
Interdisciplinary Journal of Knowledge and Learning Objects Volume 2, 2006

Editor: Alex Koohang

A Cognitive and Logic Based Model for Building
Glass-Box Learning Objects

Philippe Fournier-Viger
University of Quebec at Montreal,

Montreal, Canada

fournier_viger.philippe@courrier.uqam.ca

Mehdi Najjar
University of Sherbrooke,

Sherbrooke, Canada

mehdi.najjar@usherbrooke.ca

André Mayers
University of Sherbrooke,

Sherbrooke, Canada

andre.mayers@usherbrooke.ca

Roger Nkambou
University of Quebec at

Montreal, Montreal, Canada

nkambou.roger@uqam.ca

Abstract
In the field of e-learning, a popular solution to make teaching material reusable is to represent it
as learning object (LO). However, building better adaptive educational software also takes an ex-
plicit model of the learner’s cognitive process related to LOs. This paper presents a three layers
model that explicitly connect the description of learners’ cognitive processes to LOs. The first
layer describes the knowledge from a logical and ontological perspective. The second describes
cognitive processes. The third builds LOs upon the two first layers. The proposed model has been
successfully implemented in an intelligent tutoring system for teaching Boolean reduction that
provides highly tailored instruction thanks to the model.

Keywords: learning objects, cognitive modelling, tutoring systems, description logics.

Introduction
Teaching resources are the mean to teach domain knowledge within tutoring systems. In the field
of e-learning, a popular solution to increase their reuse is to represent them as learning objects
(LOs). The concept of LO is sustained by a set of principles and standards covering many key
aspects such as digital rights management, distribution methods and the easiness for adapting ex-
isting content. Nevertheless, despite the large efforts to build software to describe and handle
LOs, there is no consensus on what a LO is. In fact, some authors proposed very permissive defi-

nitions that consider almost any teach-
ing material (digital or non digital) as
LOs (LTSC, 1999). As a consequence,
tutoring systems generally treat LOs
as black boxes. i.e. presented as they
are and without individualised feed-
back for each learner (Simic, Gasevic,
& Devedzic, 2004). Moreover, model-
ling the cognitive processes of learn-
ers is fundamental to build educational
software that provides highly tailored

Material published as part of this journal, either on-line or in
print, is copyrighted by the publisher of the Interdisciplinary
Journal of Knowledge and Learning Objects. Permission to make
digital or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage AND
that copies 1) bear this notice in full and 2) give the full citation
on the first page. It is permissible to abstract these works so long
as credit is given. To copy in all other cases or to republish or to
post on a server or to redistribute to lists requires specific permis-
sion and payment of a fee. Contact Publisher@ijklo.org to re-
quest redistribution permission.

A Cognitive and Logic Based Model for Building Glass-Box Learning Objects

78

instruction (for example, see Anderson, Corbett, Koedinger & Pelletier, 1995). This article pre-
sents a model that unify principles of the cognitive modelling theories, which attempts to model
the human processes of knowledge acquisition, and principles and standards related to the con-
cept of LO, which takes on the challenges of knowledge engineering, in order to benefit from the
advantages of each. LOs described according to our approach are “glass-box learning objects”
because they include an explicit description of cognitive processes that enable virtual learning
environments (VLEs) to provide highly tailored instruction. The remainder of the article is organ-
ised as follows. First, the LO concept is described. Second, the VLE in which the model has been
implemented is introduced. Then, the three next sections describe the three layers of our model.
We then present preliminary results with the VLE. Finally, the last section announces further
work and present conclusion.

The Learning Object Concept
The concept of LO relies on the main idea of structuring learning materials into reusable units.
Over the recent years, some definitions of LOs – more or less restrictive – have been proposed in
the literature. For example, Duncan (2003) states that the IEEE defines it as “any entity, digital or
non-digital, which can be used, reused or referenced during technology supported learning”
(LTSC, 1999), Wiley (2002) describes it as “any digital resource that can be reused to support
learning” and Koper (2003) adds that “a fundamental idea is that a LO can stand on its own and
may be reused”. To summarise these definitions, one can state that a LO is an autonomous re-
source (digital or not) that is reusable in training activities. To clarify their role and their nature,
the following subsections describe the five steps of the LOs’ lifecycle.

Step 1: Creating an Information Object
The first step of a LO lifecycle consists in creating an information object (IO), i.e. an electronic
document of any format (Web pages, images, Java applets, etc.). In general, authors of IOs select
the format according to the software with which they wants to ensure compatibility. In e-learning,
institutions usually opt for Web documents as IOs to be able to present them via Internet brows-
ers. Among typical examples of IOs: a Web page that explains the process of photosynthesis, an
electronic book on linear algebra or a recording of a musical composition by Nicolo Paganini.
Furthermore, researchers suggest observing three principles when designing IOs. The latter
should be (1) autonomous, (2) adaptable and (3) of low granularity. Creating autonomous IOs
means to build objects that are free from reference to external contexts. For example, an author
who designs an IO that explains how an engine works must avoid including references to other
IOs, because IOs can be presented individually. Nevertheless, authors must use decontextualisa-
tion sparingly, because as Wiley, Recker & Gibbons (2000) underline it, decontextualised ele-
ments are more difficult to index and have a less clear semantic for a computer. The second prin-
ciple dictates to create customisable IOs in order to facilitate their integration within particular
contexts (Moodie & Kunz, 2003). The third and last principle stipulates that adopting a large
granularity reduces the number of IOs that can be assembled together. For example, an e-book is
less reusable than its chapters or its paragraphs. Beyond these principles, most institutions pro-
pose their own guidelines to create information objects (see, for example, Thomson & Yonekura
(2006)).

Step 2: Adding Metadata
The second step of the LOs lifecycle consists in adding metadata to IOs. LOM (LTSC, 2002) is
one of the most important metadata standards. To describe an IO, LOM offers about 80 elements
grouped in nine categories. Utility of metadata covers three axes. On one hand, metadata facilitate
the localisation of IOs stored in repositories. On the other hand, they inform about how to use the

 Fournier-Viger, Najjar, Mayers, & Nkambou

 79

IOs (for example, with regard to copyrights and technology requirements). Finally, they make
possible the automatic selection of IOs by a computer (Morales & Aguera, 2002). Metadata are
also the element that distinguishes between IOs and LOs. More precisely, appending a learning
objective transforms an IO into a LO. This addition ensures that the IO is intended for teaching
(Duncan, 2003).

Step 3: Aggregating Learning Objects
The third step is optional in the lifecycle of a LO and consists in joining several LOs in a package
to facilitate their distribution and reuse. For example, to simplify their distribution, a professor
can group in a package a set of objects that are necessary for a teaching activity. Since a package
is also an IO, if an author adds the required metadata, the aggregate will be also considered as a
LO. In the popular aggregation standard IMS-CP (IMS, 2005a), a package is a zip file which con-
tains IOs or LOs and a single file which acts as a table of contents.

