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A Coding Theorem for Secret Sharing 
Communication Systems with Two 

Gaussian Wiretap Channels 

Hirosuke Yamamoto 

Abstract -A coding theorem is proved for the secret sharing commu- 
nication system (SSCS) with two Gaussian wiretap channels. This 
communication system is an extension of both the SSCS with two 
noiseless channels and the Gaussian wiretap channel (GWC).  The 
admissible region of rates and security levels for the SSCS with two 
GWC’s is described by the capacities and secrecy capacities of two 
GWC’s. 

Index Terms-Secret sharing communication system, wiretap channel, 
coding theorem. 

I. INTRODUCTION 

The secret sharing communication system (SSCS) is an exten- 
sion of both Shannon’s cipher system [l] and the secret sharing 
system [2]. In previous papers, the author has proved coding 
theorems for the SSCS with two or three noiseless channels [3] 
or with two discrete memoryless broadcast channels [4]. In this 
correspondence, a coding theorem is proved for the SSCS with 
two Gaussian wiretap channels (GWC’s) that is shown in Fig. 1. 
The information SK must be transmitted to the legitimate 
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receiver with arbitrarily small error probability via two Gaussian 
channels. Since the information may be wiretapped by unautho- 
rized persons through each GWC, we must devise the encoding 
such that the information can be kept as secret from them as 
possible. The coding problem for the SSCS is to determine the 
admissible region of rates and security levels. 

The following three cases are considered. 

1) Two wiretappers cannot cooperate with each other. 
2) They can cooperate to decipher the information SK. 
3) It is not known whether they can cooperate or not. 

In Case 1) which is the case treated in [4], the security level 
of each channel can be measured by the equivocation of each 
wiretapper, (l/K>H(SKIZ,vj). Case 2) is equivalent to the sys- 
tem with one GWC since the security level of the system can be 
measured by (l/K)H(SKIZ~Z~). However, it is more compli- 
cated than the ordinary GWC treated in [5] because the two 
channels can be used at different rates. In Case 3), we should 
consider both 

&Z(SKIZF) and ~H(SKIZ~Z~) 

as security levels of the system. 
The Gaussian wiretap channel [5] is classified as a special case 

of the additive white Gaussian noise broadcast channel 
(AWGN-BC), i.e., a physically degraded BC (see [6]). Hence we 
can treat the SSCS with two AWGN-BC’s instead of two GWC’s. 
However, it is known that every AWGN-BC can be viewed as a 
degraded BC shown in Fig. 2. Furthermore, if the system does 
not have a feedback channel, then the degraded BC is equiva- 
lent to a physically degraded BC. Let a$,,~$ and u&(T;~,(T~, 
be the variances of Wj,k$ of the GWC shown in Fig. 1 and 
W, V,, V, of Fig. 2, respectively. If LT;~ is less than m;,, then the 
degraded BC is equivalent to the GWC with uij = ui + a$ 
and u2 = u;~- u;~. Otherwise, we can treat the degraded BC as v, 
the GWC with CT;, = a& + u; and a;. = 0 in our case. There- 
fore, for simplicity: we treat (he SSCS’with two GWC’s rather 
than two AWGN-BC’s. 

The problem and the coding theorem are formally stated in 
Section II, and the theorem is proved in Section III. Some 
remarks are collected in Section IV. 

II. CODING THEOREM FOR SSCS WITH Two GWC’s 

We consider the communication system shown in Fig. 1. The 
source emits a sequence (S&=, of independent copies of a 
random variable (RV) S taking values in a finite set 9. Each 
GWC j (j = 1,2) has one input Xi and two outputs 5 and Zj, 
which are related to each other by 

q= xj + wj (1) 

zj=~+l$ (4 

Here II$ and I$ are independent, identically distributed Gauss- 
ian RV’s with zero-mean and variance a& and a$, respectively. 
Furthermore, WI, W,, VI, V, are mutually independent, and they 
are also independent of both X, and X2. 

We assume that the average power of each channel is limited 
to Pi. The capacities of the main and the overall channel are 
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wiretapper 2 

Fig. 1. SSCS with two Gaussian wiretap channels. 

then given by 

C,PC&&log 1+* ) [ I UWj 

pi C,,“C,,(P&log 1+- . 
I A Ukj + u; (4) 

Furthermore, the secrecy capacity C,, of each GWC [5] is given 
by 

A code (f, 4) for the SSCS with two GWC’s is defined by two 
mappings. 

where 9 is the field of real numbers. We write 

f: 9KX9-+2.P~XsP~, (6) 

(x1N,,xP) =f(SK,T), (8) 

iK=4(Y&Y$y, (9) 
where T is some random variable taking values in a finite set 97 
The encoder f can use T, besides SK, to randomize the code- 
words Xp and Xp. Since Y and T. can be chosen arbitrarily, 
the encoder f can be restricted to deterministic functions with- 
out loss of generality. 

