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A Coding Scheme for 
Additive Noise Channe ls with  Feedback 

Part II: IBand-Limited Signals 
J. PIETER M. SCHALKWIJK, MEMBER, IEEE 

Abstract-In Part I of this paper, we presented a scheme for 
effectively exploiting a noiseless feedback link associated with an 
additive white Gaussian noise channel with no signal bandwidth 
constraints. We  now extend the scheme for this channel, which we 
shall call the wideband (WB) scheme, to a band-limited (BL) channel 
with signal bandwidth restricted to (- W , W). Our feedback scheme 
achieves the well-known channel capacity, C = W  ln (1 +P,,/No W), 
for this system and, in fact, is apparently the first deterministic 
procedure for doing this. We  evaluate the fairly simple exact error 
probability for our scheme and find that it provides considerable 
improvements over the best-known results (which are lower bounds 
on the performance of sphere-packed codes) for the one-way chan- 
nel. We  also study the degradation in performance of our scheme 
when there is noise in the feedback link. 

I. INTRODUCTION 

H 

N THIS PAPER a band-limited (BL) channel with 
feedback is considered. The signal, bandwidth is 
restricted to (- W , TV). 

A general introduction has been given in Part I, with 
particular attention to wideband (WB) channels. 

The BL coding scheme developed here, is as far as we 
know, the first deterministic coding procedure to achieve 
the well-known capacity 

C = W  In [l + (P,,/N,W)]. 

To our knowledge, the only other results pertaining to 
the band-limited (BL) channel have been published by 
Elias [3]. He divided the channel into K subchannels of 
bandwidth w = IV/K. If noiseless feedback is available 
andifK-+ ~0, information can be sent at a  rate equal to 
W  In [l + (P,,/N,,W)]. However, since the signal band- 
width is w instead of W , the coding and decoding com- 
plexity for the feedback scheme becomes an arbitrarily 
small fraction of that required without feedback. 

II. A FEEDBACK COMMUNICATION SYSTEM WITH 
A CONSTRAINT ON THE BANDWIDTH 

Let T  be the time in seconds necessary for the trans- 
mission of a  particular message. For the WB coding 
scheme discussed in Part I, as for orthogonal codes in 
one-way transmission, the bandwidth W(T) of the trans- 
mission is an exponential function of the coding delay 1’. 
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In order to make the probabiIity of error vanish for a  
fixed relative rate smaller than one, a large bandwidth 
is required. 

Suppose now that one is given a fixed bandwidth W , 
which the transmission is not supposed to exceed. W ith 
this additional transmitter constraint imposed, the chan- 
nel capacity C is no longer P,,/N, as before, but it now 
given by W  ln[l + (P,,/NaW)], nats/second. For small 
values of P,,/N,,W the latter capacity approaches P,,/No 
as it shouId, for when W  + ~0, both channels are identical. 

Shannon [I] derives the capacity formula, W  In [I + 
(P,,/NoW)], by a random coding argument, and up till 
now no deterministic way was known for constructing a 
code achieving the critical rate for a  band-limited white 
Gaussian noise channel with or without feedback. In 
this part the first such code will be developed for the case 
where noiseIess feedback is avaiIable. 

As in Part I, an optimization for finite block-length is 
carried through, the results are compared with bounds 
on one-way transmission plotted by Slepian [4], and the 
deterioration of the present scheme due to feedback noise 
is considered. 

A. The BL Coding Xcheme 

In the WB coding scheme discussed in Part I, the 
variance of the estimate X,,, for the message point 0  
was inversely proportional to the number N of iterations. 
The critical rate was Rc,it = (In N)/2T nats/second, 
and in order to achieve a constant rate one had to choose 
N = ezAT, that is, the number of transmissions had to 
increase exponentially with time. 

Now suppose one has to meet a bandwidth constraint 
W  in cycles per second, In this case the number of in- 
dependent transmissions can only increase linearly with 
time. The highest number of independent transmissions 
per second is approximately equal to 2W. Substituting 
N = 2WT in the equation for the critical rate above 
gives Rorit = (In 2WT)/2T nats/second. Hence, Rovit -+ 0 
with increasing T, and so the system discussed in Part I 
has to be modified in order to achieve a constant rate 
different from zero in the band-limited case. 