Step 4: Sequencing Learning Objects
The fourth step is also optional. It consists in determining the presentation order (sequencing) of
LOs. Although an author can organise LOs in static sequences, some specifications allow model-
ling complex learning designs. A learning design defines a teaching activity by means of a set of
rules that indicate how to select the next LOs according to the results of intermediate events.
Learning designs define also the roles of the various actors who takes part in the activities (learn-
ers, support staff, etc.). A widely acknowledged specification for LOs sequencing is IMS-LD
(IMS, 2005b), which describes learning designs according to a wide range of approaches of
knowledge acquisition such as constructivism and social constructivism. Various learning designs
have been done with IMS-LD. For example, the IMS Learning Design Best Practice and Imple-
mentation Guide (IMS, 2005b) presents a model of an activity where students take part in a simu-
lation of the treaty of Versailles. The actors are learners and the support staff. Their main roles
are learner, team leader and teacher. The LOs used are web content resources and the services
used are an e-mail server and an online conference software.

Step 5: Delivering Learning Objects
In the e-learning community, the term Learning Management System (LMS) is usually employed
to refer to the tutoring systems that present LOs to learners. LMS is a set of software or a Web
environment with which training activities that incorporates LOs are carried out (Simic et al.,
2004). Many commercial and non-commercial LMS exist, such as WebCT
(http://www.webct.com/) and Stellar (http://stellar.mit.edu/). LMS’s generally treat LOs as
black-boxes. i.e. presented as they are and without individualised feedback for each learners
(Simic et al., 2004). The most significant adjustment consists in building a dynamic sequence of
LOs (Morales & Aguera, 2002) that the system presents to the learner (for example, a sequence of
appropriated Web pages, following the results of a short multiple-choice test). The weak person-
alisation of LMS’s is partially explained by the fact that these tutoring systems often teach full
courses and in most cases, they attach great importance to the contribution of human teachers in
the learning activities (see Cohen & Nycz (2006) for an overview of the distance education model
typically used in LMS’s). Building better adaptive educational software also takes an explicit
model of the learner’s cognitive process related to LOs (Anderson, Corbett, et al., 1995). This
article proposes a model for the creation of LOs that include cognitive processes description. Our
model organise a domain’s knowledge according to three layers, whose each one describes
knowledge from a different angle. The first layer defines an ontological and logical representa-
tion. The second defines a cognitive representation. The third builds LOs upon the two first lay-
ers. The next section introduces the VLE for which the model was tested.

A Cognitive and Logic Based Model for Building Glass-Box Learning Objects

80

The REDBOOL Boolean Reduction VLE
REDBOOL is a VLE for teaching Boolean reduction. Here, the subject-matter domain is the al-
gebraic Boolean expressions and their simplification by means of reduction rules, which are gen-
erally taught to undergraduate students on first cycle of higher education. The tool’s purpose is
both to help student learn Boolean reduction techniques and to increase confidence with the soft-
ware. Figure 1 illustrates REDBOOL’s main interface. Preliminary notions, definitions and ex-
planations constitute a necessary knowledge background to approach the Boolean reduction prob-
lem. This knowledge is available to learners in the “Theory” tab of the VLE. A teaching session
consists in solving a sequence of problems. For example, Figure 1 shows the problem to reduce
the expression “(((a | F) & (T)) | (~c))”. Boolean expressions can be composed of truth constant
“T” (true), truth constant “F” (false), proposals “a, b, c, d, e, f” conjunction operator “&”, disjunc-
tion operator “|” and negation operator “~”.The objective of an exercise consists in reducing an
expression as much as possible by applying some of the 13 rules of Boolean reduction, such as
the disjunction rule of a proposal “a” with the truth constant “False” ((a | F) = (a)), or the De-
Morgan rule applied to a conjunction of two proposals (~ (a & b) = (~ a | ~ b)). A learner can se-
lect part of the current expression in the “Reduction” field and modify it by means of the key-
board or by using the virtual keyboard proposed. The learner must click on the “Submit step” but-
ton to validate changes. In the bottom area of the window, the learner can see the last rules ap-
plied. In the top corner on the right side, a progress bar shows the global advancement of the
teaching session. The “Advices” section shows the system’s feedback (hints, advices, etc.). In the
“Examples” tab of the VLE, learners can also ask the system to solve custom problems step by
step. The following sections detail each layer of our model with examples from REDBOOL.

Figure 1: The REDBOOL VLE

 Fournier-Viger, Najjar, Mayers, & Nkambou

 81

Layer 1: Logical Representation of the Domain
Knowledge

The first layer of our model contains a logical representation of the domain’s concepts and their
relationships. The formalism used is description logics (DL), a class of knowledge representation
languages which exploits - in general - subsets of FOL (see Baader & Nutt, 2003, for a mapping
between DL and FOL). We have chosen DL because they are (1) well-studied and (2) they offer
reasoning algorithms whose complexity is often lower than those of FOL (Tsarkov & Horrocks,
2003). But the primary reason is that DL employs an ontological approach. i.e., to describe the
instances of a domain, they require the definition of (1) general categories of instances and (2) the
various types of logical relationships among categories and their instances. The ontological ap-
proach is natural for reasoning since even if most interactions happen at the level of instances,
most of the reasoning occurs at the level of categories (Russell & Norvig, 2002). As it will be
presented, this abstraction fits well with the abstraction between theory and the concrete explana-
tions/exercises/examples found in teaching (Teege, 1994). Additionally, ontologies have shown
to be a structure of choice to share, extend and perform reasoning on formal domain descriptions.
Building our LOs model upon this theory (1) gives a solid framework to formally interpret the
semantic of our LOs individually or jointly and (2) allows benefiting from researches on several
topics such as ontology engineering, ontology merging and ontology extraction.

In the DL terminology, whereas a TBOX (terminological box) describes the general knowledge
of a field, an ABOX (assertional box) describes a specific world. TBOX contains axioms which
relate to concepts and roles. ABOX contains a set of assertions which describe individuals (in-
stances of concept). Table 1 gives as example a part of the TBOX defined for REDBOOL.

