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Abstract 
In the field of e-learning, a popular solution to make teaching material reusable is to represent it 
as learning object (LO). However, building better adaptive educational software also takes an ex-
plicit model of the learner’s cognitive process related to LOs. This paper presents a three layers 
model that explicitly connect the description of learners’ cognitive processes to LOs. The first 
layer describes the knowledge from a logical and ontological perspective. The second describes 
cognitive processes. The third builds LOs upon the two first layers. The proposed model has been 
successfully implemented in an intelligent tutoring system for teaching Boolean reduction that 
provides highly tailored instruction thanks to the model. 

Keywords: learning objects, cognitive modelling, tutoring systems, description logics. 

Introduction 
Teaching resources are the mean to teach domain knowledge within tutoring systems. In the field 
of e-learning, a popular solution to increase their reuse is to represent them as learning objects 
(LOs). The concept of LO is sustained by a set of principles and standards covering many key 
aspects such as digital rights management, distribution methods and the easiness for adapting ex-
isting content. Nevertheless, despite the large efforts to build software to describe and handle 
LOs, there is no consensus on what a LO is. In fact, some authors proposed very permissive defi-

nitions that consider almost any teach-
ing material (digital or non digital) as 
LOs (LTSC, 1999). As a consequence, 
tutoring systems generally treat LOs 
as black boxes. i.e. presented as they 
are and without individualised feed-
back for each learner (Simic, Gasevic, 
& Devedzic, 2004). Moreover, model-
ling the cognitive processes of learn-
ers is fundamental to build educational 
software that provides highly tailored 
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instruction (for example, see Anderson, Corbett, Koedinger & Pelletier, 1995). This article pre-
sents a model that unify principles of the cognitive modelling theories, which attempts to model 
the human processes of knowledge acquisition, and principles and standards related to the con-
cept of LO, which takes on the challenges of knowledge engineering, in order to benefit from the 
advantages of each. LOs described according to our approach are “glass-box learning objects” 
because they include an explicit description of cognitive processes that enable virtual learning 
environments (VLEs) to provide highly tailored instruction. The remainder of the article is organ-
ised as follows. First, the LO concept is described. Second, the VLE in which the model has been 
implemented is introduced. Then, the three next sections describe the three layers of our model. 
We then present preliminary results with the VLE. Finally, the last section announces further 
work and present conclusion. 

The Learning Object Concept 
The concept of LO relies on the main idea of structuring learning materials into reusable units. 
Over the recent years, some definitions of LOs – more or less restrictive – have been proposed in 
the literature. For example, Duncan (2003) states that the IEEE defines it as “any entity, digital or 
non-digital, which can be used, reused or referenced during technology supported learning” 
(LTSC, 1999), Wiley (2002) describes it as “any digital resource that can be reused to support 
learning” and Koper (2003) adds that “a fundamental idea is that a LO can stand on its own and 
may be reused”. To summarise these definitions, one can state that a LO is an autonomous re-
source (digital or not) that is reusable in training activities. To clarify their role and their nature, 
the following subsections describe the five steps of the LOs’ lifecycle. 

Step 1: Creating an Information Object 
The first step of a LO lifecycle consists in creating an information object (IO), i.e. an electronic 
document of any format (Web pages, images, Java applets, etc.). In general, authors of IOs select 
the format according to the software with which they wants to ensure compatibility. In e-learning, 
institutions usually opt for Web documents as IOs to be able to present them via Internet brows-
ers. Among typical examples of IOs: a Web page that explains the process of photosynthesis, an 
electronic book on linear algebra or a recording of a musical composition by Nicolo Paganini. 
Furthermore, researchers suggest observing three principles when designing IOs. The latter 
should be (1) autonomous, (2) adaptable and (3) of low granularity. Creating autonomous IOs 
means to build objects that are free from reference to external contexts. For example, an author 
who designs an IO that explains how an engine works must avoid including references to other 
IOs, because IOs can be presented individually. Nevertheless, authors must use decontextualisa-
tion sparingly, because as Wiley, Recker & Gibbons (2000) underline it, decontextualised ele-
ments are more difficult to index and have a less clear semantic for a computer. The second prin-
ciple dictates to create customisable IOs in order to facilitate their integration within particular 
contexts (Moodie & Kunz, 2003). The third and last principle stipulates that adopting a large 
granularity reduces the number of IOs that can be assembled together. For example, an e-book is 
less reusable than its chapters or its paragraphs. Beyond these principles, most institutions pro-
pose their own guidelines to create information objects (see, for example, Thomson & Yonekura 
(2006)). 

Step 2: Adding Metadata 
The second step of the LOs lifecycle consists in adding metadata to IOs. LOM (LTSC, 2002) is 
one of the most important metadata standards. To describe an IO, LOM offers about 80 elements 
grouped in nine categories. Utility of metadata covers three axes. On one hand, metadata facilitate 
the localisation of IOs stored in repositories. On the other hand, they inform about how to use the 
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IOs (for example, with regard to copyrights and technology requirements). Finally, they make 
possible the automatic selection of IOs by a computer (Morales & Aguera, 2002). Metadata are 
also the element that distinguishes between IOs and LOs. More precisely, appending a learning 
objective transforms an IO into a LO. This addition ensures that the IO is intended for teaching 
(Duncan, 2003). 