Two useful observations can be made at this point. 
First, while the critical rate approaches zero when we 
take 2W iterations per second the asymptotic relation 
Rcrit(T) %  P,,(T)/N, is still valid. In other words, 
both the rate and the average power approach zero for 
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increasing T. The limit of their ratio, however, is equal 
to the constant N,. The second observation is that X,,, 
can be looked at as the maximum likelihood estimate of B 
having observed Y,(X,) through Y,(X,,), and assuming 
Gaussian noise, as explained in Part I-Section II. 

What is the variance of our successive maximum like- 
lihood estimates X,,, X,,, and X,,? It is known that 

With these two observations in mind, we shall present 
a coding scheme for the band-limited white Gaussian 
noise channel. 

Suppose that transmissions take place at integer values 
of time, the time unit being 1/(2w) second. Numbers 
arc sent again by amplitude modulating some basic 
waveform of bandwidth W  and unit energy. The dis- 
turbance is white Gaussian noise (with spectra1 density 
No/2,) and reception takes place using a matched filter. 

The coding scheme starts out the same as in Part I- 
Section II. At the transmitter: 

1) divide the unit interval [0, l] into M  disjoint message 
intervals of equal length; let 6 be the midpoint of the 
message interval corresponding to the particular message 
to be transmitted, and 

2) at instant one, transmit a(X,, - 0), where X,, = 
0.5 and 01 is some constant to be determined later, 

At the receiver: 

1) receive Y1,(X,,) = a(X,, - 0) + Z,,, where Z,, 
is as before a Gaussian random variable with mean zero 
and variance a2 = N,/2, and 

2) compute X,, = X,, - OI-~Y~~(X~~), then set X,, = 
X,, and send X,, back to the transmitter. 

Up to this point everything is the same as for the coding 
scheme of Part I-Section II-B. In other words, X,, - 
B = -(~/cY)Z,,, where X,, is the maximum likelihood 
estimate of 0 having observed Y,,(X,,). 

Now, in order to prevent the expected power per trans- 
mission from decreasing, as it did in the WB coding 
scheme, we shall take the next transmission as QCC(X,, - 0) 
instead of or(X,, - e), where the constant g will bc deter- 
mined presently. The receiver obtains the noisy observa- 
tion 

Y,,w,,) = dx,, - 0) + z,, 

and then computes 

x22 = x2, - (@-‘~‘2l(L)~ 

We now have two independent estimates of 8: 

x,, = e - i z,, and Xz2= 0--k&,. 

For the value X,, to be sent back to the transmitter, WC 
shall take the maximum likelihood estimate of e having 
observed Y,,(X,,) and Yzl(X,,), that is, we shall set 

If, however, 9 = (a!” - 1)“’ is chosen, then 

x3, - N 

In general, Xsl, i = 2, 3, . . . , is sent 
transmission is 

a+-1(a2 - i)““(xi, - e) 

but the receiver obtains 

back. The next 

(1) 

Yjl(x,,> = ai-1(a2 - i>““(xj, - e) + zj, 
and then computes 

xi, = xi, - [&‘(a2 - 1)“2]-‘Yi1(xiJ 

and 

The maximum likelihood estimate X,+1 ,1 is normally 
distributed with mean e and variance ~“/[(a”)‘], that is, 

From this point on, the analysis is very similar again to 
that of Part I. Suppose the transmitter sends one of 
M  possible messages, that is, the interval [0, I] is divided 
into M  disjoint equal-length message intervals, The mes- 
sage point e is the midpoint of the message interval cor- 
responding to the particular message being transmitted. 
The probability of the receiver deciding on the wrong 
message interval (i.e., the probability of X,,, lying 
outside the correct interval) is 

‘M -1 
P, = 2 erfc 2 . ( ) cT/aN 

Now pick ib! = ~l~(l-‘), that is, R = (In M)/N = 
(1 - E) In 01, nats/dimension (the time unit was 1/(2W) 
seconds). This gives for the probability of error 

P, = 2 erfc ag 
( > 

and thus, 

lim P,(N, E) = ’ 
N-xc 1 

for 

for 

E>O 

E < 0. 

