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Abstract The journal of Cognitive Computation is defined

in part by the notion that biologically inspired computational

accounts are at the heart of cognitive processes in both

natural and artificial systems. Many studies of various

important aspects of cognition (memory, observational

learning, decision making, reward prediction learning,

attention control, etc.) have been made by modelling the

various experimental results using ever-more sophisticated

computer programs. In this manner progressive inroads have

been made into gaining a better understanding of the many

components of cognition. Concomitantly in both science and

science fiction the hope is periodically re-ignited that a man-

made system can be engineered to be fully cognitive and

conscious purely in virtue of its execution of an appropriate

computer program. However, whilst the usefulness of the

computational metaphor in many areas of psychology and

neuroscience is clear, it has not gone unchallenged and in

this article I will review a group of philosophical arguments

that suggest either such unequivocal optimism in computa-

tionalism is misplaced—computation is neither necessary

nor sufficient for cognition—or panpsychism (the belief that

the physical universe is fundamentally composed of ele-

ments each of which is conscious) is true. I conclude by

highlighting an alternative metaphor for cognitive processes

based on communication and interaction.

Keywords Computationalism � Machine consciousness �
Panpsychism

Introduction

Over the hundred years since the publication of James’

psychology [1] neuroscientists have attempted to define the

fundamental features of the brain and its information-pro-

cessing capabilities in terms of (i) mean firing rates at

points in the brain cortex (neurons) and (ii) computations;

today the prevailing view in neuroscience is that neurons

can be considered fundamentally computational devices. In

operation, such computationally defined neurons effec-

tively sum up their input and compute a complex non-

linear function on this value; output information being

encoded in the mean firing rate of neurons, which in turn

exhibit narrow functional specialisation. After Hubel and

Wiesel [2] this view of the neuron as a specialised feature

detector has become treated as established doctrine. Fur-

thermore, it has been shown that richly interconnected

networks of such neurons can ‘learn’ by suitably adjusting

the inter-neuron connection weights according to complex

computationally defined processes. In the literature there

exist numerous examples of such learning rules and

architectures, more or less inspired by varying degrees of

biological plausibility; early models include [3–6]. From

this followed the functional specialization paradigm,

mapping different areas of the brain to specific cognitive

functions.

In this article I suggest that this attraction to viewing the

neuron merely as a computational device fundamentally

stems from (i) the implicit adoption of a computational

theory of mind (CTM) [7]; (ii) a concomitant functionalism

with respect to the instantiation of cognitive processes

[8, 9] and (iii) an implicit non-reductive functionalism with

respect to consciousness [10]. Conversely, I suggest that a

computational description of brain operations has difficulty

in providing a physicalist account of several key features of
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human cognitive systems (in particular phenomenal con-

sciousness and ‘understanding’) and hence that computa-

tions are neither necessary nor sufficient for cognition; that

any computational description of brain processes is thus

best understood merely in a metaphorical sense. I conclude

by answering the question What is cognition if not com-

putation? by tentatively highlighting an alternative meta-

phor, defined by physically grounded processes of

communication and interaction, which is less vulnerable to

the three classical criticisms of computationalism described

herein.1

The CTM

The CTM occupies one part of the spectrum of represen-

tational theories of mind (RTM). Although currently

undergoing challenges from dynamic systems, embodied,

enactivist and constructivist accounts of cognition (e.g.

[13–19]), the RTM remains ubiquitous in contemporary

cognitive science and experimental psychology. Contrary

to naive or direct realism, indirect realism (or representa-

tionalism) postulates the actual existence of mental inter-

mediaries—representations—between the observing

subject and the world. The earliest forms of RTM can be

traced to Descartes [20] who held that all thought was

representational2 and that it is the very nature of mind (res

cogitans) to represent the world (res extensa).

Harnish [7] observes that the RTM entails:

– Cognitive states are relations to mental representations

which have content.

– A cognitive state is:

– A state [of mind] denoting knowledge; understand-

ing; beliefs, etc.

– This definition subsequently broadened to include

knowledge of raw sensations, colours, pains, etc.

– Cognitive processes—changes in cognitive states—are

mental operations on these representations.

The Emergence of Functionalism

The CTM came to the fore after the development of the

stored program digital computer in the mid-20th century

when, through machine-state functionalism, Putnam [8, 9]

first embedded the RTM in a computational framework. At

the time Putnam famously held that:

– Turing machines (TMs) are multiply realisable on

different hardware.

– Psychological states are multiply realisable in different

organisms.

– Psychological states are functionally specified.

Putnam’s 1967 conclusion is that the best explanation of

the joint multiple realisability of TMs and psychological

states3 is that TMs specify the relevant functional states

and so specify the psychological states of the organism;

hence by this observation Putnam makes the move from

‘the intelligence of computation to the computational the-

ory of intelligence’ [7]. Today variations on CTM structure

the most commonly held philosophical scaffolds for cog-

nitive science and psychology (e.g. providing the implicit

foundations of evolutionary approaches to psychology and

linguistics). Formally stated the CTM entails:

– Cognitive states are computational relations to compu-

tational representations which have content.

– A cognitive state is a state [of mind] denoting

knowledge; understanding; beliefs, etc.

– Cognitive processes—changes in cognitive states—are

computational operations on these computational

representations.

The Problem of Consciousness

The term ‘consciousness’ can imply many things to many

different people. In the context of this article I refer spe-

cifically to that aspect of consciousness Ned Block terms

‘phenomenal consciousness’ [21], by which I refer to the

first person, subjective phenomenal states—sensory tickles,

pains, visual experiences and so on.

Cartesian theories of cognition can be broken down into

what Chalmers [10] calls the ‘easy’ problem of percep-

tion—the classification and identification of sense stim-

uli—and a corresponding ‘hard’ problem, which is the

realization of the associated phenomenal state. The

1 In two earlier articles (with Nasuto et al. [11, 12]) the author

explored theoretical limitations of the computational metaphor from

positions grounded in psychology and neuroscience; this article—

outlining a third perspective—reviews three philosophical critiques of

the computational metaphor with respect to ‘hard’ questions of

cognition related to consciousness and understanding. Its negative

conclusion is that computation is neither necessary nor sufficient for

cognition; its positive conclusion suggests that the adoption of a new

metaphor may be helpful in addressing hard conceptual questions

related to consciousness and understanding. Drawing on the conclu-

sions of the two earlier articles, the suggested new metaphor is one

grounding cognition in processes of communication and interaction

rather than computation. An analogy is with the application of

Newtonian physics and Quantum physics—both useful descriptions of

the world, but descriptions that are most appropriate in addressing

different types of questions.
2 Controversy remains surrounding Descartes’ account of the repre-

sentational content of non-intellectual thought such as pain.