Table 1: Part of layer 1 knowledge for REDBOOL

Concepts Roles

TruthConstant BooleanExpression Π ¬Variable Π ¬DescribedExpression operator

TruthConstantFalse TruthConstant leftOperand

TruthConstantTrue TruthConstant rightOperand

Variable ≡ BooleanExpression Π ¬TruthConstant Π ¬DescribedExpression

DescribedExpression (BooleanExpression Π (∃operator.┬ Π ∀operator.Operator)

Operator ¬ BooleanExpression

NegationOperator Operator Π ¬DisjunctionOperator Π ¬ConjunctionOperator

DisjunctionOperator Operator Π ¬NegationOperator Π ¬ConjunctionOperator

ConjunctionOperator Operator

DisjunctionExpression ≡ DescribedExpression Π ∀operator.OperatorDisjunction Π
∃ leftOperand.┬ Π ∃ rightOperand.┬ Π∀leftOperand.BooleanExpression Π ∀righ-
tOperand.BooleanExpression

Atomic concepts and atomic roles are the basic elements of a TBOX. The TBOX of table 1 de-
fines the atomic concepts “TruthConstant”, “BooleanExpression”, “Variable”, “DescribedExpres-
sion”, “TruthConstant”, “TruthConstantTrue”, “TruthConstantFalse”, “Operator”, “NegationOp-
erator”, “DisjunctionOperator” and “ConjunctionOperator“ (their names begin with a capital let-
ter) and the atomic roles “operator”, “leftOperand” and “rightOperand” (their names begin with a
small letter). The atomic concepts and atomic roles can be combined by means of constructors to
form concept descriptions and role descriptions, respectively. For example, the concept descrip-

A Cognitive and Logic Based Model for Building Glass-Box Learning Objects

82

tion “BooleanExpression Π Variable” results from the application of constructor Π to atomic con-
cept “BooleanExpression” and “Variable”. It is interpreted as the set of individuals who belong to
the “BooleanExpression” concept and the “Variable” concept. The various DL are characterised
by the set of constructors they propose.

To formally describe constructors’ semantic and the TBOX and ABOX notion, it is necessary to
define interpretations. Because DL follow open-world assumption (the absence of information
imply ignorance rather than negative information), the semantic must take into account all possi-
bilities (each interpretation). Formally, an interpretation I is composed of an interpretation do-
main ∆I and an interpretation function ·I. The interpretation domain is a set of individuals. The
interpretation function assigns to each atomic concept A a set of individual AI such that AI ⊆ ∆I
and to each atomic role R; a binary relation RI such that RI ⊆ ∆I x ∆I. ABOX assertions are ex-
pressed in term of nominals (names that represent individuals). An interpretation I assigns to each
nominal a, an individual aI from the interpretation domain ∆I.

Table 2. Concepts constructors, axioms and assertions of the minimal logic AL

Syntax Semantic Type

C Π D CI ∩ DI

¬A ∆I \ AI

∃R.┬ {aI∈∆I | ∃bI.(aI,bI)∈RI }

∀R.C {aI∈∆I | ∀bI.(aI,bI)∈RI ⇒ bI∈CI}

Concepts constructors

C ≡ D CI = D

C D CI ⊆ DI

Axioms

C(a) aI ∈ C

R(a,b) (aI,bI) ∈ RI

Assertions

The first four rows of Table 2 introduce the concepts constructors of a basic DL named AL. The
two first columns respectively enumerate constructors’ syntax and semantic. The symbols aI and
bI symbolise individual members of ∆I for an interpretation I. The letters A and B stand for
atomic concepts. The letters C and D represent concepts descriptions. The letters R denote atomic
roles. TBOX contain terminological axioms of the form C ≡ D or C D. The first form states
equivalence relations between concepts, whereas the second expresses inclusion relations. The
fifth and sixth rows of the table define their semantics. An ABOX contains membership asser-
tions (C(a)) and role assertions (R(a, b)), where a and b are nominals. The two last rows of table 2
explain their semantics. Because assertions are expressed in term of concepts and roles, each
ABOX must be associated with a TBOX. An interpretation is said to satisfy a TBOX and an
ABOX, if the interpretation imply no contradiction for all assertions and axioms.

The primary purpose of DL is inference. From a DL knowledge base, it is possible to infer new
facts, such as deducing all nominals that are members of a concept, finding all concepts D such
that C D, verifying disjointness of two concepts C and D (CI ∩ DI = Ø) or checking that a con-
cept C is satisfiable (if an interpretation I exist, such that CI is nonempty). Note that several free
and commercial inference engines are available such as KAON2 (Motik, Sattler & Studer, 2004),
Racer (Haarslev & Möller, 2003) and Pellet (Sirin & Parsia, 2004).

 Fournier-Viger, Najjar, Mayers, & Nkambou

 83

Uses of Description Logics for Domain Knowledge Modeling
To the best of the authors’ knowledge, Teege (1994) first proposed to use DL to represent domain
knowledge of VLEs. He stated three important originalities. One of them consists of using DL to
represent the theory to be taught (TBOX) as an abstraction of natural language (ABOX). This
abstraction is necessary to distinguish learners’ answers and the VLE’s explications/examples in
natural language, from the general concepts. In addition, a VLE could extract concepts from natu-
ral language answers to form a TBOX; and then compare knowledge of the learners with those of
the learning system. Teege demonstrates that inference engines are useful for various tasks such
as finding concepts subsuming a misunderstood concept to better explain what characterises it. A
second team (Krdzavac, Gasevic, & Devedzic, 2004) cites several ideas from Teege and brings a
few novel ones. First, inference could serve to detect modelling errors by inferring the implicit
knowledge and by detecting inconsistencies. Secondly, a VLE could interpret a learner’s answers
as an ABOX and check if it respects the axioms of a TBOX to determine the answers’ accuracy.
The system could infer why an answer is incorrect. In summary, Teege (1994) and Krdzavac et
al. (2004) suggest using DL exclusively for representing the concepts and roles to be taught. They
exclude the representation of the savoir-faire because DL does not offer means to represent it.
However, as Teege commented, “not all of these information needs be represented in DL”.

The Role of DL in Layer 1
The first of the three layers that constitute our model is based on DL. It represents concepts of the
domain as DL concepts in TBOX, as proposed by Teege (1994). In each defined TBOX, concepts
symbolise categories of objects handled in a VLE, and roles represent relationships between these
objects. Table 1 shows part of the layer 1 knowledge for REDBOOL. The description has been
simplified for the sake of brevity and ease of reading. The first axiom models the concept of Boo-
lean expressions (“BooleanExpression”). The following axioms state that truth constants, vari-
ables and described expressions are distinct types of Boolean expressions and specify that there
are two subcategories of constants (truth constant “true” and truth constant “false”). Moreover,
the example specifies that each described expression has a logical operator that is a conjunction
operator, a disjunction operator, or a negation operator. The last concepts axiom asserts that a
disjunction expression is a described expression that has a disjunction operator and Boolean ex-
pressions as its left and right operands. Roles are defined without further constraints. No ABOX
is defined, because it is the level of concrete answers and examples.

The layer 1 knowledge is stored in OWL files, a popular format standardised by W3C to repre-
sent knowledge bases for some DL (http://www.w3.org/TR/owl-features). The majority of the
inference engines for DL accept OWL files as input. Several authoring tools are also available.
We suggest using Protégé (Knublauch, Musen, & Rector, 2004) for its user-friendliness and its
support for the almost entire OWL specification. Furthermore, OWL provides several mecha-
nisms to increase the knowledge reuse such as versioning and namespaces. These latter allow to
create OWL files that import and extend definitions of existing OWL files without altering the
original ones. As a result, authors can split up layer 1 knowledge in several OWL files. As pre-
sented further, this facilitates the encoding of knowledge in LOs.