The rate of channel j is defined as h$/K. The security level 
of SK for wiretapper j is measured by (l/KIH(SK IZ,T), while 
it is measured by (1/K>H(SKlZ~Z2”,> if wiretappers 1 and 2 
can cooperate with each other. 

We treat three cases mentioned in Section I. The security in 
each case is evaluated by the following. 

1) (l/K)H(SKIZ~) and (l/K)H(SKIZ?), 
2) (l/K)H(SKIZ,NIZ,N), 
3) (l/K)H(SKIZ~), (l/K)H(SKIZ~), and 

(l/K)H(SKIZ,NIZ,N). 

We mainly consider Case 3); Cases 1) and 2) can be treated as a 
special case of Case 3). 

Definition 1: (R,, R,, h,, h,, h,,) is admissible for the SSCS 

The secrecy capacity region 5%‘: is the rate region such that 
the information SK can be kept entirely secret from two wire- 
tappers. These regions are explicitly determined by the following 

with two GWC’s if there exist a random variable T and a code theorem and corollaries. 
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Fig. 2. Degraded broadcast channel. 

(f,4> such that for any E > 0 and K, Nj sufficiently large, 

;H( SKIZ;NIZp) r h,, - E, 

(11) 

(12) 

;o,(S”,+(y?&?))] s ‘7 (13) 

where D, is the Hamming distortion measure. 
Note: “(RI, R,, h,, h,, h,,) is admissible” does not imply that 

we can achieve 

I;H(sXz:l)-h+c 

;H(sKIz,NI)-h, SE, 

;H(sKIZ;VIZ~)- h,, I E. 

It implies only that each equivocation is bounded below by 
h,, h,, h,,, respectively. For instance, (h,, h,, h,,) may be admis- 
sible but will be unachievable if min(h,, h,) < h,, because of 
(l/K)H(SKIZ;Y’Zp) 

Definition 2: The admissible region 9, for Case I, (I = 1,2,3) 
is defined as 

L81~{(R,,R,,h,,hz):(R,,R,,h,,h,,0)isadmissible}, (14) 

S,~{(R,,RZ,h12):(R1,R2,0,0,h12)isadmissible}, (15) 

~~P((R,,R,,h,,h,,h,,):(R,,R,,h,,h,,h,,)isadmissible}. 
(16) 

Definition 3: The secrecy capacity region 9: for Case 1, 
(1= 1,2,3) is defined as 
9~~{(R,,R,):(R1,R,,H(S),H(S),0) isadmissible}, 

(17) 