3 Although Putnam talks about pain not cognition, it is clear that his

argument is intended to be general.
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difference between the easy and the hard problems and an

apparent lack of the link between theories of the former and

an account of the latter has been termed the ‘explanatory-

gap’.

The idea that the appropriately programmed computer

really is a mind, and was eloquently suggested by Chalmers

(ibid). Central to Chalmers’ non-reductive functionalist

theory of mind is the Principle of Organizational Invari-

ance (POI). This asserts that, ‘‘given any system that has

conscious experiences, then any system that has the same

fine-grained functional organization will have qualitatively

identical experiences’’.

To illustrate the point Chalmers imagines a fine-grained

simulation of the operation of the human brain—a mas-

sively complex and detailed artificial neural network. If, at

a very fine-grained level, each group of simulated neurons

was functionally identical to its counterpart in the real

brain then, via Dancing Qualia and Fading Qualia argu-

ments, Chalmers (ibid) argues that the computational

neural network must have precisely the same qualitative

conscious experiences as the real human brain.

Current research into perception and neuro-physiology

certainly suggests that physically identical brains will

instantiate identical phenomenal states and, although as

Maudlin [22] observes this thesis is not analytic, something

like it underpins computational theories of mind. For if

computational functional structure supervenes on physical

structure then physically identical brains must be compu-

tationally and functionally identical. Thus Maudlin for-

mulates the Supervenience Thesis (ibid) ‘‘... two physical

systems engaged in precisely the same physical activity

through a time will support precisely the same modes of

consciousness (if any) through that time’’.

The Problem of Computation

It is a commonly held view that ‘there is a crucial barrier

between computer models of minds and real minds: the

barrier of consciousness’ and thus that ‘information-pro-

cessing’ and ‘phenomenal (conscious) experiences’ are

conceptually distinct [23]. But is consciousness a pre-

requisite for genuine cognition and the realisation of

mental states? Certainly Searle believes so, ‘‘... the study of

the mind is the study of consciousness, in much the same

sense that biology is the study of life’’ [24] and this

observation leads him to postulate the Connection Princi-

ple whereby ‘‘... any mental state must be, at least in

principle, capable of being brought to conscious aware-

ness’’ (ibid). Hence, if computational machines are not

capable of enjoying consciousness, they are incapable of

carrying genuine mental states and computation fails as an

adequate metaphor for cognition.

In the following sections I briefly review two well-

known arguments targeting computational accounts of

cognition from Penrose and Searle, which together suggest

computations are neither necessary nor sufficient for mind.

I subsequently outline a simple reductio ad absurdum

argument that suggests there may be equally serious

problems in granting phenomenal (conscious) experience

to systems purely in virtue of their execution of particular

programs; if correct, this argument suggests either strong

computational accounts of consciousness must fail or that

panpsychism is true.

Computations and Understanding: Gödelian Arguments

Against Computationalism

Gödel’s first incompleteness theorem states that ‘‘... any

effectively generated theory capable of expressing

elementary arithmetic cannot be both consistent and

complete. In particular, for any consistent, effectively

generated formal theory F that proves certain basic

arithmetic truths, there is an arithmetical statement that is

true, but not provable in the theory.’’ The resulting true but

unprovable statement Gð�gÞ is often referred to as ‘the

Gödel sentence’ for the theory (albeit there are infinitely

many other statements in the theory that share with the

Gödel sentence the property of being true but not provable

from the theory).

Arguments based on Gödel’s first incompleteness theo-

rem—initially from Lucas [25, 26] were first criticised by

Benacerraf [27] and subsequently extended, developed and

widely popularised by Penrose [28–31]—typically

endeavour to show that for any such formal system F,

humans can find the Gödel sentence Gð�gÞ whilst the

computation/machine (being itself bound by F) cannot. In

[29] Penrose develops a subtle reformulation of the vanilla

argument that purports to show that ‘‘the human mathe-

matician can ‘see’ that the Gödel Sentence is true for

consistent F even though the consistent F cannot prove

Gð�gÞ’’:
A detailed discussion of Penrose’s formulation of the

Gödelian argument is outside the scope of this article (for

a critical introduction see [32, 33] and for Penrose’s

response see [31]); here it is simply important to note that

although Gödelian-style arguments purporting to show

‘computations are not necessary for cognition’ have been

extensively4 and vociferously critiqued in the literature

(see [34] for a review), interest in them—both positive

and negative—still regularly continues to surface (e.g.

[35, 36]).

4 For example, Lucas maintains a web page http://users.ox.ac.uk/

*jrlucas/Godel/referenc.html listing more than 50 such criticisms.

Cogn Comput (2009) 1:221–233 223

123

http://users.ox.ac.uk/~jrlucas/Godel/referenc.html
http://users.ox.ac.uk/~jrlucas/Godel/referenc.html


The Chinese Room Argument

One of the most widely known critics of computational

theories of mind is John Searle. His best-known work on

machine understanding, first presented in the 1980 paper

‘Minds, Brains & Programs’ [37], has become known as

the Chinese Room Argument (CRA). The central claim of

the CRA is that computations alone are not sufficient to

give rise to cognitive states, and hence that computational

theories of mind cannot fully explain human cognition.

More formally Searle stated that the CRA was an attempt

to prove the truth of the premise:

– Syntax is not sufficient for semantics.

Which, together with the following two axioms:

– (i) Programs are formal (syntactical).

– (ii) Minds have semantics (mental content).

... led Searle to conclude that:

– Programs are not minds.

... and hence that computationalism—the idea that the

essence of thinking lies in computational processes and that

such processes thereby underlie and explain conscious

thinking—is false [38].

In the CRA Searle emphasises the distinction between

syntax and semantics to argue that while computers can act

in accordance to formal rules, they cannot be said to know

the meaning of the symbols they are manipulating, and

hence cannot be credited with genuinely understanding the

results of the execution of programs those symbols com-

pose. In short, Searle claims that while cognitive compu-

tations may simulate aspects of cognition, they can never

instantiate it.

The CRA describes a situation where a monoglot Searle

is locked in a room and presented with a large batch of

papers covered with Chinese writing that he does not

understand. Indeed, Searle does not even recognise the

writing as Chinese ideograms, as distinct from say Japa-

nese or simply meaningless patterns. A little later Searle is

given a second batch of Chinese symbols together with a

set of rules (in English) that describe an effective method

(algorithm) for correlating the second batch with the first

purely by their form or shape. Finally Searle is given a

third batch of Chinese symbols together with another set of

rules (in English) to enable him to correlate the third batch

with the first two, and these rules instruct him how to return

certain sets of shapes (Chinese symbols) in response to

certain symbols given in the third batch.