Layer 2: Cognitive Representation of Domain knowledge
Layer 1 structures allow the logical and ontological representation of the domain knowledge.
However, building better adaptive educational software also takes an explicit model of the
learner’s cognitive process. This section presents the layer 2 of our representation model, which
fills this gap.

A Cognitive and Logic Based Model for Building Glass-Box Learning Objects

84

The Psychological Foundations
To structure, organise and represent the knowledge, we have been inspired by cognitive psychol-
ogy theories, which attempt to model the human process of knowledge acquisition. This knowl-
edge is encoded in various memory subsystems according to the way in which these contents are
handled and used. Several authors in psychology, mention – in some form or in another – three
types of knowledge. These subsystems are (1) semantic knowledge (Neely, 1989), (2) procedural
knowledge (Anderson, 1993) and (3) episodic knowledge (Tulving, 1983). In this paper, we do
not discuss the episodic knowledge part of our model since it is the part of our model that records
the episodes lived by a person (a history of the use of the two other types of knowledge). How-
ever, the interested reader can refer to (Najjar, Fournier-Viger, Mayers & Bouchard, 2005) for
detailed explanations.

The semantic memory contains descriptive knowledge. Our model regards semantic knowledge
as concepts taken in the broad sense. According to recent researches (Halford, Baker, McCredden
& Bain, 2005), humans can consider about four concept occurrences simultaneously (four dimen-
sions) in the achievement of a task. However, the human cognitive architecture has the capacity
to group several concepts to handle them as one, in the form of a vector of concepts (Halford,
Wilson, Guo, Wiles & Stewart, 1993). We call described concepts these syntactically decom-
posable concepts, in contrast with primitive concepts that are syntactically indecomposable. For
example, in propositional calculus, “a | F” is a decomposable representation of proposal “a”, a
non-split representation with the same semantic. The concept “a | F” represents a disjunction be-
tween proposal “a” and the truth constant “F” (false), two primitive concepts. The disjunction
logical operator “|” is also a primitive concept. In this way, the semantic of a described concept is
given by the semantics of its components.

The procedural memory is composed of procedures. i.e. the means to handle semantic knowledge
to achieve goals. In opposition to semantic knowledge, which can be expressed explicitly, proce-
dural knowledge is represented by a succession of actions achieved automatically – following
internal and/or external stimuli perception – to reach desirable states (Anderson, 1993). Proce-
dures can be seen as a mean of achieving a goal to satisfy a need, without using the attention re-
sources. For example, during the Boolean reduction process, substituting automatically “~T” by
“F”, making abstraction to the explicit call of the truth constant negation rule (~T = F, where “T”
equals “TRUE”), can be seen as procedural knowledge which was acquired by the repetitive do-
ing. In our approach, we subdivide procedures in two main categories: primitive procedures and
complex procedures. Executions of the first are seen as atomic actions. Those of the last can be
done by sequence of actions, which satisfy scripts of goals. Each one of those actions results from
a primitive procedure execution; and each one of those goals is perceived as an intention of the
cognitive system.

We distinguish goals as a special type of semantic knowledge. Goals are intentions that humans
have, such as the goal to solve a mathematical equation, to draw a triangle or to add two numbers
(Mayers, Lefebvre & Frasson, 2001). Goals are achieved by means of procedural knowledge. In
our model, a goal is described using a relation as follows: (R: X, A1, A2 … An). This relation
allows specifying a goal “X” according to primitive or described concepts “A1, A2 … An” which
characterise the initial state. In a teaching context, stress is often laid on methods that achieve the
goal rather than the goal itself; since these methods are in general the object of training. Conse-
quently, the term “goal” is used to refer to an intention to achieve the goal rather than meaning
the goal itself. Thus, procedures become methods carrying out this intention (Mayers & Najjar,
2003).

 Fournier-Viger, Najjar, Mayers, & Nkambou

 85

The Computational Representation of the Psychological Model
Layer 2 of our model defines a computational representation of the cognitive model described
above. The layer 2 knowledge is stored in files named SPK (“Semantic and Procedural Knowl-
edge”), which describe knowledge entities according to sets of slots.

The concepts’ slots
Concepts are encoded according to six slots. The “Identifier” slot is a character string used as a
unique reference to the concept. The “Metadata” slot provides general metadata about the concept
(for example, authors’ names and a textual description). The “Goals” slot contains a goals proto-
types list. The latter provides information about goals that students could have and which use the
concept. “Constructors” specifies the identifier of procedures that can create an instance of this
concept. “Component” is only significant for described concepts. It indicates, for each concept
component, its concept type. Finally, “Teaching” points to some didactic resources that generic
teaching strategies of a VLE can employ to teach the concept.

The goals’ slots
Goals have six slots. "Skill" specifies the necessary skill to accomplish the goal, “Identifier” is a
unique name for the goal, “Metadata” describes the goal metadata, "Parameters" indicates the
types of the goal parameters, "Procedures" contains a set of procedures that can be used to
achieve the goal, and “Didactic-Strategies" suggests strategies to learn how to achieve that goal.

The procedures’ slots
Ten slots describe procedures. The “Metadata” and “Identifier” slots are identical to those of con-
cepts and goals. “Goal” indicates the goal for which the procedure was defined. “Parameters”
specifies the concepts type of the arguments. For primitive procedures, “Method” points to a Java
method that executes an atomic action. For complex procedures, “Script” indicates a list of goals
to achieve. “Validity” is a pair of Boolean values. Whereas the first indicates if the procedure is
valid and so it always gives the expected result, the second indicates if it always terminate. “Con-
text” fixes constraints on the use of the procedure. “Diagnosis-Solution” contains a list of pairs
“[diagnosis, strategy]” that indicate for each diagnosis, the suitable teaching strategy to be
adopted. Finally, “Didactic-Resources” points to additional resources (examples, exercises, tests,
etc.) to teach the procedure.

Authoring Layer 2 Knowledge
We have developed an authoring tool named DOKGETT (Najjar, Fournier-Viger, Mayers &
Hallé, 2005a, 2005b) that permits (1) to model layer 2 knowledge graphically and (2) to generate
the corresponding SPK files. The interface (Figure 2) comprises two parts. The left-hand side of
the environment consists in a drawing pane where the various knowledge entities can be repre-
sented as shapes. Concepts are drawn as triangles. Procedures are represented by circles and goals
by squares. Complex procedures and described concepts are delimited by bold contours. Arrows
model graphically the relations between knowledge entities. For instance, Figure 2 shows arrows
linking a goal to one procedure that can achieve it and to its two concepts argument. The right-
hand side of the environment permits the author to specify detailed information about the selected
knowledge entity in terms of slots described above.