9~~{(R1,R2):(R1,R2,0,0,H(S)) isadmissible}, (18) 

~~~{(R1,R2):(R1,R2,H(S),H(S),H(S)) isadmissible). 
(19) 
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Theorem 1: Suppose 0 I h,, h,, h,, 5 H(S). Then 

(R,,&,h,,h,,h,,) E 23, 

if and only if 

h, I Cs,R, + CWZR2, 

h, I C,,R, + Cs2Rz, 

4,s Cs,R, + Csz&, 

H(S) I C,,R, + C&G. 

Corollary 1: Suppose 0 I h,, h, I H(S). Then 

(R,,R,>h,,h,) E 21 

(20) 

(21) 

(22) 

(23) 

if and only if (R,, R,, h,, h,) satisfies (20), (21), and (23). 
Corollary 2: Suppose 0 I h,, I H(S). Then (Ri, R,, hia) E 92 

if and only if (R,, R,, h,,) satisfies (22) and (23). 
Corollary 3: (R,, R,) E .J@ if and only if 

H(S) I Cs$, + C,w2Rz, 

H(S) I C,,R, + Cs2R,. 

Corollary 4: (R,, R,) E 2: if and only if 

H(S) I C,,R, + Cs2R,. 

(24) 

(25) 

(26) 

Corollary 5: (R,, R2) E .%‘t if and only if (R,, R,) satisfies 
(26). 

The proof of Theorem 1 is given in Section III, while the 
corollaries can be easily derived from Theorem 1. 

We note that Corollaries 1 and 3 are the direct analogue of 
the coding theorem for the SSCS with two discrete memoryless 
broadcast channels which was proved in [4]. (See Corollaries 1 
and 2 in [4].) 

III. PROOF OF THEOREM 1 

The proof of Theorem 1 is similar to that of Theorem 1 in [4]. 

A. Converse Part’ 

Assume that a code (f, 4) and a random variable T satisfy 
(lo)-(13), and the probability distribution of RV’S Xj,q,Zj is 
determined by (9) and GWC j. Then these random variables 
form a Markov chain Z, -+ Y, + X, + ST --* X, -+ Y2 + Z,. The 
converse part of the theorem can be proved by applying Lem- 
mas Al and A2 in the Appendix to this Markov chain repeat- 
edly. First we have 

Z(ST;Y,)=‘Z(ST:Y,~Y,)+Z(Y,;Y,) 

= Z(ST;Y,Y,)- Z(ST;Y,)+ Z(Y,;Y,) 

= H(S) + H(TIS) - H( SIY,Y,) 

-H(TJSY,Y,)-Z(ST;Y,)+Z(Y,;Y,) 

= H(S) + Z( T; Y,Y,lS) - H( SIY,Y,) 

-Z(ST;Y,)+Z(Y,;Y,) 

>*H(S) + Z( T; Y,Y,IS) - Ke, 

- Z(ST;Y,)+ Z(Y,;Y,) (27) 

‘Superscripts on vectors are omitted for simplicity in this subsection. 

2 H(S)+ Z(T;Y,Y,IS) - Kq, -Z(ST;Y,) (28) 
= H(SIZ,)+Z(S;Z,)-I(S;Y,) 

- Z( T; Y,(S) + Z( T; Y,Y,IS) - Ke, 
2 H(SIZ,)+Z(S;Z,)-Z(S;Y,)-KE~ 
=3H(SIZ,) + Z(X,;Z,)- Z(X,;z,IS) 

-Z(x,;Y,)+Z(X,;Y,IS)-KEY 

=4H( S/Z,) - Z( X,; Y21Z2) + Z( X,;Y,lSZ,) - W, 

2 H( SIZ,) - I( X,; YJZ2) - Keo 

2Kh, - Z( X2; Y21Z2) - KG,, (29) 
where E,,, Al) + 0 as E -+ 0, and equalities and inequality =I, 22, 
=3, =4, r5 can be derived from 

1) Lemma Al (Y2 -+ ST + Y,); 
2) (13) and Fano’s inequality; 
3) Lemma Al (S + X2 + Z, and S -+ X2 + Ya); 
4) Lemma Al (Z,+Y,-+X,) and Lemma A2 (S-+X,+ 

Y2 + Z,); 
5) Inequality (11). 

On the other hand, data processing inequality asserts that 
Z(ST;Y,) I Z(X,;Y,). (30) 

From (29) and (30), we obtain 
Kh, I Z(x,; Yl) + Z( X2; Y21Z2) + KE(). (31) 

The coding theorem for the ordinary AWGN channel yields the 
inequality 

z(xj;q) Iiy&fj. (32) 

Furthermore, (76) in [5] proves that 
Z( Xi; ?lZ,) I NjCsj. (33) 

Hence, substituting (32) and (33) into (31) and using (lo), we get 

= (R, + E)&, + (R, + c)Cs2 + ~6. (34) 

Similarly we can obtain 
h, I (R, + e)Cs, + (R, + E)C,~ + ~6. (35) 

Next we have from (27) 
Z(ST;Y,)l H(SIZ,Z,)+ ~(W,Z,)+~(W’?‘2lS) 

-Z(ST;Y,)+Z(Y,;Y,)-KQ. (36) 
Hence, H(SIZ,Z,) can be bounded as follows: 

H(SIZ,Z,) I Z(ST;Y,)+ Z(ST;Y,)-~(S;V,) 

-Z(T;Y,Y,IS)-Z(Y,;Y,)+Kq, 
d(ST;Y,)+ Z(ST;Y,)- Z(S;z,z,) 

- Z( T; z,Z,IS) - Z(Y,; Y2) + Kc, 
=Z(ST;Y,)+Z(ST;Y,)-Z(ST;Z,Z,) 

- Z( Yl; Y2) + KE,, 
=Z(ST;Y,)+Z(ST;Y,)-Z(ST;Z,) 

- Z( ST; Z,IZ,) - Z(Y,; Y2) + 2% 

=2Z(ST;YI)+Z(ST;Y2)-Z(ST;Z1) 
-Z(ST;Z,)+Z(Z,;Z,)-Z(Y,;Y,)+K% 

<3Z(ST;YI)+Z(ST;Y2)-Z(ST;Z,) 