Step 3: Aggregating Learning Objects 
The third step is optional in the lifecycle of a LO and consists in joining several LOs in a package 
to facilitate their distribution and reuse. For example, to simplify their distribution, a professor 
can group in a package a set of objects that are necessary for a teaching activity. Since a package 
is also an IO, if an author adds the required metadata, the aggregate will be also considered as a 
LO. In the popular aggregation standard IMS-CP (IMS, 2005a), a package is a zip file which con-
tains IOs or LOs and a single file which acts as a table of contents.  

Step 4: Sequencing Learning Objects 
The fourth step is also optional. It consists in determining the presentation order (sequencing) of 
LOs. Although an author can organise LOs in static sequences, some specifications allow model-
ling complex learning designs. A learning design defines a teaching activity by means of a set of 
rules that indicate how to select the next LOs according to the results of intermediate events. 
Learning designs define also the roles of the various actors who takes part in the activities (learn-
ers, support staff, etc.). A widely acknowledged specification for LOs sequencing is IMS-LD 
(IMS, 2005b), which describes learning designs according to a wide range of approaches of 
knowledge acquisition such as constructivism and social constructivism. Various learning designs 
have been done with IMS-LD. For example, the IMS Learning Design Best Practice and Imple-
mentation Guide (IMS, 2005b) presents a model of an activity where students take part in a simu-
lation of the treaty of Versailles. The actors are learners and the support staff. Their main roles 
are learner, team leader and teacher. The LOs used are web content resources and the services 
used are an e-mail server and an online conference software.  

Step 5: Delivering Learning Objects 
In the e-learning community, the term Learning Management System (LMS) is usually employed 
to refer to the tutoring systems that present LOs to learners. LMS is a set of software or a Web 
environment with which training activities that incorporates LOs are carried out (Simic et al., 
2004). Many commercial and non-commercial LMS exist, such as WebCT 
(http://www.webct.com/ ) and Stellar (http://stellar.mit.edu/). LMS’s generally treat LOs as 
black-boxes. i.e. presented as they are and without individualised feedback for each learners 
(Simic et al., 2004). The most significant adjustment consists in building a dynamic sequence of 
LOs (Morales & Aguera, 2002) that the system presents to the learner (for example, a sequence of 
appropriated Web pages, following the results of a short multiple-choice test). The weak person-
alisation of LMS’s is partially explained by the fact that these tutoring systems often teach full 
courses and in most cases, they attach great importance to the contribution of human teachers in 
the learning activities (see Cohen & Nycz (2006) for an overview of the distance education model 
typically used in LMS’s). Building better adaptive educational software also takes an explicit 
model of the learner’s cognitive process related to LOs (Anderson, Corbett, et al., 1995). This 
article proposes a model for the creation of LOs that include cognitive processes description. Our 
model organise a domain’s knowledge according to three layers, whose each one describes 
knowledge from a different angle. The first layer defines an ontological and logical representa-
tion. The second defines a cognitive representation. The third builds LOs upon the two first lay-
ers. The next section introduces the VLE for which the model was tested. 
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The REDBOOL Boolean Reduction VLE 
REDBOOL is a VLE for teaching Boolean reduction. Here, the subject-matter domain is the al-
gebraic Boolean expressions and their simplification by means of reduction rules, which are gen-
erally taught to undergraduate students on first cycle of higher education. The tool’s purpose is 
both to help student learn Boolean reduction techniques and to increase confidence with the soft-
ware. Figure 1 illustrates REDBOOL’s main interface. Preliminary notions, definitions and ex-
planations constitute a necessary knowledge background to approach the Boolean reduction prob-
lem. This knowledge is available to learners in the “Theory” tab of the VLE. A teaching session 
consists in solving a sequence of problems. For example, Figure 1 shows the problem to reduce 
the expression “(((a | F) & (T)) | (~c))”. Boolean expressions can be composed of truth constant 
“T” (true), truth constant “F” (false), proposals “a, b, c, d, e, f” conjunction operator “&”, disjunc-
tion operator “|” and negation operator “~”.The objective of an exercise consists in reducing an 
expression as much as possible by applying some of the 13 rules of Boolean reduction, such as 
the disjunction rule of a proposal “a” with the truth constant “False” ((a | F) = (a)), or the De-
Morgan rule applied to a conjunction of two proposals (~ (a & b) = (~ a | ~ b)). A learner can se-
lect part of the current expression in the “Reduction” field and modify it by means of the key-
board or by using the virtual keyboard proposed. The learner must click on the “Submit step” but-
ton to validate changes. In the bottom area of the window, the learner can see the last rules ap-
plied. In the top corner on the right side, a progress bar shows the global advancement of the 
teaching session. The “Advices” section shows the system’s feedback (hints, advices, etc.). In the 
“Examples” tab of the VLE, learners can also ask the system to solve custom problems step by 
step. The following sections detail each layer of our model with examples from REDBOOL. 

 
Figure 1:  The REDBOOL VLE 
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Layer 1: Logical Representation of the Domain  
Knowledge 

The first layer of our model contains a logical representation of the domain’s concepts and their 
relationships. The formalism used is description logics (DL), a class of knowledge representation 
languages which exploits - in general - subsets of FOL (see Baader & Nutt, 2003, for a mapping 
between DL and FOL). We have chosen DL because they are (1) well-studied and (2) they offer 
reasoning algorithms whose complexity is often lower than those of FOL (Tsarkov & Horrocks, 
2003). But the primary reason is that DL employs an ontological approach. i.e., to describe the 
instances of a domain, they require the definition of (1) general categories of instances and (2) the 
various types of logical relationships among categories and their instances. The ontological ap-
proach is natural for reasoning since even if most interactions happen at the level of instances, 
most of the reasoning occurs at the level of categories (Russell & Norvig, 2002). As it will be 
presented, this abstraction fits well with the abstraction between theory and the concrete explana-
tions/exercises/examples found in teaching (Teege, 1994). Additionally, ontologies have shown 
to be a structure of choice to share, extend and perform reasoning on formal domain descriptions. 
Building our LOs model upon this theory (1) gives a solid framework to formally interpret the 
semantic of our LOs individually or jointly and (2) allows benefiting from researches on several 
topics such as ontology engineering, ontology merging and ontology extraction.  

