider first the case where X,,, is sent back. Equa- 
tion (12) for the average power changes in that an addi- 
tional term a”(N;‘/2)(N/T) due to the feedback noise 

appears, and also o2 changes to q2 = $(N{ + OL~NA’) 
instead of (r2 = N3’2. If it is assumed that the feedback 
noise is small compared to the additive disturbance in 
the forward channel, then c2 will only change slightly. 
The error probability in (8) will also only change slightly 
provided that all other quantities in (8) remain the same. 

Figure 10 is a plot of the relative rate 

+a;$f(N + z;)])+ (24) 

vs. the number N of iterations for different values of NL’. 
The upper curve is for noiseless feedback. The prob- 
ability of error for noiseless feedback is P: = 10M4. In 
the case of noisy feedback it is only slightly higher. 
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Equation (24) follows from (12), adding the additional 
term a”(Ni’/2)(N/T). For & the optimum value for 
noiseless feedback is used, that is, the value given by (15). 

It is seen from Fig. 10 that for noiseless feedback the 
relative rate approaches unity with increasing N; however, 
in the case of noisy feedback, the curve for noiseless feed- 
back is followed for some time after which the relative 
rate drops to zero quite suddenly. (Note that no optimiza- 
tion in the presence of feedback noise is attempted. The 
particular system we use is optimum for NL’ = 0.) 

The feedback power P,, is 

and is again hardly affected by the feedback noise. 

Now consider the case where YL(XA’) is sent back. 
The average transmitted power as given by (12) is only 
slightly affected in that now CT’ = $(N; + N;‘) instead 
of c2 = N3’2, and the same is true for the relative rate, 
assuming NA’ small compared to Ni. 

What is the influence of the feedback noise on the error 
probability? XL:, as used by the transmitter is equal to 

X” n+1 = XA’ - & Y:‘(x:‘) 

where Y’&(XL’) = YL(X:’ )+ 2:’ in which YL(X:‘) = 

F(X$') + 2: is the noisy observation made by the receiver. 
A simple derivation shows that 

where XL,, is the estimate of the message point 0 com- 
puted by the receiver. Hence, 

x:,, - N[ e, & + g g (y] 

i and the variance, say mf, of XL,, is equal to 

The formula for the probability of error is 

P, = 2 erfc [tM~~)-l] = 2 erfc [lN-~~~-“]+ (28) 

Again, as in the noiseless feedback case, let us find the 
optimum value of (Y: of a2. (Note that in the earlier case, 
where the receiver’s estimate X,,, is sent back, such an 
optimization was not attempted for nonzero feedback 
noise.) As before, 

E = 1 - 5 (In N) -1(&Z ;) (14) 

where now N, = Nh + Nd’. It is desired to minimize the 
probability of error with respect to 01’. From (28), this 
is equivalent to minimizing c:N-‘. Setting the derivative 

equal to zero, 

-$ (c,;N-‘) = -J5 &T-’ 
CY 

+ a:N’(ln N) g (In N)-’ & = 0 
0 1 

yields 

which has the same form as (15) for noiseless feedback. 
Figure 11 shows curves of the probability of error P, vs. 

the number of iterations N, with the parameter being 
the power spectral density NAT/N: of the feedback noise 
relative to the corresponding quantity for the forward 

0.9 

0.8- P; = 10-4 

0.7 - 

0 
IO 102 10) IO’ IO’ 106 I 

NUMBER OF ITERATIONS N 

Fig. 10. The relative rate vs. the number of iterations 
for the case where X, is sent back. 

‘l+++!L+ 
NUMBER OF ITERATIONS N 

Fig. 11. Probability of error vs. number of iterations. 



182 IEEE TRANSACTIONS ON 

link. The P, curves have a minimum for nonzero variance 
of the feedback noise, and it does not make sense to do 

more iterations per message than the value indicated by 
the minimum of the P. curve. 

The average feedback power p,b is 

2 
N; N 

P,, = P,, - sjq + -yj- F’ 

In conclusion, it should be observed that one can either 
1) insist on a vanishing probability of error in which case 
the rate of signaling will approach zero, or 2) require a 
nonvanishing rate in which case there is a minimum 
achievable probability of error different from zero. 

We should also point out that by using a differrent 
scheme, it may be possible to obtain much better results 
for noisy feedback channels than are yielded by our 

scheme. 

IV. CONCLUDING REMARKS 

There are several areas for further work that may be 
investigated. We shall briefly mention some of them. One 
is the question of whether our method of exploiting the 
feedback with a linear encoding function is the most 
efficient. Even if it should turn out to be the most efficient 
for Gaussian noise, we can ask whether for non-Gaussian 
additive white noise, we cannot achieve a rate greater 
than P,,/N,, by using some other form of encoding func- 
tion. For example, T. Cover of Stanford University has 
suggested subjecting the straight line to the nonlinear 
transformation that would convert a non-Gaussian prob- 
ability density function into a Gaussian density function; 
if the stochastic approximation technqiue is applicable 
to the resulting curve, this might yield better results for 
the non-Gaussian case. (It should be pointed out here 
that asymptotically the shape of F(X) does not matter, 
since Sacks’ theorem on the asymptotic distribution of 
the estimate is true under very mild assumptions, given 
in Section II on F(X). The shape of the regression func- 
tion is important only in nonasymptotic calculations.) 

Another possibility is to use sequential detection in 
combination with our scheme. Instead of making a 
decision after a prespecified number of iterations, we could 
wait until the matched filter output crossed a suitable 
threshold. Such operation would certainly result in some 
improvement in the error probability, but we suspect 
the gain may not be worth the extra complexity. 

Our results should also be extendable to other situa- 
tions where stochastic approximation techniques apply, 
e.g., channels with unknown gains, slowly changing random 
delays, etc. It may be mentioned that the coding scheme 
suggested by the Kiefer-Wolfowitz stochastic approxi- 
mation technique for determining the minimum of an 
unknown function does not yield results as good as those 
obtained for the coding scheme in this paper (which was 

suggested by the Robbins-Monro procedure). J. Venter 
(Stanford University, 1965) showed in unpublished work 
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that a, coding scheme based on the Kiefer-Wolfowitz 
procedure cannot achieve channel capacity. 

Of course, a major question is the study of communica- 
tion over noisy feedback links. When more general results, 
e.g., on the capacity, of such channels are known, it may 
be easier to look for efficient communication schemes 
with noisy feedback. 

Finally, we mention an extension [16] of the results in 
this paper to the case of signals with a bandwidth con- 
straint; the scheme to be used under this constraint is 
more complicated than the one given in this paper, but, 
of course, it also applies to the non-band-limited-signal 
case and, in fact, has some advantages-fixed peak power, 
fewer iterations, etc. 

Note added in proof: J. Omura has pointed out a 
mistake in the coefficient in (17) that arises from an 

error in arguments based on (lo)-(12). The correct formula 
is 

P, N exp [ - be2’c-n’ r~/[&-beZ’C-R’ T]1/2 

where 2b = 3e-(“Y) and y = 0.577 . . . is Euler’s con- 
stant. This causes small changes in the curves, but does 
not affect the main lines of the argument. The details 
will appear in Omura’s thesis at Stanford University. 
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