In other words, the critical rate is equal to Rcrit = In CY, 
natsjdimension. Putting a: = e” gives Rorit = A. 
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Next let us derive an expression for the average power Effectively, the introduction of the factor a reduces N, 
P,,. 

P,, = $ E 
i 

Cly”(X,, - e)” 

+ 2 [ai-1(a2 
t-2 

= f 
i 

a!PE(XI1 - e>” 

+ I$ l~i-‘(~2 

by a factor a’. 
By (3), minimizing the probability of error is cquiv- 

alent to maximizing the expression 
2Na 201 

“2N, (7) 

. 

where 6 can bc obtained from 

R=(l- E) In OL nats/dimension (8) 

and c2 = No/2 was substituted for the variance. 
Substituting 01 = eA in (4) and allowing for the addi- 

Substituting T = N/(2W) seconds, ua = No/2, 01 = e”, 
and E(X,, - 0)” = I/12 (assuming a uniform prior dis- 
tribution for e), one gets 

We 2.4 
p -__ 

av - 6N 
+N-1 7 N,W(e’” - 1). (4) 

Hence, asymptotically, 

Rorit = I 
A = 4 In (I + &) nats/dimcnsion, or 

2WA = W In (I + &) nats/second (5) 

which is the channel capacity as computed by Shannon [l] ! 
This result proves that the BL coding system presented 
here achieves capacity for the band-limited white Gaussian 
noise channel. It is the first deterministic coding procedure 
to do so. 

B. Optimization for Finite Blocklength 

As in Part I, let us now investigate how far one falls 
short of the idea1 when onIy permitting a finite coding 
delay N (in time units of 1/(2W) second). 

In Section I-A, the slope O(~ at the ith transmission 
was taken as 

where 

oli = ai-l+6il(a2 _ y(1-6i~~ 

6i j  = 
i 

1. if i = j 

0 if i#j. 

In order to make an optimization possible, an addi- 
tional factor a is introduced, hence, 

ai = aa: i-l’~6i1(~2 _ 1)‘/2(1-6i’) i = 

The receiver now has 

Y,l(X,,) = ar,(Xil - e) + zi, 

and computes 

xi, = xi, - a;’ Y,l(X,l>, 

x21 = x12, 

and 

xi,,,1 = 
xi1 + (a2 - oxi for i = 2 3 -__ 

cY2 
) )“a. 

tional factor a leads to the following expression for the 
average power: 

which can be modified as 

p,,, _ a2 
2 

N, I/V G:N, + N+ (2 - 1). (9) 

Now assuming C, R, IV, N,, and N constant, Ict us 
maximize (7) with respect to a’. Note that C and W 
constant implies P,,/NoW constant, for 

c = 1v111(1+&$ 

Having gone through these preliminaries, one is now 
ready to perform the optimization, Set the derivative of 
a”(a2”‘/2No) equal to zero, 

(10) 

From (8) it follows that 

and from (9) it follows that 

da2 2 
z=- a2 + Gzo(N - 1) * 

Making these substitutions in (10) and putting the 
result equal to zero finally gives, after some algebra,, the 
following simple expression for the optimum value at of a’: 

ai = GN,. (11) 

For the probability of error, substituting F’ = NJ2 
and a: = GN, in (3), one has 

P, = 2 erfc [(3,2nf)1’2]. 

Solving for (Y’ from (9) and (11) gives 
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By (8) one has 

R fi=lna! 1-e R or 01~~’ = exp __ 
( > 2w 

where R is now in nats/second. Hence, 

Lye = a E2 

and finally, 

This final result will be compared in the next section 
with the bounds on one-way communication as obtained 
by Slepian [4]. 