In the DL terminology, whereas a TBOX (terminological box) describes the general knowledge 
of a field, an ABOX (assertional box) describes a specific world. TBOX contains axioms which 
relate to concepts and roles. ABOX contains a set of assertions which describe individuals (in-
stances of concept). Table 1 gives as example a part of the TBOX defined for REDBOOL.  

Table 1: Part of layer 1 knowledge for REDBOOL 

Concepts Roles 

TruthConstant  BooleanExpression Π ¬Variable Π ¬DescribedExpression operator 

TruthConstantFalse  TruthConstant leftOperand 

TruthConstantTrue  TruthConstant rightOperand 

Variable  ≡ BooleanExpression Π ¬TruthConstant Π ¬DescribedExpression  

DescribedExpression  (BooleanExpression Π (∃operator.┬ Π ∀operator.Operator)  

Operator  ¬ BooleanExpression  

NegationOperator  Operator Π ¬DisjunctionOperator Π ¬ConjunctionOperator  

DisjunctionOperator  Operator Π ¬NegationOperator Π ¬ConjunctionOperator  

ConjunctionOperator  Operator  

DisjunctionExpression ≡ DescribedExpression Π ∀operator.OperatorDisjunction Π 
∃ leftOperand.┬ Π ∃ rightOperand.┬ Π∀leftOperand.BooleanExpression Π ∀righ-
tOperand.BooleanExpression 

 

Atomic concepts and atomic roles are the basic elements of a TBOX. The TBOX of table 1 de-
fines the atomic concepts “TruthConstant”, “BooleanExpression”, “Variable”, “DescribedExpres-
sion”, “TruthConstant”, “TruthConstantTrue”, “TruthConstantFalse”, “Operator”, “NegationOp-
erator”, “DisjunctionOperator” and “ConjunctionOperator“ (their names begin with a capital let-
ter) and the atomic roles “operator”, “leftOperand” and “rightOperand” (their names begin with a 
small letter). The atomic concepts and atomic roles can be combined by means of constructors to 
form concept descriptions and role descriptions, respectively. For example, the concept descrip-
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tion “BooleanExpression Π Variable” results from the application of constructor Π to atomic con-
cept “BooleanExpression” and “Variable”. It is interpreted as the set of individuals who belong to 
the “BooleanExpression” concept and the “Variable” concept. The various DL are characterised 
by the set of constructors they propose.  

To formally describe constructors’ semantic and the TBOX and ABOX notion, it is necessary to 
define interpretations. Because DL follow open-world assumption (the absence of information 
imply ignorance rather than negative information), the semantic must take into account all possi-
bilities (each interpretation). Formally, an interpretation I is composed of an interpretation do-
main ∆I and an interpretation function ·I. The interpretation domain is a set of individuals. The 
interpretation function assigns to each atomic concept A a set of individual AI such that AI ⊆ ∆I 
and to each atomic role R; a binary relation RI such that RI ⊆ ∆I x ∆I. ABOX assertions are ex-
pressed in term of nominals (names that represent individuals). An interpretation I assigns to each 
nominal a, an individual aI from the interpretation domain ∆I. 

Table 2. Concepts constructors, axioms and assertions of the minimal logic AL 

Syntax Semantic Type 

C Π D CI ∩ DI 

¬A ∆I \ AI  

∃R.┬ {aI∈∆I | ∃bI.(aI,bI)∈RI } 

∀R.C {aI∈∆I | ∀bI.(aI,bI)∈RI ⇒ bI∈CI} 

 

Concepts constructors 

C ≡ D CI = D 

C  D CI ⊆ DI 

Axioms 

C(a) aI ∈ C 

R(a,b) (aI,bI) ∈ RI 

Assertions 

The first four rows of Table 2 introduce the concepts constructors of a basic DL named AL. The 
two first columns respectively enumerate constructors’ syntax and semantic. The symbols aI and 
bI symbolise individual members of ∆I for an interpretation I. The letters A and B stand for 
atomic concepts. The letters C and D represent concepts descriptions. The letters R denote atomic 
roles. TBOX contain terminological axioms of the form C ≡ D or C  D. The first form states 
equivalence relations between concepts, whereas the second expresses inclusion relations. The 
fifth and sixth rows of the table define their semantics. An ABOX contains membership asser-
tions (C(a)) and role assertions (R(a, b)), where a and b are nominals. The two last rows of table 2 
explain their semantics. Because assertions are expressed in term of concepts and roles, each 
ABOX must be associated with a TBOX. An interpretation is said to satisfy a TBOX and an 
ABOX, if the interpretation imply no contradiction for all assertions and axioms. 