Unknown to Searle, the people outside the room call the

first batch of Chinese symbols the script; the second batch

the story; the third questions about the story and the

symbols he returns they call answers to the questions about

the story. The set of rules he is obeying they call the

program. To complicate the matters further, the people

outside also give him stories in English and ask him

questions about them in English, to which he can reply in

English. After a while Searle gets so good at following the

instructions and the outsiders get so good at supplying the

rules which he has to follow, that the answers he gives to

the questions in Chinese symbols become indistinguishable

from those a true Chinese man might give.

From the external point of view the answers to the two

sets of questions—one in English the other in Chinese—are

equally good; Searle-in-the-Chinese-room has passed the

Turing test. Yet in the Chinese case Searle behaves like a

computer and does not understand either the questions he is

given or the answers he returns, whereas in the English

case he does. To highlight the difference consider Searle is

passed a joke first in Chinese and then English. In the

former case Searle-in-the-room might correctly output

appropriate Chinese ideograms signifying ‘ha ha’ whilst

remaining phenomenologically unmoved, whilst in the

latter, if the joke is funny, he may laugh out loud and feel

the joke within.

The decades since its inception have witnessed many

reactions to the CRA from the computational, cognitive

science, philosophical and psychological communities,

with perhaps the most widely held being based on what has

become known as the ‘Systems Reply’. This concedes that,

although the person in the room does not understand Chi-

nese, the entire system (of the person, the room and its

contents) does.

Searle finds this response entirely unsatisfactory and

responds by allowing the person in the room to memorise

everything (the rules, the batches of paper, etc.) so that there

is nothing in the system not internalised within Searle. Now

in response to the questions in Chinese and English there are

two subsystems—the native English speaking Searle and the

internalised Searle-in-the-Chinese-room—but all the same

he [Searle] continues to understand nothing of Chinese, and

a fortiori neither does the system, because there is nothing in

the system that is not just a part of him.

But others are left equally unmoved by Searle’s

response; for example in [39] Haugland asks why should

we unquestioningly accept Searle’s conclusion that ‘the

internalised Chinese room system does not understand

Chinese’, given that Searle’s responses to the questions in

Chinese are all correct? Yet, despite this and other tren-

chant criticism, almost 30 years after its first publication

there continues to be lively interest in the CRA (e.g.

[40–47]). In a 2002 volume of analysis [48] comment

ranged from Selmer Bringsjord who observed the CRA to

be ‘‘arguably the 20th century’s greatest philosophical

polariser’’ [49], to Rey who claims that in his definition

of Strong AI Searle ‘‘burdens the [Computational
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Representational Theory of Thought (Strong AI)] project

with extraneous claims which any serious defender of it

should reject’’ [50]. Nevertheless, although opinion on the

argument remains divided, most commentators now agree

that the CRA helped shift research in artificial intelligence

away from classical computationalism (which, pace Newell

and Simon [51], viewed intelligence fundamentally in

terms of symbol manipulation) first to a sub-symbolic

neural-connectionism and more recently, moving even

further away from symbols and representations, towards

embodied and enactive approaches to cognition. Clearly,

whatever the verdict on the soundness of Searle’s Chinese

room argument, the subsequent historical response offers

eloquent testament to his conclusion that ‘programs are not

minds’.

Dancing with Pixies

The core argument I wish to present in this article targeting

computational accounts of cognition—the Dancing with

Pixies (DwP) reductio—derives from ideas originally

outlined by Putnam [52], Maudlin [22], Searle [53] and

subsequently criticised by Chalmers [10], Klein [54] and

Chrisley [55, 56] amongst others5. In what follows, instead

of seeking to justify Putnam’s claim that ‘‘every open

system implements every finite state automaton’’ (FSA)

and hence that ‘‘psychological states of the brain cannot be

functional states of a computer’’, I will seek to establish the

weaker result that, over a finite time window, every open

physical system implements the trace of a FSA Q on fixed,

specified input (I). That this result leads to panpsychism is

clear as, equating FSA Q(I) to a specific computational

system that is claimed to instantiate phenomenal states as it

executes, and following Putnam’s procedure, identical

computational (and ex hypothesi phenomenal) states can be

found in every open physical system.

Formally DwP is a simple reductio ad absurdum argu-

ment that endeavours to demonstrate that:

– IF the assumed claim is true: that an appropriately

programmed computer really does instantiate genuine

phenomenal states

– THEN panpsychism holds

– However, against the backdrop of our immense

scientific knowledge of the closed physical world,

and the corresponding widespread desire to explain

everything ultimately in physical terms, panpsy-

chism has come to seem an implausible view...

– HENCE we should reject the assumed claim.

The route-map for this endeavour is as follows: in the

next section I introduce discrete state machines (DSMs)

and FSAs and show how, with input to them defined, their

behaviour can be described by a simple un-branching

sequence of state transitions. I subsequently review Put-

nam’s 1988 argument [52] that purports to show how every

open physical system implements every input-less FSA.

Then I apply Putnam’s construction to one execution trace

of any FSA with known input, such that if the FSA in-

stantiates genuine phenomenal states as it executes, then so

must any open physical system. Finally I apply the pro-

cedure to a robotic system that is claimed to instantiate

machine consciousness purely in virtue of its execution of

an appropriate program. The article is completed by a brief

discussion of some objections to the DwP reductio and

concludes by suggesting, at least with respect to ‘hard’

problems, that it may be necessary to develop an alterna-

tive metaphor for cognition to that of computation.

Discrete State Machines

In his 1950 paper ‘Computing Machinery and Intelligence’

[57] Turing defined DSMs as ‘‘machines that move in

sudden jumps or clicks from one quite definite state to

another’’ and explained that modern digital computers fall

within the class of them. An example DSM from Turing is

a simple machine that cycles through three computational

states Q1, Q2, Q3 at discrete clock clicks. Turing demon-

strated that such a device, which continually jumps through

a linear series of state transitions like clockwork may be

implemented by a simple discrete-position-wheel that

revolves through 120� intervals at each clock tick. Basic

input can be added to such a machine by the addition of a

simple brake mechanism and basic output by the addition

of a light that comes on when the machine is in, say,

computational state Q3 (see Fig. 1).

An input-less FSA is specified by a set of states Q and a

set of state-transitions Q ? Q0 for each current state Q

specifying the next state Q0. Such a device is trivially

implemented by Turing’s discrete-position-wheel machine

and a function that maps each physical wheel position Wn

to a logical computational state Qn as required. For

example, considering the simple 3-state input-less FSA

described in Table 1, by labelling the three discrete posi-

tions of the wheel W1, W2, W3 we can map computational

states of the FSA, Q1, Q2, Q3, to the physical discrete

positions of the wheel, W1, W2, W3, such that, for example,

(W1? Q1, W2? Q2, W3? Q3).