- Z(ST;Z,) + KE,, 

=4Z(ST;YIIZ1)+Z(ST;Y21Z2)+Kq,, (37) 
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where I’, 2, I 3, =4 follow from 
1) the data processing theorem (ST + YlY2 + Z,Z,); 
2) Lemma Al (Z, + ST + Z,); 
3) the data processing theorem (Z, -+ Yi + Y2 -+ Z,); 
4) Lemma Al (Z, + Yi -+ ST and Z2 -+ Y2 + ST). 

Combining (lo), (12), (33), and (37), we get 

h,, I GCs, + ;Cs2 + ~6 

I (R, + E)C,, + (R, + l )Cs2 + et). 

Furthermore, from (28) and (30), we have 
KH(S) = H(S) 

I Z(ST;Y,)+ Z(ST;Y,)+ KE,, 

IZ(X,;Y,)+Z(X,;Y~)+ Kq,. 
Hence (lo), (32), and (39) yield 

H(S)+,+;CM2+~~ 

I (R, + l )C,, + (R, + E)C~, + ~6. 

(38) 

(39 

(40) 
Since (34), (35), (38), and (40) hold for any et) > 0, 

(R,, R,, h,, h,, h,,) must satisfy (20)-(23). 

B. Direct Part 

It is well known that K[H(S)+ S] bits suffice to describe the 
typical sequences of length K. When these bits are transmitted 
to the decoder, the decoder can recover the information SK 
with error probability S’ such that S, S’ + 0 as K + w Hence, we 
show how to transmit these K[H(S)+ 61 bits via two Gaussian 
channels to achieve given rates and security levels. 

For given (R,, R,, h,, h,, h,,) satisfying (20)-(23), we define 
the code length Nj by 

Rj+ (41) 
By choosing K and Nj sufficiently large, E > 0 can be chosen 
arbitrarily small. Then from (20)-(23), the following inequalities 
hold for some E’ > 0 such that E’ + 0 as E + 0: 

Kh, I N,( C,, - E’) + N2( CM, - e’) (42) 

a2 s 4( CM, - E’) + N2( Cs2 - E’) (43) 

Kh,, I N,( Cs, - E’) + N2( Cs, - E’) (44) 

WS)~N& - E’) + N,( CM2 - E’) . (45) 
Let hi and hi be the constants that satisfy (42) and (43) with 
equality, respectively. Then h; 2 hi. We divide these K[ H(S)+ 
61 bits into five parts al - a5 as shown in Fig. 3. These parts 
have the following lengths: 

a,: K[ H(S) - h; + 61 
a2: N,( Cs, - E’) 

a3: max (N,( CM, - E’) + N2( C,,,, - E’) 

- K[ff(S)+ S],O} 
a4: N2( Cs2 - E’) 

a5: K[H(S)-hi+61 

L N~(CM~ e’) bits 

Fig. 3. Partition of K[H(S)+ 61 bits. 

From the equiprobable character of typical sequences, we can 
treat a, - a5 as mutually independent uniformly distributed 
binary numbers. Hence, in order to satisfy (ll), a2 - a5 and 
a, - a4 must be kept secret from wiretappers 1 and 2, respec- 
tively, while a, and a5 may leak out to wiretappers 1 and 2, 
respectively. 

Let B;I = (a1,a2, a,@T), Bfl = a2, Biz = (T, a4, a,), and 
Bk2 = a where n. = N.(C - E’), k. = N.(C, - E’), T is an in- 
dzpendint uniformly d!lstriMduted biiary r&dom number having 
the same length as a3, and @  stands for the bitwise modulo two 
sum. From Lemma A3 in the Appendix, B,!J (j = 1,2) can be 
encoded by a code of length Nj such that B,!‘j can be transmit- 
ted to the legitimate receiver via GWC j with arbitrarily small 
error probability, and B,kj satisfies 

. H( Bik,lZiN,) 2 y( Csj - E”), (46) 

where E” + 0 as Nj -+ 00. Therefore the legitimate receiver can 
reproduce SK from ( B;I, Bg2) with arbitrary small error proabil- 
ity. Furthermore, we have for some y > 4 (y + 0 as K -+ 00) that 

H(a,,a,,a,lZ?) 2 N2(CM2-e’) -Y (47) 

H(a,,a2,a31Z,NZ)2N,(C,,-E’)-- (48) 

because a3 is covered with the independent uniformly dis- 
tributed random number T, and Zp and Zp contains no 
information about (a,, a,) and (a,, a,), respectively. 

Hence, from (42), (46), and (47), the equivocation of wiretap- 
per 1 can be bounded as follows: 

iH( SKIZy ) 2 kH( a,a,a,a,lZy ) 

=~H(a21Z~)+~H(a3a4a,lZ~)- y’ 

r;[Nl(Cs,-e”)+N2(CM2-~‘)]-y-yf 

2 hi-y” 

2 h, + y”, (49) 

where y’, y” + 0 as K + m. Similarly we obtain 

iH(SKIZp) 2 ~H(a1a2a3a41@) 