The primary purpose of DL is inference. From a DL knowledge base, it is possible to infer new 
facts, such as deducing all nominals that are members of a concept, finding all concepts D such 
that C  D, verifying disjointness of two concepts C and D (CI ∩ DI = Ø) or checking that a con-
cept C is satisfiable (if an interpretation I exist, such that CI is nonempty). Note that several free 
and commercial inference engines are available such as KAON2 (Motik, Sattler & Studer, 2004), 
Racer (Haarslev & Möller, 2003) and Pellet (Sirin & Parsia, 2004).  
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Uses of Description Logics for Domain Knowledge Modeling 
To the best of the authors’ knowledge, Teege (1994) first proposed to use DL to represent domain 
knowledge of VLEs. He stated three important originalities. One of them consists of using DL to 
represent the theory to be taught (TBOX) as an abstraction of natural language (ABOX). This 
abstraction is necessary to distinguish learners’ answers and the VLE’s explications/examples in 
natural language, from the general concepts. In addition, a VLE could extract concepts from natu-
ral language answers to form a TBOX; and then compare knowledge of the learners with those of 
the learning system. Teege demonstrates that inference engines are useful for various tasks such 
as finding concepts subsuming a misunderstood concept to better explain what characterises it. A 
second team (Krdzavac, Gasevic, & Devedzic, 2004) cites several ideas from Teege and brings a 
few novel ones. First, inference could serve to detect modelling errors by inferring the implicit 
knowledge and by detecting inconsistencies. Secondly, a VLE could interpret a learner’s answers 
as an ABOX and check if it respects the axioms of a TBOX to determine the answers’ accuracy. 
The system could infer why an answer is incorrect. In summary, Teege (1994) and Krdzavac et 
al. (2004) suggest using DL exclusively for representing the concepts and roles to be taught. They 
exclude the representation of the savoir-faire because DL does not offer means to represent it. 
However, as Teege commented, “not all of these information needs be represented in DL”. 

The Role of DL in Layer 1 
The first of the three layers that constitute our model is based on DL. It represents concepts of the 
domain as DL concepts in TBOX, as proposed by Teege (1994). In each defined TBOX, concepts 
symbolise categories of objects handled in a VLE, and roles represent relationships between these 
objects. Table 1 shows part of the layer 1 knowledge for REDBOOL. The description has been 
simplified for the sake of brevity and ease of reading. The first axiom models the concept of Boo-
lean expressions (“BooleanExpression”). The following axioms state that truth constants, vari-
ables and described expressions are distinct types of Boolean expressions and specify that there 
are two subcategories of constants (truth constant “true” and truth constant “false”). Moreover, 
the example specifies that each described expression has a logical operator that is a conjunction 
operator, a disjunction operator, or a negation operator. The last concepts axiom asserts that a 
disjunction expression is a described expression that has a disjunction operator and Boolean ex-
pressions as its left and right operands. Roles are defined without further constraints. No ABOX 
is defined, because it is the level of concrete answers and examples.  

The layer 1 knowledge is stored in OWL files, a popular format standardised by W3C to repre-
sent knowledge bases for some DL (http://www.w3.org/TR/owl-features). The majority of the 
inference engines for DL accept OWL files as input. Several authoring tools are also available. 
We suggest using Protégé (Knublauch, Musen, & Rector, 2004) for its user-friendliness and its 
support for the almost entire OWL specification. Furthermore, OWL provides several mecha-
nisms to increase the knowledge reuse such as versioning and namespaces. These latter allow to 
create OWL files that import and extend definitions of existing OWL files without altering the 
original ones. As a result, authors can split up layer 1 knowledge in several OWL files. As pre-
sented further, this facilitates the encoding of knowledge in LOs. 

Layer 2: Cognitive Representation of Domain knowledge 
Layer 1 structures allow the logical and ontological representation of the domain knowledge. 
However, building better adaptive educational software also takes an explicit model of the 
learner’s cognitive process. This section presents the layer 2 of our representation model, which 
fills this gap.  
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The Psychological Foundations 
To structure, organise and represent the knowledge, we have been inspired by cognitive psychol-
ogy theories, which attempt to model the human process of knowledge acquisition. This knowl-
edge is encoded in various memory subsystems according to the way in which these contents are 
handled and used. Several authors in psychology, mention – in some form or in another – three 
types of knowledge. These subsystems are (1) semantic knowledge (Neely, 1989), (2) procedural 
knowledge (Anderson, 1993) and (3) episodic knowledge (Tulving, 1983). In this paper, we do 
not discuss the episodic knowledge part of our model since it is the part of our model that records 
the episodes lived by a person (a history of the use of the two other types of knowledge). How-
ever, the interested reader can refer to (Najjar, Fournier-Viger, Mayers & Bouchard, 2005) for 
detailed explanations. 

The semantic memory contains descriptive knowledge. Our model regards semantic knowledge 
as concepts taken in the broad sense. According to recent researches (Halford, Baker, McCredden 
& Bain, 2005), humans can consider about four concept occurrences simultaneously (four dimen-
sions) in the achievement of a task. However, the human cognitive architecture has the capacity 
to group several concepts to handle them as one, in the form of a vector of concepts (Halford, 
Wilson, Guo, Wiles & Stewart, 1993). We call described concepts these syntactically decom-
posable concepts, in contrast with primitive concepts that are syntactically indecomposable. For 
example, in propositional calculus, “a | F” is a decomposable representation of proposal “a”, a 
non-split representation with the same semantic. The concept “a | F” represents a disjunction be-
tween proposal “a” and the truth constant “F” (false), two primitive concepts. The disjunction 
logical operator “|” is also a primitive concept. In this way, the semantic of a described concept is 
given by the semantics of its components. 