This mapping is observer relative; the physical position

W1 of the wheel could equally map to computational states

Q2 or Q3 and, with other states appropriately assigned,

the machine’s state transition sequence (and hence its

5 For early discussion of these themes see ‘Minds and Machines’,

4: 4, ‘What is Computation?’, November 1994.
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computational functionality) would remain unchanged. It is

central to this argument that all computational states are

observer relative in this fashion (i.e. they are not, contra

say mass, intrinsic to the physics of the system); compu-

tational state determination must always involve an

observer-specified function that maps from the physical

state of the system onto the computational state of the

machine.

Note, after Chalmers, that the discrete position wheel

machine described above will only implement a particular

execution trace of the FSA and Chalmers remains unfazed

at this result because he states that input-less machines are

simply an ‘‘inappropriate formalism’’ for a computation-

alist theory of mind [32].

More generally an FSA with input and output is speci-

fied by a set of states, a set of inputs, a set of outputs, and a

set of state-transitions (Q, I) ? (Q0, O) for each input/state

pair (Q, I), specifying the next state Q0 and the output O

that will be produced by that state and input (see Table 2).

Perhaps surprisingly, over a finite time period we can

similarly implement any FSA with a given (i.e. specified

a priori) set of input/output contingencies.

Over a specified time interval Turing’s discrete-posi-

tion-wheel machine can be made to implement an FSA

with particular input and output contingencies if there is a

mapping from the physical wheel positions onto formal

states of the FSA, and from inputs and outputs to the

system onto inputs and outputs of the FSA such that: for

every formal state-transition (Q, I) ?(Q0, O) in the speci-

fication of the FSA, if the physical discrete-position-wheel

machine is in a state Ws and receiving input i such that

f(Ws) = Q and f(i) = I, this causes it to transit into a state q0

such that f(q0) = Q0 and to produce output o such that f(o)

= O.

Hence, although the operation of an FSA with input is in

general described by a series of contingent branching state

transitions which map from current state to next state, (Q,

I)? Q0, a priori knowledge of the input to the FSA over a

finite time interval entails that such contingent behaviour

can be unfolded like clockwork to a finite series of linear

state transitions. For example, if Turing’s 3-state FSA is

initially in state Q1 and the input (brake) is ON for two

subsequent clock ticks and then OFF for the next three, its

computational behaviour—its execution trace—is fully

described by the sequence of state transitions Q1? Q1?
Q1? Q2? Q3? Q1.

It is trivial to observe that we can fully implement this

particular trace of this particular FSA with this particular

input (I = BRAKE-ON1, BRAKE-ON2, BRAKE-OFF3,

BRAKE-OFF4, BRAKE-OFF5, BRAKE-OFF6) using a

six-position discrete state wheel, starting the wheel in

position W1 and using the following function to map from

physical wheel positions to computational states:

W1 _ W2 _ W3 _ W6 ? Q1

W4 ? Q2

W5 ? Q3

Thus, with a priori knowledge of input to the FSA over a

finite time interval we can trivially implement any FSA

with particular input–output contingencies by the use of a

simple mapping function to map from each physical wheel

position/state Wn to each logical computational state of the

FSA Qn and output (e.g. LAMP ON/OFF) as required.

Open Physical Systems

Discussed in a short appendix to Putnam’s 1988 mono-

graph ‘Representation and Reality’ is a brief argument that

endeavours to prove that every open physical system is a

realisation of every abstract FSA and hence that function-

alism fails to provide an adequate foundation for the study

of the mind.

Fig. 1 Turing’s discrete 3-state wheel machine

Table 1 Three-state input-less FSA

Previous state Q1 Q2 Q3

Next state Q2 Q3 Q1

Table 2 Three-state FSA with simple input

Previous FSA state

Input Q1 Q2 Q3

Brake-OFF Q2 Q3 Q1

Brake-ON Q1 Q2 Q3
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Central to Putnam’s argument is the observation that

every open physical system, S, is in different states at every

discrete instant and hence can be characterised by a dis-

crete series of non-cyclic natural state transitions [s1, s2...

st... sn]. Putnam argues for this on the basis that every such

open system, S, is continually exposed to electromagnetic

and gravitational signals from, say, a natural clock. Hence

by quantising these natural states appropriately, every open

physical system can by considered as a generator of dis-

crete non-repeating state sequences, [s1, s2... s?].

Thus, reconsidering Turing’s 3-state FSA machine over

the fixed interval [t1... t6], starting in state Q1, with

input (I = BRAKE-ON1, BRAKE-ON2, BRAKE-OFF3,

BRAKE-OFF4, BRAKE-OFF5, BRAKE-OFF6) known

a priori, it is trivial to observe that, over time interval [t1...

t6], if we map the FSA state Q1 to the disjunction of open

physical system states, [s1 _ s2 _ s3 _ s6], FSA state Q2 to

open physical system state s4 and FSA state Q3 to open

physical system state s5, then the open physical system will

fully implement the execution of the FSA (Q, I) as it

transits open physical system states [s1... s6] over time

interval [t1 ... t6].

To show that being in state Q1 at time t1 caused the open

physical system to enter FSA state Q1 at t2, we observe that

at t1 the open physical system is in state s1 (which the

mapping function labels FSA state Q1) and that being in

state s1 at t1 causes the open physical system to enter state

s2 (which the mapping function also labels FSA state Q1) at

t2, etc. Hence, given the current state of the open physical

system at time t and the mapping function we can easily

predict its future state and hence how the states of FSA

evolve over the time interval under observation.6

Robots, Pixies and Panpsychism

At the heart of the computationalist’s putative conscious

robot there lies a computational system; typically a

microprocessor, memory and memory-mapped peripherals.

Such a system is effectively a very sophisticated DSM/

FSA. Hence, if the input to the robot is fixed and specified

over a finite time interval we can, pace Putnam, map the

execution trace of the robot’s control program onto the

state evolution of any open physical system; thus, if the

robot instantiates genuine phenomenal consciousness

purely in virtue of its execution of its control program, so

must the state evolution of any open physical system;

hence the computationalist—if his claims are correct—

leads us to embrace panpsychism, with phenomenal con-

sciousnesses—ethereal pixies—dancing everywhere.

Objections

The Argument from Repeatability

The DwP reductio is grounded upon the notion that, for a

finite period with all input known, the state transitions of a

robot’s control program can be mapped onto any [suitably

large] discrete-position-wheel such that, if the robot

instantiates phenomenal states merely in virtue of its exe-

cution of its control program, then so must any [suitably

large] digital wheel or, pace Putnam, any open physical

system.

Hofstadter, in a critique of the CRA [58], objects that we

can only perform this type of mapping a posteriori, i.e. we

can only map the robot’s computational states onto the

physical states of the system after the program has exe-

cuted and hence know the computational states it gener-

ates. Hence Putnam’s construct is not a ‘real mapping’ and

this type of argument is simply ‘not science’.