The Layer 2 Knowledge for REDBOOL
The authoring tool was used to represent the cognitive processes of learners for REDBOOL
(Najjar & Mayers, 2004; Najjar, Mayers & Fournier-Viger, 2004) and those of a cook for the re-

A Cognitive and Logic Based Model for Building Glass-Box Learning Objects

86

alisation of a culinary recipe (Najjar, Fournier-Viger, Mayers, & Bouchard, 2005). As an exam-
ple, in a single SPK file, we encoded the layer 2 knowledge of REDBOOL. The primitive con-
cepts are truth constant “True”, truth constant “False”, conjunction operator, disjunction operator
and negation operator. The main described concepts are conjunction expression, disjunction ex-
pression and negation expression. The file includes procedures and goals for the 13 Boolean re-
duction rules. It also contains definitions of goals and procedures to create concrete instances of
concepts (because each concept’s occurrence must be created prior to being handled) and proce-
dures for common errors. In REDBOOL, procedures are fired as a learner operates the graphical
interface’s buttons (the button/procedure association is found in the “Method” slot of procedures),
and the resolution trace is recorded. The VLE connects interactions with the interface to the layer
2 knowledge, and therefore the tutor embedded within the VLE can take decisions on the basis of
the cognitive activity of each learner.

Figure 2: The DOKGETT authoring tool

Links between Layer 1 and Layer 2
To establish links between the logical representation of layer 1 and the cognitive representation of
layer 2, it is necessary to add additional slots to layer 2 concepts. For this purpose, each primitive
concept has a "DLReference" slot that points towards a DL concept. This slot is useful during the
instantiation of primitive concepts by procedures. To properly explain the instantiation process of
primitive concepts, we will first consider the instantiation of the “F” truth constant. The “Con-
structors” slot of the “F” truth constant concept states that the procedure
“P_CreateTruthConstantFalse” can be used to instantiate the concept. This procedure has its ac-
tion defined as such. To simulate the instantiation process, our tools adds in an ABOX a nominal
associated to the DL concept mentioned in the "DLReference" slot of the concept to instantiate.
The table 3 illustrates the resulting assertions added to an ABOX. The nominal “f1” represents a
concept instance, and the “TruthConstantFalse(f1)" assertion declare that “f1” is an “F” truth con-
stant. For each instances created, a different nominal is added to the ABOX. In the same vein, the
example shows "t1" an instance of the primitive concept “T” truth constant, and “d1”, an instance
of the disjunction operator primitive concept.

In addition to the “DLReference” slot, each described concept encompasses a slot named “Com-
ponents”, which list one or more roles. Each role associates to a nominal that represent an in-
stance of the described concept, a nominal that represent one of its parts. For example, the nomi-
nal “e1” in table 4 correspond to an instance of the described concept “T & F”. The “Disjunc-

 Fournier-Viger, Najjar, Mayers, & Nkambou

 87

tionExpression(e1) ” assertion declares that “e1” is a disjunction expression. The “operator(e1,
d1)”, “leftOperand(e1,t1)” and “rightOperand(e1, f1)” links the described concept represented by
“e1” to nominals that represent its components. Furthermore, a learner can carry out a procedure
that replaces a described concept’s component. For instance, when a learner substitute “~T” by
“F” in the Boolean expression “a & (~T)”. In this case, the tools we have developed adapt the
ABOX accordingly. Therefore, the logical representation of a described concept instance can
change and hence its membership to DL concepts.

Table 3: The layer 2 description of the “F” truth constant primitive concept

Slot Value

Identifier C_TruthContantFalse

DLReference TruthConstantFalse

Metadata Author = Philippe Fournier-Viger

Goals ...

Constructors P_CreateTruthConstantFalse

Because there is no direct link between layer 2 concepts, correspondence is achieved at the DL
level. For this purpose, our tool offer compatibility with three major DL inference engines
(KAON2, Racer and Pellet). The absence of link between layer 2 concepts also facilitates the ex-
tension of the layer 2 knowledge. Indeed, an author can easily add concepts to any SPK file by
associating logical descriptions that extends those of other concepts. Added concepts become
automatically compatible with existing procedures and goals. It should be noted that authors can
also add new procedures for existing goals, since satisfaction links between a goal and a proce-
dure is stored in procedures’ slots. As a result, authors can create new SPK files that extend exist-
ing SPK files without changes.

Table 4: ABOX assertions that represent the “(T & F)” Boolean expression

TBOX ABOX

As previously defined. TruthConstantFalse(f1)

 TruthConstantTrue(t1)

 DisjunctionOperator(d1)

 DisjunctionExpression(e1)

 operator(e1, d1)

 leftOperand(e1,t1)

 rightOperand(e1, f1)

Layer 3: Encoding Knowledge as LOs
The third layer builds LOs upon the two first layers. The first step to obtain LOs is creating IOs.
According to our model, an IO consists of SPK file(s), OWL file(s), and the VLE. This definition
meets the standard definition, which defines IOs as electronic documents. The XML encoding of
SPK and OWL files makes files easily customisable. To package files together, we have recourse
to IMS-CP, a standard commonly used for LOs (see the first section of this article).

A Cognitive and Logic Based Model for Building Glass-Box Learning Objects

88

The second step of LOs lifecycle consists in adding metadata to IOs. The IMS-CP specification
allows inclusion of metadata in the table of contents of each IMS-CP package, and is compatible
with many metadata standards. We use the RELOAD authoring tool (http://www.reload.ac.uk) to
specify metadata according to IMS-METADATA, an implementation of the LOM standard. It
proposes around 80 attributes to describe an IO. Adding specific metadata attributes is often re-
quired for particular e-learning projects (Malaxa & Douglas, 2005). For the needs of our research,
SPK files offer additional metadata slots. Two have a great importance. First, the “Include” slot
allows importation of definitions from other SPK files by the specification of the SPK file name.
The importation mechanism is a key element for LOs –it allows the separation of the knowledge
in several files. For example, an author could reuse the procedure of distributing a conjunction
over a disjunction “((a & (b | c)) = ((a & b) | (a & c)))” and the procedure of reducing the con-
junction of a proposal and its complement “((a & (~ a)) = F)”, to specify in a second SPK file the
procedure of applying the simplification law “((a & ((~ a) | b)) = (a & b))”, a complex procedure
that consists in carrying out the two first procedures, one following the other. Second, the “ver-
sion” slot help ensuring the consistency of the importation mechanism (the slot is included in
each SPK file to specify its version). Moreover, according to some authors (Duncan, 2003) trans-
forming an IO into a LO requires the specification of learning objectives that the IO can teach.
This addition guarantees that the IO is intended for teaching uses, but more importantly, it indi-
cates the pedagogical use of the IO. The latter information is essential for software or humans that
select LOs to be presented. The following paragraphs explain how we express learning objectives
in term of the knowledge defined in our SPK files.