The procedural memory is composed of procedures. i.e. the means to handle semantic knowledge 
to achieve goals. In opposition to semantic knowledge, which can be expressed explicitly, proce-
dural knowledge is represented by a succession of actions achieved automatically – following 
internal and/or external stimuli perception – to reach desirable states (Anderson, 1993). Proce-
dures can be seen as a mean of achieving a goal to satisfy a need, without using the attention re-
sources. For example, during the Boolean reduction process, substituting automatically “~T” by 
“F”, making abstraction to the explicit call of the truth constant negation rule (~T = F, where “T” 
equals “TRUE”), can be seen as procedural knowledge which was acquired by the repetitive do-
ing. In our approach, we subdivide procedures in two main categories: primitive procedures and 
complex procedures. Executions of the first are seen as atomic actions. Those of the last can be 
done by sequence of actions, which satisfy scripts of goals. Each one of those actions results from 
a primitive procedure execution; and each one of those goals is perceived as an intention of the 
cognitive system. 

We distinguish goals as a special type of semantic knowledge. Goals are intentions that humans 
have, such as the goal to solve a mathematical equation, to draw a triangle or to add two numbers 
(Mayers, Lefebvre & Frasson, 2001). Goals are achieved by means of procedural knowledge. In 
our model, a goal is described using a relation as follows: (R: X, A1, A2 … An). This relation 
allows specifying a goal “X” according to primitive or described concepts “A1, A2 … An” which 
characterise the initial state. In a teaching context, stress is often laid on methods that achieve the 
goal rather than the goal itself; since these methods are in general the object of training. Conse-
quently, the term “goal” is used to refer to an intention to achieve the goal rather than meaning 
the goal itself. Thus, procedures become methods carrying out this intention (Mayers & Najjar, 
2003).  
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The Computational Representation of the Psychological Model 
Layer 2 of our model defines a computational representation of the cognitive model described 
above. The layer 2 knowledge is stored in files named SPK (“Semantic and Procedural Knowl-
edge”), which describe knowledge entities according to sets of slots.  

The concepts’ slots 
Concepts are encoded according to six slots. The “Identifier” slot is a character string used as a 
unique reference to the concept. The “Metadata” slot provides general metadata about the concept 
(for example, authors’ names and a textual description). The “Goals” slot contains a goals proto-
types list. The latter provides information about goals that students could have and which use the 
concept. “Constructors” specifies the identifier of procedures that can create an instance of this 
concept. “Component” is only significant for described concepts. It indicates, for each concept 
component, its concept type. Finally, “Teaching” points to some didactic resources that generic 
teaching strategies of a VLE can employ to teach the concept.  

The goals’ slots 
Goals have six slots. "Skill" specifies the necessary skill to accomplish the goal, “Identifier” is a 
unique name for the goal, “Metadata” describes the goal metadata, "Parameters" indicates the 
types of the goal parameters, "Procedures" contains a set of procedures that can be used to 
achieve the goal, and “Didactic-Strategies" suggests strategies to learn how to achieve that goal.  

The procedures’ slots 
Ten slots describe procedures. The “Metadata” and “Identifier” slots are identical to those of con-
cepts and goals. “Goal” indicates the goal for which the procedure was defined. “Parameters” 
specifies the concepts type of the arguments. For primitive procedures, “Method” points to a Java 
method that executes an atomic action. For complex procedures, “Script” indicates a list of goals 
to achieve. “Validity” is a pair of Boolean values. Whereas the first indicates if the procedure is 
valid and so it always gives the expected result, the second indicates if it always terminate. “Con-
text” fixes constraints on the use of the procedure. “Diagnosis-Solution” contains a list of pairs 
“[diagnosis, strategy]” that indicate for each diagnosis, the suitable teaching strategy to be 
adopted. Finally, “Didactic-Resources” points to additional resources (examples, exercises, tests, 
etc.) to teach the procedure.  

Authoring Layer 2 Knowledge 
We have developed an authoring tool named DOKGETT (Najjar, Fournier-Viger, Mayers & 
Hallé, 2005a, 2005b) that permits (1) to model layer 2 knowledge graphically and (2) to generate 
the corresponding SPK files. The interface (Figure 2) comprises two parts. The left-hand side of 
the environment consists in a drawing pane where the various knowledge entities can be repre-
sented as shapes. Concepts are drawn as triangles. Procedures are represented by circles and goals 
by squares. Complex procedures and described concepts are delimited by bold contours. Arrows 
model graphically the relations between knowledge entities. For instance, Figure 2 shows arrows 
linking a goal to one procedure that can achieve it and to its two concepts argument. The right-
hand side of the environment permits the author to specify detailed information about the selected 
knowledge entity in terms of slots described above. 

The Layer 2 Knowledge for REDBOOL 
The authoring tool was used to represent the cognitive processes of learners for REDBOOL 
(Najjar & Mayers, 2004; Najjar, Mayers & Fournier-Viger, 2004) and those of a cook for the re-
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alisation of a culinary recipe (Najjar, Fournier-Viger, Mayers, & Bouchard, 2005). As an exam-
ple, in a single SPK file, we encoded the layer 2 knowledge of REDBOOL. The primitive con-
cepts are truth constant “True”, truth constant “False”, conjunction operator, disjunction operator 
and negation operator. The main described concepts are conjunction expression, disjunction ex-
pression and negation expression. The file includes procedures and goals for the 13 Boolean re-
duction rules. It also contains definitions of goals and procedures to create concrete instances of 
concepts (because each concept’s occurrence must be created prior to being handled) and proce-
dures for common errors. In REDBOOL, procedures are fired as a learner operates the graphical 
interface’s buttons (the button/procedure association is found in the “Method” slot of procedures), 
and the resolution trace is recorded. The VLE connects interactions with the interface to the layer 
2 knowledge, and therefore the tutor embedded within the VLE can take decisions on the basis of 
the cognitive activity of each learner.  