However, although Hofstadter is clearly correct to

highlight that Putnam style mappings can only be applied

a posteriori, this is irrelevant to the force of the DwP

reductio. Consider a simple experiment (1) where a robot is

presented with a specific stimulus—say a bright red square

in the centre of its visual field—over a finite time period

T1... Tk, with the robot subsequently reporting that it per-

ceives a vivid red square; the computationalist will assert

that over this period T1... Tk the robot instantiated the

phenomenal states associated with experiencing the bright

red square precisely in virtue of the execution of its control

program operating on this red square input.

Now, imagine a second experiment (2) using exactly the

same automaton, over exactly the same length time interval

T1... Tk, with exactly the same input, I1... Ik. As the

experimental setup is precisely the same for experiment (2)

as for experiment (1) the computationalist must continue to

claim that the robot continues to instantiate appropriate

phenomenological states over this period and it is clear that

a posteriori knowledge of the system input does not impact

this claim.

But, given the vagaries inherent in any real-world

experiment, how can we ensure that the input to the robot

will be exactly the same in both experiments? One pos-

sible solution could be to simply ensure that the appro-

priate digital values are always stored on the robot’s

visual sensor-transducer (e.g. by disconnecting genuine

optical input to the frame store and simply ensuring that

vivid-red pixel values are stored appropriately in its

memory map).

6 In [32], Chalmers critiques Putnam’s construction, noting that it

fails to ensure that all states of the FSA are reliably transited;

however, he subsequently demonstrates (ibid) that every physical

system containing a ‘clock’ and a ‘dial’ will implement every input-

less FSA.
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A second possibility is to simply run the entire experi-

ment as a virtual simulation (i.e. to use a virtual robot in a

virtual reality). Clearly for the computationalist such a

virtual simulation cannot impact the putative phenomenal

states of the [now virtual] robot; as long as the input to the

robot and its control program remain the same, appropriate

contingent state transitions will occur, hence instantiating

appropriate ‘phenomenal states’ in the robot.

Computational States Are not Observer-Relative but

Are Intrinsic Properties of any Genuine Computational

System

In addressing this objection I will initially consider the

most primitive of computational systems—a simple two

input/single output logic gate X, with physical behaviour

fully specified by a table of voltage levels (see Table 3).

It is apparent that under mapping A (see Table 4), the

gate X computes the logical AND function. Conversely,

under mapping B (see Table 5), it is apparent that the gate

X computes the logical OR function.

It follows that, at a fundamental level in the physical

realisation of any logical system, such observer-relativity

must hold: the computational function of the system must

be contingent on the observer-determined mapping used.7.

Furthermore it is clear that, even if the physical-to-

computational mapping is known, the precise function of

the system-as-a-whole remains fundamentally observer-

relative: that is, ‘‘different answers grow from the concerns

of different individuals.’’8 Consider (a) a chess playing

computational machine used to control the position of

chess pieces in a game against, say, a human opponent and

(b) the same program being used to control the illumination

of a strip of coloured lights—the two-dimensional chess

board being mapped to a one-dimensional strip of lights

where the colour of each light is contingent on the value

(king, knight, pawn, etc.) of the piece mapped onto it—in

an interactive art exhibition; clearly, to paraphrase Witt-

genstein, the meaning of a computation is contingent on its

use.

The Objection From Randomness

Superficially the DwP reductio only targets DSMs; it has

nothing to say about the conscious state of suitably engi-

neered Stochastic Automata [60]. In a stochastic automaton

the future state of the machine is determined by a proba-

bility distribution which determines, given the current state

(and any input), the probability of entering any subsequent

state. Thus the tuple hQ, I, O, P(q’,o|q,i)i represents a sto-

chastic automaton where Q denotes the set of states, I the

set of input symbols, O the set of output symbols and

P(q’,o|q,i) the transition probabilities that the stochastic

automaton transitions from state s [ S to state s0 [ S and

outputs symbol o [ |O provided that i [ I was the input

symbol.

It is trivial to show that (a) in the theory of computation

stochastic automata are no more powerful9 than deter-

ministic automata [61] and that (b) there exist techniques to

decompose a stochastic automaton into a sequential com-

bination of automata such that every stochastic automata

can be decomposed into a controlled random source and a

deterministic automaton [60]. A controlled random source

is a single state stochastic automaton hQ, I, O, Po|ii that

returns an output symbol o [ O given i [ I (where the

output q0 becomes the input to the subsequent deterministic

automaton).

Clearly pseudo-random symbols generated by computer

cannot truly be random; however, what is required to

implement a stochastic automaton is merely that a finite

segment of the generated symbols must be statistically

indistinguishable from a truly random sequence for a

suitably long period of time and there exist many well-

defined methods to accomplish this (for discussion see

[62]). Hence over a finite period the behaviour of two

machines, one whose state evolution is determined by a

Table 3 Circuit behaviour

Input-1 (V) Input-2 (V) Output (V)

0 0 0

0 5 0

5 0 0

5 5 5

Table 4 Mapping A

5 V Computational state true

0 V Computational state false

Table 5 Mapping B

0 V Computational state true

5 V Computational state false

7 Although it is true that as the complexity of the logical system

increases, the number of consistent computational functions that can

be assigned to it diminishes, it remains the case that its computational

properties will always be relative to the threshold logic value used;

the physicalstate ? computationalstate mapping will always deter-

mine the logical-function that the physical computational system

instantiates.
8 Cf. ‘What is a word-processor?’, in Winograd and Flores [59].

9 The set of languages ‘acceptable’ by a stochastic automaton and a

deterministic automaton is the same.
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genuine random source (e.g. ‘Shot’ noise) the other by

pseudo-random simulation, can be made indistinguishable.

Thus, for the ‘objection from randomness’ to hold, any

putative phenomenal states of the system must be contin-

gent upon epiphenomenal properties of the underlying

noise source and not the actual stochastic computational

system.

Removing Contingencies

In the study of Bishop [63] I discuss several objections to

the DwP reductio with perhaps the most potent coming

from Chalmers who argues that ‘‘Humans do not have a

single path of states along which their lives are determined.

... For any given sequence of states that a human goes

through, it remains the case that if things in the world had

gone slightly differently, they would have functioned in an

interestingly different way. Omitting this potentiality

leaves out a vital part of the description of human func-

tioning. A wind-up toy or perhaps a videotape of my life

could go through the same sequence of states, but it would

not be a cognitive system. Cognition requires at least the

possibility of functioning in more than one way’’ [32].

My initial response to this line of argument [64] is

analogous to that first outlined by Maudlin [22] who,

through application of the supervenience thesis, similarly

questions the relevance of counterfactual-involving condi-

tionals to conscious experience. If one blocks the connec-

tion that supports some counterfactual conditional in a

currently static part of the system, is it plausible that this

could change or remove the system’s conscious experi-

ence? Maudlin argued that it could not.10

In the study of Bishop [64], I argue from a physicalist/

engineering perspective that the mere deletion of state

sequences—that given fixed input to the robot will never be

entered—cannot affect the phenomenal states in the robot.