C. Comparison with Xlepian’s Results 
In 1963 Slepian [4] plotted lower bounds on com- 

munication in the one-way case based on a geometrical 
approach to the coding problem for band-limited white 
Gaussian noise channels used by Shannon [a]. That is, 
there is no one-way communication system whose per- 
formance is any better than that plotted by Slepian. 
Figures 1 through 6 compare Slepian’s curves (dashed 
lines) with the results described by (12) (solid lines). 
Note that the solid curves are exact, that is, they are not 
a bound as Slcpian’s curves are. The graphs presented 
are described in the following. 

1) Figure 1 shows the signal-to-noise ratio X/N = 
10 log,, (PavINoW) in decibels vs. the rate R/W in 
dits/cycle, as given by Shannon’s capacity equation, 
In [I + (P,dNoW)I. 

2) Figures 2(a) to 2(c) indicate the additional signal- 
to-noise ratio, in decibels above the value indicated in 
Fig. 1, required for a finite coding delay N, as a function 
of the rate in dits per cycle. The probability of error for 
the three figures is, respectively, P, = lo-‘, 10V4, and 
lo-‘. It is seen that a large improvement is obtained by 
going from N = 5 to N = 15, especially in the feedback 
scheme. Increasing the coding delay further does not 
result in much improvement. 

3) Figures 3(a), and 3(b) are plots of the additional 
signal-to-noise ratio in decibels above the ideal value 
indicated in Fig. 1 vs. the coding delay N, for different 
values of the probability of error P, and for a rate of 
R/W = 0.2 dit per cycle. Figure 3(b) represents a plot 
for the bounds computed by Slepian. Note that the curves 
for the feedback scheme in Fig. 3(a) indicate a much 
lower relative (to the ideal, given in Fig. 1) signal-to-noise 
ratio, except for cxtremcly small vsIues of N. 

4) Figures 4(a) and (b) are plots of the probability 
of error vs. the coding delay N, with the signal-to-noise 

ratio in decibels above the ideal as the parameter. The 
rate is R/W = 0.2 dit per cycle. Note the difference in 
shape between the two sets of curves. 

5) Figure 5 is a plot of the relative rate R/C vs. the 
rate R/W in dits per cycle for different values of the 
coding delay. The probability of error is P. = 10m4. 

6) Figures 6(a) and (b) are plots of the relative rate 
R/C vs. the coding delay N for different values of the 
signal-to-noise ratio. 

D. Inj%uenzc of Feedback Noise on the BL Coding Scheme 

In this section, only the configuration in which Y,!,(X:‘) 
(the received “number”) is sent back will be investigated. 
The results for the case where X,, (the receiver’s estimate) 
is sent back are similar to those in Part I in that the rate 
drops off to zero quickly. 

Using the same notation as in Part I, it follows easily 
that 

whcrc xi=, = 0, and CQ is given by (6). Hence, 

The variance C$ of the estimate XL,, of 8, as computed 
by the receiver, is 

2 1 ut = 2 1 
d2 + u”2 I u”2 I u,,2( 2(X-1) 

2N a2 a -1) * 1 (14) a! 

For the probability of error one has, from (3), N(l-•) 
P, = 2 erfc k [ 1 I (15) 

where again R = (1 - E) In 01, nats/dimension. 
The expression for the signal-to-noise ratio in the 

forward direction is, from (9), 

P?” 2 
2 

N{W a 6GN:+ 
N!!+! Ni -+; NA’ (($ - 1). (16) 

Figure 7 presents curves for the probability of error 
P, vs. the coding delay N for R/W = 0.2 dit per cycle, 
and different values of the feedback noise relative to 
the forward noise, Nit/N:. For a2 the value a? = 6N; 
as given by (11) is used. Hence, the curves present the 
degradation due to feedback noise of a system that is 
optimum for the noiseless feedback case. 