Specifying the Learning Objectives
A learning objective is a performance description that the learner must be able to show following
training (Gagné, Briggs & Wager, 1992). We consider learning objectives that relate (1) to the
acquisition of a skill or (2) to the mastery of a semantic knowledge. First, to check the acquisition
of a skill is equivalent to testing the ability to attain a goal. Here, the importance resides in learn-
ers' ability to realise the goal. The procedures employed are of no importance, since several cor-
rect procedures might achieve the same goal. If a learner accomplishes a goal many times with
varied problems and without committing errors, one can conclude that the learner possess the cor-
responding skill. For example, to check the ability to reduce Boolean expressions, a VLE tutor
could provide a set of exercises involving the goal “GoalReduceBooleanExpression”. The proce-
dures used to solve the problems are unimportant to the tutor, insofar as they are correct. To test
the acquisition of a more specific skill, such as applying the De-Morgan law to an expression of
the form (~ (a & b)), the tutor can choose a more specific goal such as “GoalApplyDeMor-
ganLawToNegationOfConjunction”. Second, ensuring the mastery of a concept is more complex.
Basically, a concept is an inert structure which describes an object. A concept becomes manifest
only during a procedure execution which satisfy the goal using that concept. Consequently, a
learner must be able to achieve several goals that used the concept in order to show that s/he ac-
quired the concept. For example, to test the acquisition of the concept of truth constant “True”,
the VLE tutor could test the mastery of the goal to reduce the negation of the truth constant
“True” and the goal of simplifying the conjunction of the truth constant “True” and a proposition.
This definition of learning objective for a semantic knowledge covers the traditional one of re-
searchers in pedagogy such as Klausmeier (1990), which indicates that mastering a concept re-
quire understanding relationships that characterise it. The action of retrieving the relationships
can be encoded as procedures. For instance, to master the “canary” concept requires knowing re-
lation “color” between “canary” and “yellow” concept and relation “sub concept” between “ca-
nary” and “bird” concept. These relations can be encoded as described concept similar to “(color
canary yellow)”. An author can add procedures to extract the value from these described concepts
and expresses the learning objectives according to the goals associated with these procedures. In

 Fournier-Viger, Najjar, Mayers, & Nkambou

 89

summary, the learning objectives that relate to a skill are expressed in term of a goal to master,
whereas those relating to concepts are expressed in term of a set of goal(s) to master. In this
sense, our model follows the view of Anderson et al. (1995) that tutoring systems should focus on
teaching procedural knowledge.

We propose three slots to represent learning objectives (Fournier-Viger, Najjar & Mayers, 2005).
The “Identifier” and “Metadata” slot have the same use as for concepts, goals and procedures.
“NecessaryGoals” stipulate goals whose mastery is jointly required to meet the learning objec-
tive. Learning objectives are added in the heading of our SPK files. For example, Table 5 presents
the learning objective of mastering the concept of truth constant “True”. To attain this objective,
the “NecessaryGoals” slot states that it is necessary to master the goal of simplifying the negation
of the truth constant “True” ((~ T) = F) and the goal of applying the reduction of a conjunction of
a truth constant “True” with a proposal “a”. i.e., ((a & T) = a). The “EquivalentGoals” slot means
that if a learner masters the goal “GoalReduceDisjunctionWithTruthConstant”, it is equivalent
with regard to the objective as mastering the goal “GoalReduceConjunctionWithTruthConstant”.
To make these goals equivalent is a pedagogical decision. For instance, an author could have in-
cluded both as necessary goals.

Table 5: The Learning objective “MasteryOfTheConceptOfTruthConstantT”

Slot Value

Identifier MasteryOfTheConceptOfTruthConstantT
Metadata Author = Philippe Fournier-Viger

Creation date = 2006/01/01
Description = The Learning objective of mastering the truth constant “True” con-
cept.

NecessaryGoals GoalReduceTruthConstantNegation, GoalReduceConjunctionWithTruthConstant,
EquivalentGoals (GoalReduceConjunctionWithTruthConstant, GoalReduceDisjunctionWith-

TruthConstant)

Evaluation
A practical experimentation was performed to test the dynamic aspects of our model and espe-
cially its ability to represent cognitive activities [13]. We asked ten (10) students in computer sci-
ences and in mathematics who attend the course “MAT-113” or “MAT-114” (dedicated to dis-
crete mathematics) at the University of Sherbrooke to practice Boolean reduction with RED-
BOOL. An assisted training, aiming to familiarise them with the tool, was given; before leaving
them practising. To compare the learners’ behaviours, we forced the system to provide them
common problems. Parameters of the experiment are reported in Table 6. Exercises complexity
ranges from simple (1) to complex (5). For each learner, the system recorded the procedures used
as well as the concepts’ instances handled. For complexity 1 to 5, the number of goals visited for
a complete reduction was about 4, 7, 10, 21 and 40, and the number of concepts’ instance ma-
nipulated was roughly 4, 14, 24, 35 and 52, respectively. On the whole, we observed that our
model well-recorded what characterises the behaviour of each learner. This was noted in the non-
predefined combinations between occurrences of concepts and the procedures handling them
when achieving goals. Primitive units of semantic and procedural knowledge, chosen with a small
level of granularity, are used to build complex knowledge entities, which are dynamically com-
bined – to create a new knowledge – to represent the learner cognitive activity. For example, table
7 presents two different recorded cognitive traces for the exercise “((~b & (~b | F)) & F)”. One
student answered the problem in two steps, while the other took three steps but made an error at
the third step.

A Cognitive and Logic Based Model for Building Glass-Box Learning Objects

90

Table 6: Parameters of the experiment

Exercise complexity Number of exercises by student

1 (simple) 4
2 4
3 5
4 6
5 (complex) 6

Following these pilot-tests, we have built a virtual tutor prototype, which takes pedagogical deci-
sions based on simple rules. We have designed it as a proof of concept that the collected data can
be use to provide tailored instruction. The prototype tutor reacts when a learner (1) makes a mis-
take or (2) doesn’t reduce a Boolean expression within a specified time limit. In the first case, we
consider an error as the result of the learner applying an incorrect procedure for its current goal.
In the second case, we consider that the learner either doesn’t know any correct procedure for the
present goal or doesn’t recognize their preconditions. Because our model links goals to proce-
dures that can accomplish them, the tutor has knowledge of all the correct ways to achieve the
current goal in both of these situations. Learning and mastering these procedures (or at least one
of them) will be one of the immediate objectives of the tutorial strategy. To teach these proce-
dures, the tutor extracts the didactic knowledge encoded in the procedures’ slots. For complex
procedures that specify sub-goals, the tutor can easily conceive an ordered sequence of valid pro-
cedures that allows accomplishing correctly any goal, and gives instruction by making use of the
didactic knowledge associated to each procedure. In this virtual tutor prototype, the didactic
knowledge consists mostly of short textual hints and explanations. The virtual tutor uses available
resources in that order. For example, after analysing the recorded cognitive trace on the right side
of table 7, the tutor will detect the use of an erroneous procedure (erroneous procedure #1) and
identify that one correct procedure for the same goal is procedure #4 ((a & F) = F). The tutor will
first output “Wrong”, and then recommend the procedure #4, by giving the associated hint “Look
carefully, there is a disjunction expression with the truth constant F.” If the learner makes another
error or doesn’t answer within a time bound, the system advices will become more precise: “You
could apply the reduction rule of a disjunction expression with the truth constant F. Here is an
example: ((a & F) = F)”. This feedback should be sufficient to show to the learner how to cor-
rectly solve the problem. But it is not enough to ensure that s/he master procedure #4. Hence, next
exercises will be specifically chosen to test procedure #4. Conceiving a more elaborate version of
the tutor and verifying its effectiveness is part of our ongoing research.