In outline, consider what happens if a putative conscious

robot R1 with full counterfactual sensitivity is step-by-step

transformed into new robot R2, such that its resulting

behaviour is determined solely by a linear un-branching

series of state transitions; substituting each conditional

branching state transition sequence in the evolution of R1

with a linear state transition defined by current state and the

(a priori) specified input. It is clear that, over a finite time

interval and with identical input, the phenomenal experi-

ence of R1 and R2 must be the same. Otherwise we have a

robot, Rn, (R1\ Rn B R2), whose phenomenal experience

is somehow contingent upon the presence or absence in the

automaton of a series of potential state transitions that are

never entered, contravening the supervenience thesis.

Two responses to this conclusion, from Chrisley and

Chalmers, tackle two distinct concerns regarding the above

argument. The first, from Chalmers, is Functionalist: from

this perspective the moment R1 and R2 cease to encapsulate

the same fine-grained functional organisation they,

through the POI, cease to have the same underlying phe-

nomenal states. That is it is not the presence or absence of

individual non-entered state transitions sequences which

affects the phenomenal states of the robots, but the con-

comitant constriction of the supervening fine-grained

functional organisation [10].

The second, from Chrisley, is Physicalist: from this

perspective, as everything supervenes only on the physical,

the mere removal of non-entered state transition sequences

does not in-itself affect the phenomenal states of the

machine. However, at the ‘Toward a Science of Con-

sciousness’ conference in Tucson 2006 Ron argued that as

we morph between R1 and R2 with the deletion of each

conditional non-entered state sequence substantive physical

differences between R1 and R2 will emerge.11 Effectively,

with each replacement of the non-entered conditional state

sequences, we crucially modify or delete the concomitant

[machine/object code]conditional test and branch instruc-

tions hence R1 and R2 gradually become two distinct

physical systems—one will always execute each condi-

tional state transition contingent on its (fixed) input before

entering Q0, the second simply entering Q0 directly—and so

the DwP reductio no longer holds.

Is Counterfactual Sensitivity Essential to a Computational

Account of Cognition?

To respond to Chalmers and Chrisley’s concerns I will

consider a real robot R1 operating under tightly controlled

experimental conditions and a virtual robot R2, an exact

replicant of R1, operating in a virtual reality (VR)

10 ‘‘Suppose that a system exists whose activity through a period of

time supports a mode of consciousness, e.g. a tickle or a visual

sensum. The supervenience thesis tells us that, if we introduce into the

vicinity of the system an entirely inert object that has absolutely no

causal or physical interaction with the system, then the same activity

will support the same mode of consciousness. Or again, if the activity

of a system supports no consciousness, the introduction of such an

inert and causally unconnected object will not bring any phenomenal

state about if an active physical system supports a phenomenal state,

how could the presence or absence of a causally disconnected object

effect that state?’’ [22].

11 In his article, ‘Counterfactual computational vehicles of con-

sciousness’ [56] Chrisley states, ‘‘Bishop’s main mistake: claiming

that differences in counterfactual behaviour do not constitute physical

differences. Presumably, it is by virtue of some physical difference

between a state of R1(n) and the corresponding state of R1(n?1) that

gives the former a counterfactual property the latter lacks. Note that to

delete the nth transition, one would have to physically alter R1(n-1). So

despite Bishop’s claim, if R1 and R2 differ in their counterfactual

formal properties, they must differ in their physical properties. Causal

properties (even counterfactual ones) supervene on physical

properties.’’
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simulation of R1’s experimental environment. Both robots

have a complex visual pathway leading from their real/

virtual sensors to their computational visual cortex (e.g. a

neural network) with which to perceive their environment.

In each of the following experiments the robots are

instructed to report the colour of a large red square fixed in

the centre of their visual field.

For the real robot operating in the real world this entails

obtaining a succession of values from its optical transducer

that correspond to the lighting conditions in its visual field;

employing image processing algorithms to isolate the

square then abstracting the array of values that define its

colour. Finally these values are passed to the robot’s visual

cortex enabling it to report back the colour of the square.

Ex hypothesi the virtual robot, being an exact replication

of the real robot in a precisely rendered virtual simulation

of the real world, will perform exactly the same compu-

tational operations, extracting exactly the same array of

colour values to pass to its visual sub-system, before it is

also able to report the colour of the square. Hence, when

we run the experiment, as both robot’s control programs

are exactly the same and the robots receive identical data

from their environments, both robots will report seeing the

vivid red square and both will experience identical phe-

nomenal sensations (if any); if the square had been say

deep purple in both the real and virtual worlds, then both

robots would have reacted contingently and reported the

change.

Next the virtual robot software is re-complied using

two slightly different partial evaluation compilers [65] A

and B to produce two new virtual robot systems R2a and

R2b. It follows that for the two virtual robots, in virtue of

the two partial evaluation compilers pre-computing all

static/known input at compile time, knowledge of the

fixed virtual input—the large red square—will enable the

compilers to appropriately improve the efficiency of their

object code.

The first partial evaluation compiler, compiler A, pre-

evaluates the values of all the variables active in the robot’s

visual pathway and deletes all unutilised object code

including any redundant conditionals. This is analogous to

the situation described in ‘‘Removing contingencies’’.

In the second instance the partial evaluation compiler B

also pre-evaluates the values of all the variables active in

the robot’s visual pathway, but this time merely deletes the

un-utilised object code on the consequent side of each

conditional that forms part of the robot’s visual pathway,

leaving all the conditional statements (with their anteced-

ents) in situ; in this scenario although each conditional

continues to be evaluated, because the input to the robot is

fixed by the experimental conditions that pertain in the

virtual environment—the large red square—the value of

each antecedent is fixed and hence only one arm of the

conditional consequent ever executed (the non-executed

arm being deleted at compile time as before).

In all three cases—the original compiler and partial

evaluation compilers A and B—it follows that all robots

respond appropriately by indicating that they perceive the

large vivid red square in the centre of their visual field.

However, comparing the phenomenal states of R1 in

comparison to R2a, because the compiled (machine) code

executed by R1 and R2a is physically distinct, both Chrisley

and Chalmers can claim the DwP reductio does not hold.