 
Figure 2:  The DOKGETT authoring tool 

Links between Layer 1 and Layer 2  
To establish links between the logical representation of layer 1 and the cognitive representation of 
layer 2, it is necessary to add additional slots to layer 2 concepts. For this purpose, each primitive 
concept has a "DLReference" slot that points towards a DL concept. This slot is useful during the 
instantiation of primitive concepts by procedures. To properly explain the instantiation process of 
primitive concepts, we will first consider the instantiation of the “F” truth constant. The “Con-
structors” slot of the “F” truth constant concept states that the procedure 
“P_CreateTruthConstantFalse” can be used to instantiate the concept. This procedure has its ac-
tion defined as such. To simulate the instantiation process, our tools adds in an ABOX a nominal 
associated to the DL concept mentioned in the "DLReference" slot of the concept to instantiate. 
The table 3 illustrates the resulting assertions added to an ABOX. The nominal “f1” represents a 
concept instance, and the “TruthConstantFalse(f1)" assertion declare that “f1” is an “F” truth con-
stant. For each instances created, a different nominal is added to the ABOX. In the same vein, the 
example shows "t1" an instance of the primitive concept “T” truth constant, and “d1”, an instance 
of the disjunction operator primitive concept.  

In addition to the “DLReference” slot, each described concept encompasses a slot named “Com-
ponents”, which list one or more roles. Each role associates to a nominal that represent an in-
stance of the described concept, a nominal that represent one of its parts. For example, the nomi-
nal “e1” in table 4 correspond to an instance of the described concept “T & F”. The “Disjunc-
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tionExpression(e1) ” assertion declares that “e1” is a disjunction expression. The “operator(e1, 
d1)”, “leftOperand(e1,t1)” and “rightOperand(e1, f1)” links the described concept represented by 
“e1” to nominals that represent its components. Furthermore, a learner can carry out a procedure 
that replaces a described concept’s component. For instance, when a learner substitute “~T” by 
“F” in the Boolean expression “a & (~T)”. In this case, the tools we have developed adapt the 
ABOX accordingly. Therefore, the logical representation of a described concept instance can 
change and hence its membership to DL concepts. 

 

Table 3: The layer 2 description of the “F” truth constant primitive concept

Slot  Value 

Identifier C_TruthContantFalse 

DLReference TruthConstantFalse 

Metadata Author = Philippe Fournier-Viger 

Goals ... 

Constructors P_CreateTruthConstantFalse 

 
Because there is no direct link between layer 2 concepts, correspondence is achieved at the DL 
level. For this purpose, our tool offer compatibility with three major DL inference engines 
(KAON2, Racer and Pellet). The absence of link between layer 2 concepts also facilitates the ex-
tension of the layer 2 knowledge. Indeed, an author can easily add concepts to any SPK file by 
associating logical descriptions that extends those of other concepts. Added concepts become 
automatically compatible with existing procedures and goals. It should be noted that authors can 
also add new procedures for existing goals, since satisfaction links between a goal and a proce-
dure is stored in procedures’ slots. As a result, authors can create new SPK files that extend exist-
ing SPK files without changes.  

Table 4: ABOX assertions that represent the “(T & F)” Boolean expression

TBOX  ABOX 

As previously defined. TruthConstantFalse(f1) 

 TruthConstantTrue(t1) 

 DisjunctionOperator(d1) 

 DisjunctionExpression(e1) 

 operator(e1, d1) 

 leftOperand(e1,t1) 

 rightOperand(e1, f1) 

Layer 3: Encoding Knowledge as LOs  
The third layer builds LOs upon the two first layers. The first step to obtain LOs is creating IOs. 
According to our model, an IO consists of SPK file(s), OWL file(s), and the VLE. This definition 
meets the standard definition, which defines IOs as electronic documents. The XML encoding of 
SPK and OWL files makes files easily customisable. To package files together, we have recourse 
to IMS-CP, a standard commonly used for LOs (see the first section of this article).  
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The second step of LOs lifecycle consists in adding metadata to IOs. The IMS-CP specification 
allows inclusion of metadata in the table of contents of each IMS-CP package, and is compatible 
with many metadata standards. We use the RELOAD authoring tool (http://www.reload.ac.uk) to 
specify metadata according to IMS-METADATA, an implementation of the LOM standard. It 
proposes around 80 attributes to describe an IO. Adding specific metadata attributes is often re-
quired for particular e-learning projects (Malaxa & Douglas, 2005). For the needs of our research, 
SPK files offer additional metadata slots. Two have a great importance. First, the “Include” slot 
allows importation of definitions from other SPK files by the specification of the SPK file name. 
The importation mechanism is a key element for LOs –it allows the separation of the knowledge 
in several files. For example, an author could reuse the procedure of distributing a conjunction 
over a disjunction “((a & (b | c)) = ((a & b) | (a & c)))” and the procedure of reducing the con-
junction of a proposal and its complement “((a & (~ a)) = F)”, to specify in a second SPK file the 
procedure of applying the simplification law “((a & ((~ a) | b)) = (a & b))”, a complex procedure 
that consists in carrying out the two first procedures, one following the other. Second, the “ver-
sion” slot help ensuring the consistency of the importation mechanism (the slot is included in 
each SPK file to specify its version). Moreover, according to some authors (Duncan, 2003) trans-
forming an IO into a LO requires the specification of learning objectives that the IO can teach. 
This addition guarantees that the IO is intended for teaching uses, but more importantly, it indi-
cates the pedagogical use of the IO. The latter information is essential for software or humans that 
select LOs to be presented. The following paragraphs explain how we express learning objectives 
in term of the knowledge defined in our SPK files. 