Table 7: Two cognitive traces to reduce the expression ((~b & (~b | F)) & F)

Student 1 solution Student 2 solution

Expression Procedure applied Expression Procedure applied

((~b & (~b | F)) & F) Initial expression ((~b & (~b | F)) & F) Initial expression

(~b & F) Cognitive procedure #14
(a & (a | b)) = a)

((~b & ~b) & F) Cognitive procedure
#14 (a | F) = a)

(F) Cognitive procedure #4
((a & F) = F)

(~b & F) Cognitive procedure #6
((a & a) = a)

 (~b) Erroneous procedure #1
((a & F) = a)

 Fournier-Viger, Najjar, Mayers, & Nkambou

 91

Conclusion and Further Work
Initially, our work will focus on creating LOs following the proposed methodology for new do-
mains. Our team is modelling the knowledge of a virtual laboratory on the fundamental concepts
of electric circuits, of a laboratory on the analysis of ADN in genetic engineering, and of another
on the A* algorithm in artificial intelligence. Although, our model may need to be improved to
represent knowledge of particular ill-defined domains, we expect our cognitive representation to
be rather general because similar cognitive models have pretty good results with more than one
hundreds domain modeled, ranging from playing Backgammon to simulating driving behaviour
(Anderson et al., 2004). Undoubtedly, our current work will lead to improvements of our model.
At the logical level, we provide support for the KAON2, Racer and Pellet inferences engines. We
are currently investigating the possibility to use SWRL (http://www.daml.org/2003/11/swrl/), an
extension of the OWL format with Horn rules, to provide additional expressivity. Recent results
in DL field showed that part of SWRL is decidable (Motik et al, 2004). Although, the current per-
formance of inference engines is pretty satisfying, we are working on optimizing their use, to im-
prove performance. In the same vein, we are envisaging the idea of building hybrid reasoning
algorithms that can take into account context information to reason more effectively. We are in-
vestigating different ways to benefits from the knowledge encoded in our LOs.

In this article, we have proposed an original model for creating reusable units of knowledge that
incorporate a logical representation, semantic knowledge, procedural knowledge (the means for
manipulating semantic knowledge), as well as didactic knowledge. The model described has been
experimented successfully and authoring tools are available for every steps of the modelling
process. The inclusion of a logical and ontological structure to describe domain knowledge facili-
tates the separation of the knowledge in multiple files, their interpretation as a whole, and pro-
vides a basis for logical reasoning. Moreover, by using cognitive structures this model permit
building LOs that can be used as the basis for providing highly tailored instruction within a VLE.
Our model proposes to consider LOs as glass-box LOs rather than black-boxes LOs, as it is often
the case in actual LMS’s. In this way, our approach constitutes a real improvement over tradi-
tional LOs.

References
Anderson, J.R. (1993). Rules of the mind. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Anderson, J.R, Corbett, A.T., Koedinger, K.R. & Pelletier, R. (1995). Cognitive Tutors: Lessons learned.
The Journal of the Learning Sciences, 4(2), 167-207.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. 2004. An integrated theory
of the mind. Psychological Review, 111(4), 1036-1060.

Baader, F. & Nutt, W. (2003). Basic description logics. In F. Baader, D. Cavanese, D. McGuinness, D.
Nardi, & P. Patel-Schneider (Eds.), The description logic handbook: Theory, implementation and ap-
plications (pp. 47-100). Cambridge University Press.

Cohen, E. B. & Nycz, M. (2006). Learning objects and e-learning: An informing science perspective. In-
terdisciplinary Journal of Knowledge and Learning Objects, 2, 23-34. Available at
http://ijklo.org/Volume2/v2p023-034Cohen32.pdf

Duncan, C. (2003). Grunarization. In A. Littlejohn (Ed.), Reusing online resources: A sustainable ap-
proach to e-learning (pp. 12-19). London & New York: Kogan Page.

Fournier-Viger, P., Najjar, M. & Mayers, A. (2005). Combining the learning objects paradigm with cogni-
tive modelling theories - A novel approach for knowledge engineering. Proceedings of the ITI 3rd In-
ternational Conference on Information & Communication Technology (ICICT 2005). December 5-6,
Cairo, Egypt. pp. 565-578.

A Cognitive and Logic Based Model for Building Glass-Box Learning Objects

92

Gagné, R.M., Briggs, L. Z & Wager, W. (1992). Principles of instructional design (4th edition). New York:
Holt, Rinehart & Winston.

Haarslev, V., & Möller, R. (2003). Racer: A core inference engine for the semantic web. Proceedings of the
2nd International Workshop on Evaluation of Ontology-based Tools (EON2003). October 20, Sanibel
Island, Florida, USA. pp. 27-36.

Halford, G.S., Baker, R., McCredden, J.E. & Bain, J.D. (2005). How many variables can humans process?
Psychological Science, 16(1), 70-76.

Halford, G.S., Wilson, W.H., Guo, R.G.J., Wiles, J. & Stewart, J.E.M. (1993). Connectionist implications
for processing capacity limitations in analogies. In J.K. Holyoak & J. Barnden (Eds.), Advances in
connectionist and neural computation theory: Vol.2 Analogical connections (pp. 363-415). Norwood.

IMS (2005a). Content packaging specification version 1.2. Retrieved December 14, 2005, from
http://www.imsglobal.org/content/packaging/

IMS (2005b) Learning design specification version 1.0 final specification. Retrieved December 14, 2005,
from http://www.imsglobal.org/learningdesign/

Klausmeier, H.J. (1990) Conceptualizing. In B.F. Jones & L. Idol (Eds.), Dimensions of thinking and cog-
nitive instruction (pp. 20-34), Lawrence Erlbaum Associates.

Knublauch, H., Musen, M.A. & Rector, A.L. (2004). Editing decription logic ontologies with the protégé
owl plugin. In V. Haarslev & R. Möller (Eds.), Proceeding of the International Workshop on Descrip-
tion Logics (DL 2004). pp. 70-78.

Koper, R. (2003). Combining reusable learning resources and services with pedagogical purposeful units of
learning. In A. Littlejohn (Ed.), Reusing online resources: A sustainable approach to e-learning (pp.
46-59). London & New York: Kogan Page.

Krdzavac, N., Gasevic, D. & Devedzic, V. (2004). Description logics reasoning in web-based education
environments. Proceedings of the Adaptive Hypermedia and Collaborative Web-based Systems
(AHCWS04). Munich, Germany.

LTSC (1999). LTSC Website. Retrieved December 13, 2005, from http://ltsc.ieee.org/wg12/index.html.

LSTC. (2002). IEEE 1484.12.1-2002: Standard for learning object metadata. Retrieved January 1, 2006.