Conversely, considering the phenomenal states of R1 in

comparison to R2b, because the compiled code that is

actually executed by both robots is identical, the two

physical systems are engaged in precisely the same phys-

ical activity throughout the time period and Maudlin’s

supervenience thesis applies. Hence, R1 and R2 must sup-

port precisely the same modes of consciousness (if any)

through that time and the DwP reductio holds.12

Lastly, it has been suggested that the DwP reductio

directed towards a known conscious system (e.g. human

brain states sampled above their Nyquist rate [66]) con-

tinues to hold; hence we must conclude that either pan-

psychism is true or—even more alarmingly—that the

human brain is not conscious. However the reductio targets

computationalism—the formal abstraction and instantia-

tion of consciousness through appropriate DSMs (and/or

their stochastic variants); the DwP reductio does not target

continuous [dynamic] systems or identity theories (where

conscious properties of the system are defined to be irre-

ducible from the underlying physical agent–environment

system). For the defender of the computational metaphor to

simply assume the brain is a DSM is circulus in probando.

Are These A Priori Critiques of the Computational

Metaphor too Strong?

The three a priori arguments discussed in this article pur-

port to show that computations are neither necessary nor

sufficient for cognition; specifically that the execution of

mere computations does not instantiate genuine under-

standing or phenomenal consciousness and hence that there

12 It is also clear that in this case the ‘system as a whole’ (i.e. the

environment, robot and VR and compiler) remains sensitive to

counterfactuals—if we had pre-specified the experimental conditions

to be a dull blue square, the partial evaluation compiler B would have

modified object code accordingly—hence at the level of the system,

Chalmers’ POI continues to apply. Interestingly, as this form of

compile time partial evaluation process cannot be undertaken for the

real robot, the DwP reductio strictly no longer holds against it;

however, this does not help the computationlist as any putative

phenomenal states of the real robot have now become tightly bound to

properties of the real-world agent/environment interactions and not

the mere computations.
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are limits to the use of the computational metaphor in

cognitive science; but perhaps this conclusion is too

strong?

How Do the A Priori Arguments Discussed Herein

Accommodate the Important Results Being Obtained

Through Computational Neuroscience to Cognition?

There are two responses to this question, one weak and one

strong. The first—the weak response—emerges from the

Chinese room and DwP reductio. It acknowledges the huge

value that the computational metaphor plays in current

psychology and neuroscience and even concedes that a

future computational neuroscience may be able to simulate

any aspect of neuronal processing and offers insights into

all the workings of the brain. However, although such a

computational neuroscience will result in deep under-

standing of cognitive processes there is a fundamental

ontological divide between the simulation of a thing and

the thing itself. That is we may simulate the properties of

gold using a computer program but such a program does

not automatically confer upon us riches (unless of course

the simulation becomes duplication; an identity). Hence

Searle’s famous observation that ‘‘… the idea that com-

puter simulations could be the real thing ought to have

seemed suspicious in the first place because the computer

is not confined to simulating mental operations, by any

means. No one supposes that computer simulations of a

five-alarm fire will burn the neighbourhood down or that a

computer simulation of a rainstorm will leave us all

drenched. Why on earth would anyone suppose that a

computer simulation of understanding actually understood

anything?’’ [37].

The second—the stronger response—suggests that there

may be principled reasons why it may not be possible to

adequately simulate all aspects of neuronal processing

through a computational system; there are bounds to a

computational neuroscience. Amongst others this position

has been espoused by: Penrose (see section ‘‘Computations

and understanding: Gödelian arguments against computa-

tionalism); Copeland claims the belief that ‘‘the action of

any continuous system can be approximated by a TM to

any required degree of fineness ... is false’’13; and Smith

[68] outlines results from ‘Chaos theory’ which describe

how ‘Shadowing theorems’ fundamentally limit the set of

chaotic functions that a TM can model to those that are

‘well-behaved’; functions that are not well-behaved cannot

be computationally described.

Both of the above responses accommodate results from

computational neuroscience, but clearly both also highlight

fundamental limitations to the computational metaphor.

So what Is Cognition, If Not Computation?

In this article I have argued from an a priori perspective

that it is time for the hegemony of the computational

metaphor in Cognitive Science to be challenged; a tentative

suggestion for an alternative metaphor for cognitive pro-

cesses—one based on communication and interaction—has

been suggested (see Nasuto et al. [11, 12]). This metaphor,

based on communication and interaction, potentially offers

the following advantages over the computational metaphor:

firstly, from a theory-of-computation perspective, there is

evidence that ‘Interaction Machines’ are computationally

more powerful than (TM) algorithms and hence may

escape Penrose style criticisms [69]; secondly, a metaphor

based on communication and interaction does not explicitly

perform discrete computations on discrete representa-

tions—symbol manipulations—in the classical cognitivist

way and hence is much less vulnerable to CRA/DwP

arguments; finally, communication—as a new biological

information processing metaphor—could more efficiently

and compactly describe complex neuronal operations and

provide us with a better intuitive understanding of the

meaning of these operations [12]. In contrast to computa-

tion, communication is not merely an observer-relative

anthropomorphic projection on reality, as even simple

organisms (e.g. bacteria) communicate with each other or

interact with their environment. Thus the new metaphor—

cognition as communication—is sympathetic to modern

post-symbolic, anti-representationalist, embodied, enactive

accounts of cognition such as those from Brooks [70],

Varela [19], O’Regan [15], Thompson [71] and Bishop and

Nasuto [13].

Conclusion

All matter, from the simplest particles to the most complex

living organisms, undergo physical processes which in

most sciences are not given any special interpretation.

However, when it comes to nervous systems the situation

changes abruptly. In neuroscience, and in connectionism, it

is assumed that neurons and their systems possess special

computational capabilities; this is equivalent to claiming

that a spring, when extended by a moderate force, com-

putes its deformation according to Hooke’s law. In this

13 Copeland’s argument is detailed, but at heart he follows an

extremely simple line of reasoning: consider an idealised analogue

computer that can add two reals (a, b) and output one if they are the

same, zero otherwise. Clearly either (a) or (b) could be non-

computable numbers (in the specific formal sense of non-Turing-

computable numbers). Hence clearly, there exists no TM that, for any

finite precision (k), can decide the general function F(a = b) (see [67]

for detailed discussion of the implications of this result).
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article I initially highlighted the ubiquity of this compu-

tational metaphor in the Cognitive Sciences before

reviewing two well-known arguments that together purport

to demonstrate that computation is neither necessary nor

sufficient for cognition; I subsequently introduced a less

well-known reductio—DwP—that endeavours to demon-

strate that if computations can instantiate consciousness,

then panpsychism is true and consciousness is everywhere.

Taken together I conclude these arguments offer serious

a priori reason to question the computational hegemony in

cognitive science.