III. CONCLUDING REMARKS 

The WB (wideband) coding scheme, discussed in Part I, 
was suggested by the Robbins-Monro stochastic ap- 
proximation procedure. In the Gaussian case it turns out 
that this coding procedure determines the maximum 
likelihood estimate of the message point TV recursively. 
Since the maximum likelihood estimate approaches 8 



1966 SCHALRWIJR: CODING FOR ADDITIVE NOISE CHANNELS-PART II 18’7 

Fig. 1. The signal-to-noise ratio required by 
Shannon’s capacity equation. 

Fig. 2. The additional signal-to-noise ratio required when using 
a finite coding delay. (a) P, = 10-2. (b) P, = lo-". (c)P, = 10-G. 

\ 
\ 
\ 

Pe i lo-’ 

\ 

Fig. 3. The additional signal-to-noise ratio as a function of the 
coding delay for different values of the probability of error. (a) 
BL coding scheme. (b) Bounds on one-way communication. 

‘01 .\ \ I 
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(b) 

Fig. 4. The probability of error as a function of the coding delay 
for different values of the relative signal-to-noise ratio. (a) BL 
coding scheme. (b) Bounds on one-way communication. 

Fig. 5. The relative rate vs. the rate per unit bandwidth 
for different values of the coding delay. 

Fig. 6. The relative rate vs. the coding delay for different values 
of the signal-to-noise ratio. (a) BL coding scheme. (b) Bounds 
on one-way commlmicstion. 

1.0 ---- ,--------s/N... 

/ 
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mission a constant, leads to the BL (band-limited) coding 
schemes. This simple scheme is the first deterministic 
procedure to achieve the channel capacity, W In [l + 
(P,JN,,W)], of the band-limited white Gaussian noise 

It is believed that this approach of recursive maximum 
likelihood estimation to the coding problem with feedback 
has a much wider area of application, for example, chan- 
nels with unknown parameters, fading channels, de- 
pendences between the noises in forward and feedback 
links, and so on. The method is ideally suited for noiseless 
feedback and it may well be possible to find an extension 
that is in some sense optimum for the noisy feedback case. 
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Coding for a C lass of Unknown Channels 
IRVIN G. STIGLITZ, MEMBER, IEEE 

Abstract-A channel which is selected for each use (without 
knowledge of past history) to be one of a given set of discrete mem- 
oryless channels is to be used by an ignorant communicator, i.e., 
the transmitter and receiver are assumed to have no knowledge of 
the particular channels selected. For this situation an upper bound 
on the insurable average error probability for block codes of length 
n is obtained which exponentially approaches zero for all rates less 
than capacity. Communication design techniques for achieving 
these results are discussed. 

F 

OR OUR PURPOSES, a statistically describable 
channel model is one for which the statistics of the 
cha.nnel output are known for each possible channel 

input. For a nonstatistically describable channel model, 
this statement does not hold. 

The problem of designing communication systems for 
statistically describable channel models has been widely 
investigated. C. E. Shannon showed, for a large class 
of such models, that information can be transmitted over 
such a channel with arbitrarily small error probability 
for any rate less than a maximum rate called capacity. 

The author is with the Lincoln Laboratory, Massachusetts 
Institute of Technology, Lexington, Mass. (Operated with support 
from the U. S. Air Force.) 

For statistically describable discrete memoryless chan- 
nel models, the minimum error probability, P,, achievable 
with a block code of length n, has been overbounded for 
rates R less than capacity by [l], [2] 

P, 1. eenEzcR) (1) 

where E,(R) is a function of the channel statistics and is 
a positive convex downward’ function of R for R less than 
capacity. 

The evaluation of capacity for a large class of non- 
statistically describable channel models has been in- 
vestigated by Blackwell, Breiman, and Thomasian 131, 
[4] and by Wolfowitz [5]. We investigate in the sequel the 
following class of discrete nonstatistically describable 
channel models. For each use the channel is selected in a 
fashion unknown to the transmitter or receiver to be’one 
of a given fixed set of statistically describable channels. 
The channel selection mechanism is permitted to change 
from use to use; however, channels are assumed to be 

1 A function f(z) is said to be convex downward if every cord 
lies on or above the function. If f(z) is convex downward then -f(z) 
is said to be convex upward. 
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