Malaxa, V. & Douglas, I. (2005). A framework for metadata creation tools. Interdisciplinary Journal of
Knowledge and Learning Objects, 1, 151-162. Available at http://ijklo.org/Volume1/v1p151-
162Malaxa28.pdf

Mayers, A., Lefebvre, B. & Frasson, C. (2001). Miace, a human cognitive architecture. SIGCUE Outlook,
27(2), 61-77.

Mayers, A. & Najjar, M. (2003). Explicit goal treatment in representing knowledge within intelligent tutor-
ing systems. Proceedings of the 6th International Conference on Computational Intelligence and Natu-
ral Computing (CINC 03). September 26-30, Cary, North Carolina, USA. pp. 1685-1689.

Moodie, P. & Kunz, P. (2003). Recipe for an intelligent learning management system (ilms). In U. Hoppe,
V. Aleven, J. Kay, R. Mizoguchi, H. Pain, F. Verdejo et al. (Eds.), Supplemental Proceedings of the
11th International Conference On Artificial Intelligence in Education (aied). Sydney, Australia. pp.
132-139.

Morales, R. & Aguera, A.S. (2002). Dynamic sequencing of learning objects. Proceedings of ICALT-2002.
pp. 502-506.

Motik, B., Sattler, U., Studer, R. (2004). Query answering for OWL-DL with rules. Proceedings of the 3rd
International Semantic Web Conference (ISWC 2004). Hiroshima, Japan, November, 2004. pp. 549-
563.

 Fournier-Viger, Najjar, Mayers, & Nkambou

 93

Najjar, M. & Mayers, A. (2004). Using human memory structures to model knowledge within algebra vir-
tual laboratory. Proceedings of the 2nd IEEE International Conference on Information Technology in
Research and Education (ITRE 04). June 28 – July 1, London, UK. pp. 155-159.

Najjar, M., Mayers, A. & Fournier-Viger, P. (2004). Goal-based modelling of the learner behaviour for
scaffolding individualised learning instructions. Proceedings of the 7th International Conference on
Computer and Information Technology (ICCIT-04). December 26-28, Dhaka, Bangladesh.

Najjar, M., Fournier-Viger, P., Mayers, A. & Hallé, J. (2005a). DOKGETT – An authoring tool for cogni-
tive model-based generation of the knowledge. Proceedings of the 5th IEEE International Conference
on Advanced Learning Technologies (ICALT 05). July 5-8, Kaohsiung, Taiwan. pp. 371-375.

Najjar, M., Fournier-Viger, P., Mayers, A. & Hallé, J. (2005b). Tools and structures for modelling do-
main/user knowledge in virtual learning. Proceedings of The 16th AACE World Conference on Educa-
tional Multimedia, Hypermedia & Telecommunications (ED-MEDIA 05). June 27 - July 2, Montreal,
Quebec, Canada. pp. 4023-4028

Najjar, M., Fournier-Viger, P., Mayers, A. & Bouchard, F. (2005). Memorising remembrances in computa-
tional modelling of interrupted activities. Proceedings of the 7th International Conference on Compu-
tational Intelligence and Natural Computing (CINC 05). July 21-26, Salt Lake City, Utah, USA. pp.
483-486.

Neely, J.H. (1989). Experimental dissociation and the episodic/semantic memory distinction. Experimental
Psychology: Human Learning and Memory, 6, 441-466.

Russell, S.J. & Norvig, P. (2002). Artificial intelligence: A modern approach (2nd edition). Prentice Hall.

Simic, G., Gasevic, D. & Devedzic, V. (2004). Semantic web and intelligent learning management systems.
Proceedings of the 2nd International Workshop on Applications of Semantic Web Technologies for E-
Learning. Macéió-Alagoas, Brazil. Retrieved May 15, 2005, from http://www.win.tue.nl/SW-
EL/2004/swel-its-program.html

Sirin, E., & Parsia, B. (2004). Pellet: An OWL DL reasoner. Proceedings of the International Workshop on
Description Logics (DL 2004). Whistler, Canada.

Teege, G. (1994). Using description logics in intelligent tutoring systems. Proceedings of the 1994 Des-
cription Logic Workshop (DL 2004). pp. 75-78.

Thompson, K. & Yonekura, F. (2006). Practical guidelines for learning object granularity from one higher
education setting. Interdisciplinary Journal of Knowledge and Learning Objects, 1, 163-179. Available
from http://ijklo.org/Volume1/v1p163-179Thompson.pdf

Tsarkov, D. & Horrocks, I. (2003). DL reasoner vs first-order prover. Proceedings of the 2003 Description
Logic Workshop (DL 2003). pp. 152-159.

Tulving, E. (1983). Elements of episodic memory. New York: Oxford University Press.

Wiley, D.A. (2002). Connecting learning objects to instructional design theory: A definition, a metaphor,
and a taxonomy. In D. A. Wiley (Ed.), The instructional use of learning objects (online version). Re-
trieved May 15, 2005, from http://reusability.org/read/chapters/wiley.doc

Wiley, D.A., Recker, M. & Gibbons, A. (2000). The reusability paradox. Retrieved May 15, 2005, from
http://rclt.usu.edu/whitepapers/paradox.html

A Cognitive and Logic Based Model for Building Glass-Box Learning Objects

94

Biographies
Philippe Fournier-Viger is beginning a Ph.D. in Cognitive Computer
Science at the University of Quebec at Montreal (Canada). He his a
member of the GDAC and ASTUS research groups. His research
interests are e-learning, intelligent tutoring systems, human-computer
interactions, user modeling, knowledge representation, knowledge en-
gineering and cognitive modeling.

Mehdi Najjar received his Ph. D. in Computer Science from the Uni-
versity of Sherbrooke (Canada). He is interested in knowledge repre-
sentation, management and engineering within virtual learning envi-
ronments. Being a member of the ASTUS research group, he collabo-
rates with other researchers on the refinement of the knowledge repre-
sentation structures in intelligent systems.

André Mayers (Ph. D.) is a professor of computer science at the Uni-
versity of Sherbrooke. He founded ASTUS
(http://astus.usherbrooke.ca/), a research group about Intelligent Tutor-
ing Systems, mainly focused on knowledge representation structures
that simultaneously make easier the acquisition of knowledge by stu-
dents, the identification of their plans during problem solving activi-
ties, and the diagnosis of knowledge acquisition. Andre Mayers is also
a member of PROSPECTUS (http://prospectus.usherbrooke.ca/), a re-
search group about data mining.

Dr. Roger Nkambou is currently an Associate Professor in Computer
Science at the University of Quebec at Montreal, and Director of the
GDAC (Knowledge Management Research) Laboratory
(http://gdac.dinfo.uqam.ca). He received a Ph.D. (1996) in Computer
Science from the University of Montreal. His research interests include
knowledge representation, intelligent tutoring systems, intelligent
software agents, ontology engineering, student modeling and affective
computing. He is author of more than 80 publications in AIED (Artifi-
cial Intelligence in Education) area.