Conversely, an alternative metaphor grounded on com-

munication has recently been suggested by Nasuto [11]. In

this preliminary study we claim that treating neurons as

communicating—rather than computing—with each other

more accurately captures their complex, and to us funda-

mental, capability of modifying their behaviour depending

on context. Furthermore, and in contrast to computation,

we claim that communication is not merely an observer-

relative anthropomorphic projection on reality, as even

simple organisms (e.g. bacteria) communicate with each

other or interact with their environment. Finally, although

it has been robustly demonstrated that populations of

simple communicating organisms can solve complex

problems in optimisation and search [72, 73]; although the

role of communication in human development and in social

interactions cannot be overestimated [74]; although com-

munication has advantages over computation as a metaphor

for ‘hard’ problems of cognition—clearly much more

research is required (to define, ground and develop the new

metaphor) before communication (like consciousness) is

‘taken seriously’.
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About Gödel’s first incompleteness theorem and turing machines,

CLE e-Prints. 2007;7(3).

37. Searle J. Minds, brains and programs. Behav Brain Sci.

1980;3(3):417–57.

38. Searle J. The mystery of consciousness. London: Granta Books;

1994.

39. Haugland J. Syntax, semantics, physics. In: Preston J, Bishop JM,

editors. Views into the Chinese room. Oxford University Press:

Oxford; 2002; p. 360–79.

40. Freeman A. Output still not really convinced. The Times Higher

April 11. London, UK; 2003.

41. Freeman A. The Chinese room comes of age: a review of Preston

& Bishop. J Conscious Stud. 2004;11(5–6):156–8.

42. Garvey J. A room with a view? Philos Mag. 2003;3:61.

43. Overill J. Views into the Chinese room: new essays on Searle and

artificial intelligence. J Logic Comput. 2004;14(2):325–6.

44. Rapaport WJ. Review of Preston J & Bishop M, editors. Views

into the Chinese room: new essays on Searle and artificial

intelligence. Aust J Philos. 2006;94(1):129–45.

45. Richeimer J. Review of Preston J and Bishop M, editors. Views

into the Chinese room: new essays on Searle and artificial

intelligence. Philos Books. 2004;45(2):162–7.

46. Sprevak MD. The Chinese carnival. Stud Hist Philos Sci.

2005;36:203–9.

47. Waskan JA. Review of Preston J and Bishop M, editors. Views

into the Chinese room: new essays on Searle and artificial

intelligence. Philos Rev. 2005;114(2):277–82.

48. Preston J, Bishop JM (eds). Views into the Chinese room. Oxford

University Press; Oxford; 2002.

49. Bringsjord S, Noel R. Real robots and the missing thought-

experiment. In: Preston J, Bishop JM, editors. Views into the

Chinese room. Oxford: Oxford University Press; 2002. p. 360–79.

50. Rey G. Searle’s misunderstanding of functionalism and strong

AI. In: Preston J, Bishop JM, editors. Views into the Chinese

room. Oxford: Oxford University Press, 2002. p. 360–79.

51. Newell A, Simon HA. Computer science as empirical inquiry:

symbols and search. Commun ACM. 1976;19(3):113–26.

52. Putnam H. Representation and reality. Cambridge, MA: Bradford

Books; 1988.

53. Searle J. Is the brain a digital computer? Proc Am Philos Assoc.

1990;64:21–37.

54. Klein C. Maudlin on computation (working paper) 2004.

55. Chrisley R. Why everything doesn’t realize every computation.

Minds Mach. 1995; 4:403–20.

56. Chrisley R. Counterfactual computational vehicles of con-

sciousness. Toward a science of consciousness. April 4–8 2006.

Tucson Convention Center, Tucson, AZ, USA; 2006.

57. Turing AM. Computing machinery and intelligence. Mind.

1950;49:433–60.

58. Hofstadter D. Reflections. In: Hofstadter D, Dennett DC, editors.

The mind’s I: fantasies and reflections on self and soul. Penguin:

London; 1981.

59. Winograd T, Flores F. Understanding computers and cognition.

New York: Addison-Wesley; 1986.

60. Paz A. Introduction to probabilistic automata. New York: Aca-

demic Press; 1971.

61. Sipser M. An introduction to the theory of computation. Course

Technology Inc.; 1997.

62. Brent RP. Random number generation and simulation on vector

and parallel computers. Lect Notes Comput Sci. 1998;1470:1–20.

63. Bishop JM. Dancing with pixies. In: Preston, J, Bishop JM,

editors. Views into the Chinese room. Oxford: Oxford University

Press; 2002. p. 360–79.

64. Bishop JM. Counterfactuals cannot count: a rejoinder to David

Chalmers. Conscious Cogn. 2002;11(4):642–52.

65. Futamura Y. Partial evaluation of computation process—an

approach to compiler-compiler. Syst Comput Controls.

1971;2:45–50.

66. Nyquist H. Certain topics in telegraph transmission theory. Trans

AIEE. 1928;47:617–44.

67. Copeland BJ. The broad conception of computation. Am Behav

Sci. 1997;40:690–716.

68. Smith P. Explaining chaos. Cambridge, UK: Cambridge Uni-

versity Press; 1998.

69. Wegner P. Why interaction is more powerful than algorithms.

Commun ACM. 1997;40(5):80–91.

70. Brooks R. Intelligence without representation. Artif Intell.

1981;47:139–59.

71. Thompson E. Mind in life. Cambridge, MA: Harvard University

Press; 2007.

72. Bishop JM. Stochastic searching networks. In: Proceedings of the

1st IEE International Conference on Artificial Neural Networks.

London: IEE Press; 1989. p. 329–31.

73. De Meyer K, Nasuto SJ, Bishop JM. Stochastic diffusion opti-

misation: the application of partial function evaluation and sto-

chastic recruitment in Swarm Intelligence optimisation. In:

Abraham A, Grosam C, Ramos V, editors. Studies in computa-

tional intelligence (31): stigmergic optimization. Berlin:

Springer; 2006. p. 185–207.

74. Brown R. Social psychology. New York: Free Press; 1965.

Cogn Comput (2009) 1:221–233 233

123

http://psyche.cs.monash.edu.au/psyche-index-v2.html
http://psyche.cs.monash.edu.au/psyche-index-v2.html

	A Cognitive Computation Fallacy? Cognition, Computations �and Panpsychism
	Abstract
	Introduction
	The CTM
	The Emergence of Functionalism

	The Problem of Consciousness
	The Problem of Computation
	Computations and Understanding: G—delian Arguments Against Computationalism
	The Chinese Room Argument
	Dancing with Pixies

	Discrete State Machines
	Open Physical Systems
	Robots, Pixies and Panpsychism

	Objections
	The Argument from Repeatability
	Computational States Are not Observer-Relative but Are Intrinsic Properties of any Genuine Computational System
	The Objection From Randomness
	Removing Contingencies
	Is Counterfactual Sensitivity Essential to a Computational Account of Cognition?


	Are These A Priori Critiques of the Computational Metaphor too Strong?
	How Do the A Priori Arguments Discussed Herein Accommodate the Important Results Being Obtained Through Computational Neuroscience to Cognition?

	So what Is Cognition, If Not Computation?
	Conclusion
	Acknowledgments
	References