Specifying the Learning Objectives 
A learning objective is a performance description that the learner must be able to show following 
training (Gagné, Briggs & Wager, 1992). We consider learning objectives that relate (1) to the 
acquisition of a skill or (2) to the mastery of a semantic knowledge. First, to check the acquisition 
of a skill is equivalent to testing the ability to attain a goal. Here, the importance resides in learn-
ers' ability to realise the goal. The procedures employed are of no importance, since several cor-
rect procedures might achieve the same goal. If a learner accomplishes a goal many times with 
varied problems and without committing errors, one can conclude that the learner possess the cor-
responding skill. For example, to check the ability to reduce Boolean expressions, a VLE tutor 
could provide a set of exercises involving the goal “GoalReduceBooleanExpression”. The proce-
dures used to solve the problems are unimportant to the tutor, insofar as they are correct. To test 
the acquisition of a more specific skill, such as applying the De-Morgan law to an expression of 
the form (~ (a & b)), the tutor can choose a more specific goal such as “GoalApplyDeMor-
ganLawToNegationOfConjunction”. Second, ensuring the mastery of a concept is more complex. 
Basically, a concept is an inert structure which describes an object. A concept becomes manifest 
only during a procedure execution which satisfy the goal using that concept. Consequently, a 
learner must be able to achieve several goals that used the concept in order to show that s/he ac-
quired the concept. For example, to test the acquisition of the concept of truth constant “True”, 
the VLE tutor could test the mastery of the goal to reduce the negation of the truth constant 
“True” and the goal of simplifying the conjunction of the truth constant “True” and a proposition. 
This definition of learning objective for a semantic knowledge covers the traditional one of re-
searchers in pedagogy such as Klausmeier (1990), which indicates that mastering a concept re-
quire understanding relationships that characterise it. The action of retrieving the relationships 
can be encoded as procedures. For instance, to master the “canary” concept requires knowing re-
lation “color” between “canary” and “yellow” concept and relation “sub concept” between “ca-
nary” and “bird” concept. These relations can be encoded as described concept similar to “(color 
canary yellow)”. An author can add procedures to extract the value from these described concepts 
and expresses the learning objectives according to the goals associated with these procedures. In 
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summary, the learning objectives that relate to a skill are expressed in term of a goal to master, 
whereas those relating to concepts are expressed in term of a set of goal(s) to master. In this 
sense, our model follows the view of Anderson et al. (1995) that tutoring systems should focus on 
teaching procedural knowledge. 

We propose three slots to represent learning objectives (Fournier-Viger, Najjar & Mayers, 2005). 
The “Identifier” and “Metadata” slot have the same use as for concepts, goals and procedures. 
“NecessaryGoals” stipulate goals whose mastery is jointly required to meet the learning objec-
tive. Learning objectives are added in the heading of our SPK files. For example, Table 5 presents 
the learning objective of mastering the concept of truth constant “True”. To attain this objective, 
the “NecessaryGoals” slot states that it is necessary to master the goal of simplifying the negation 
of the truth constant “True” ((~ T) = F) and the goal of applying the reduction of a conjunction of 
a truth constant “True” with a proposal “a”. i.e., ((a & T) = a). The “EquivalentGoals” slot means 
that if a learner masters the goal “GoalReduceDisjunctionWithTruthConstant”, it is equivalent 
with regard to the objective as mastering the goal “GoalReduceConjunctionWithTruthConstant”. 
To make these goals equivalent is a pedagogical decision. For instance, an author could have in-
cluded both as necessary goals.  

Table 5: The Learning objective “MasteryOfTheConceptOfTruthConstantT” 

Slot  Value 

Identifier MasteryOfTheConceptOfTruthConstantT 
Metadata Author = Philippe Fournier-Viger 

Creation date = 2006/01/01 
Description = The Learning objective of mastering the truth constant “True” con-
cept. 

NecessaryGoals GoalReduceTruthConstantNegation, GoalReduceConjunctionWithTruthConstant,
EquivalentGoals (GoalReduceConjunctionWithTruthConstant, GoalReduceDisjunctionWith-

TruthConstant) 

Evaluation 
A practical experimentation was performed to test the dynamic aspects of our model and espe-
cially its ability to represent cognitive activities [13]. We asked ten (10) students in computer sci-
ences and in mathematics who attend the course “MAT-113” or “MAT-114” (dedicated to dis-
crete mathematics) at the University of Sherbrooke to practice Boolean reduction with RED-
BOOL. An assisted training, aiming to familiarise them with the tool, was given; before leaving 
them practising. To compare the learners’ behaviours, we forced the system to provide them 
common problems. Parameters of the experiment are reported in Table 6. Exercises complexity 
ranges from simple (1) to complex (5). For each learner, the system recorded the procedures used 
as well as the concepts’ instances handled. For complexity 1 to 5, the number of goals visited for 
a complete reduction was about 4, 7, 10, 21 and 40, and the number of concepts’ instance ma-
nipulated was roughly 4, 14, 24, 35 and 52, respectively. On the whole, we observed that our 
model well-recorded what characterises the behaviour of each learner. This was noted in the non-
predefined combinations between occurrences of concepts and the procedures handling them 
when achieving goals. Primitive units of semantic and procedural knowledge, chosen with a small 
level of granularity, are used to build complex knowledge entities, which are dynamically com-
bined – to create a new knowledge – to represent the learner cognitive activity. For example, table 
7 presents two different recorded cognitive traces for the exercise “((~b & (~b | F)) & F)”. One 
student answered the problem in two steps, while the other took three steps but made an error at 
the third step.  
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Table 6: Parameters of the experiment 