= iH( a,JZp) + iH( a,a,a,lZ~) - y’ 

>;[N2(Cs2-d’)+Nl(CM,-+1-y-y’ 

2 hi - y” 

2 h, - y”. (50) 
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If two wiretappers can cooperate, they can know a1,a3,a5. with E > 0, then there exists a code such that the error rate of 
But they cannot know either a2 or a4. Hence, their equivocation the legitimate receiver and the equivocation of the wiretapper 
is bounded by are bounded by 

and 
Pr{ B” # I?} I d’ (60) 

2 ; [ N,( Cs, - E”) + N2( Csz - E”)] - y’ 
H(BklZ”) 2 NC,(l-e”), (61) 

2 h,, - y”, 

where the last inequality follows from (44). 

respectively, where E” + 0 as N + M. 
(51) Proofi Lemma A3 can be easily derived from Theorem 2 in 

t51. q 
It follows from (40, (491, (501, and (51) that CR,, R2, h,, h,, 4,) 

is admissible. q 

IV. CONCLUSION 111 

The coding theorem has been proved for the SSCS with two [Z] 
GWC’s. In this correspondence, we assumed that the average 
input signal power of each Gaussian channel is limited to Pj 
(per channel symbol). Then the total average power, say P (per [31 

source symbol), is given by 
P = R,P, + R2P2. (52) 14] 

If the total power is limited instead of each Pj, then the 
admissible region s3 is given by the following corollary, which 151 
easily follows from Theorem 1. 

Corollary 6: If the total power is limited to P, then the [6] 
admissible region g3 is given by 

93=9:(p), for 0 5 hl,h2,h12 I H(S), (53) 
where 
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92(P) = 
OJLP I( 

R,,R,,h,,h,,h,,): (54) 
19 2 

h, s  Cs,V’,P, + G#‘2)R2 

h, 5 G.~l(f’dR, + Gz(P2)R2 

h,, s  G,U’,PI + C&‘2)R2 

H(S) 5 ‘G~,U’I)RI + %2(P2)R2 

P 2 P,R, + P,R,} . 1 (55) 

The admissible regions s[ (1 = 1,2) and the secrecy capacity 
region 2: (1= 1,2,3) can be described in the same way. 

APPENDIX 

Lemma Al: If X1 + X2 + X3, then 

Z(X2;X3)=Z(X,;X3)+Z(X2;X3IX~). (56) 

Lemma A2: If X,, + X, + X2 -+ X3, then 

I( Xl; X~IXIJ) = I( Xl; X31X0) + I( Xl; X2lXJ3) (57) 

The proofs are straightforward and are therefore omitted: 
For the ordinary GWC system, the following lemma holds. 
Lemma A3: Let B” be a sequence of n outputs from the 

independent, identically distributed binary source with H(B) = 1, 
and let Bk be an arbitrarily chosen k-consecutive component of 
B”. In the case that B” is transmitted via a GWC to a legitimate 
receiver, if the code length N satisfies 

n= N(C,,,-e) (58) 
k=N(C,-•) (59) 

On the Tightness of Two Error Bounds for Decision 
Feedback Equalizers 

Shirish A. Altekar and Norman C. Beaulieu, 
Senior Member. IEEE 

Abstract -Recently, Kabaila derived a new error-probability bound 
valid when the noise component is serially dependent or independent. It 
is shown that a bound of Duttweiler, Maze, and Messerscbmitt is tighter 
than the bound of Kabaila when this component shows no serial 
dependence and equalization is over the full channel response length. 

Index Terms -Decision feedback equalization, error-probability 
bounds. 

Recently, a new upper bound on the probability of error for 
decision feedback equalizers that is valid for independent and 
dependent stationary noise processes was presented [l]. A com- 
parison of this bound to the bounds of [2] for the case of 
independent noise samples was made. It was concluded that the 
new upper bound does not reduce to any of the upper bounds in 
[2], but that it is difficult to come to any meaningful general 
conclusion concerning the relative merits of the upper bounds of 
[l] and [2]. We show here that a bound of [2] is always tighter 
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