Exercise complexity Number of exercises by student

1 (simple) 4 
2 4 
3 5 
4 6 
5 (complex) 6 

 
Following these pilot-tests, we have built a virtual tutor prototype, which takes pedagogical deci-
sions based on simple rules. We have designed it as a proof of concept that the collected data can 
be use to provide tailored instruction. The prototype tutor reacts when a learner (1) makes a mis-
take or (2) doesn’t reduce a Boolean expression within a specified time limit. In the first case, we 
consider an error as the result of the learner applying an incorrect procedure for its current goal. 
In the second case, we consider that the learner either doesn’t know any correct procedure for the 
present goal or doesn’t recognize their preconditions. Because our model links goals to proce-
dures that can accomplish them, the tutor has knowledge of all the correct ways to achieve the 
current goal in both of these situations. Learning and mastering these procedures (or at least one 
of them) will be one of the immediate objectives of the tutorial strategy. To teach these proce-
dures, the tutor extracts the didactic knowledge encoded in the procedures’ slots. For complex 
procedures that specify sub-goals, the tutor can easily conceive an ordered sequence of valid pro-
cedures that allows accomplishing correctly any goal, and gives instruction by making use of the 
didactic knowledge associated to each procedure. In this virtual tutor prototype, the didactic 
knowledge consists mostly of short textual hints and explanations. The virtual tutor uses available 
resources in that order. For example, after analysing the recorded cognitive trace on the right side 
of table 7, the tutor will detect the use of an erroneous procedure (erroneous procedure #1) and 
identify that one correct procedure for the same goal is procedure #4 ((a & F) = F). The tutor will 
first output “Wrong”, and then recommend the procedure #4, by giving the associated hint “Look 
carefully, there is a disjunction expression with the truth constant F.” If the learner makes another 
error or doesn’t answer within a time bound, the system advices will become more precise: “You 
could apply the reduction rule of a disjunction expression with the truth constant F. Here is an 
example: ((a & F) = F)”.  This feedback should be sufficient to show to the learner how to cor-
rectly solve the problem. But it is not enough to ensure that s/he master procedure #4. Hence, next 
exercises will be specifically chosen to test procedure #4. Conceiving a more elaborate version of 
the tutor and verifying its effectiveness is part of our ongoing research.  

Table 7: Two cognitive traces to reduce the expression ((~b & (~b | F)) & F) 

Student 1 solution Student 2 solution 

Expression  Procedure applied Expression Procedure applied 

((~b & (~b | F)) & F) Initial expression ((~b & (~b | F)) & F) Initial expression 

(~b & F) Cognitive procedure #14 
(a & (a | b)) = a) 

((~b & ~b) & F) Cognitive procedure 
#14   (a | F) = a) 

(F) Cognitive procedure #4    
((a & F) = F) 

(~b & F) Cognitive procedure #6 
((a & a) = a) 

  (~b) Erroneous procedure #1 
((a & F) = a) 
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Conclusion and Further Work 
Initially, our work will focus on creating LOs following the proposed methodology for new do-
mains. Our team is modelling the knowledge of a virtual laboratory on the fundamental concepts 
of electric circuits, of a laboratory on the analysis of ADN in genetic engineering, and of another 
on the A* algorithm in artificial intelligence. Although, our model may need to be improved to 
represent knowledge of particular ill-defined domains, we expect our cognitive representation to 
be rather general because similar cognitive models have pretty good results with more than one 
hundreds domain modeled, ranging from playing Backgammon to simulating driving behaviour 
(Anderson et al., 2004).  Undoubtedly, our current work will lead to improvements of our model. 
At the logical level, we provide support for the KAON2, Racer and Pellet inferences engines. We 
are currently investigating the possibility to use SWRL (http://www.daml.org/2003/11/swrl/), an 
extension of the OWL format with Horn rules, to provide additional expressivity. Recent results 
in DL field showed that part of SWRL is decidable (Motik et al, 2004). Although, the current per-
formance of inference engines is pretty satisfying, we are working on optimizing their use, to im-
prove performance. In the same vein, we are envisaging the idea of building hybrid reasoning 
algorithms that can take into account context information to reason more effectively. We are in-
vestigating different ways to benefits from the knowledge encoded in our LOs.  

In this article, we have proposed an original model for creating reusable units of knowledge that 
incorporate a logical representation, semantic knowledge, procedural knowledge (the means for 
manipulating semantic knowledge), as well as didactic knowledge. The model described has been 
experimented successfully and authoring tools are available for every steps of the modelling 
process. The inclusion of a logical and ontological structure to describe domain knowledge facili-
tates the separation of the knowledge in multiple files, their interpretation as a whole, and pro-
vides a basis for logical reasoning. Moreover, by using cognitive structures this model permit 
building LOs that can be used as the basis for providing highly tailored instruction within a VLE. 
Our model proposes to consider LOs as glass-box LOs rather than black-boxes LOs, as it is often 
the case in actual LMS’s. In this way, our approach constitutes a real improvement over tradi-
tional LOs. 
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