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Players in a game are “in equilibrium” if they are rational, and accurately
predict other players’ strategies. In many experiments, however, players are not
in equilibrium. An alternative is “cognitive hierarchy” (CH) theory, where each
player assumes that his strategy is the most sophisticated. The CH model has
inductively defined strategic categories: step 0 players randomize; and step k
thinkers best-respond, assuming that other players are distributed over step 0
through step k � 1. This model fits empirical data, and explains why equilibrium
theory predicts behavior well in some games and poorly in others. An average of
1.5 steps fits data from many games.

I. INTRODUCTION

Most theories of behavior in games assume that players
think strategically, meaning that they form beliefs by analyzing
what others might do, and choose rational responses given their
beliefs. But these assumptions, by themselves, cannot precisely
predict outcomes. This is because players can act rationally given
their beliefs, but have mistaken beliefs about what others will do.
Thus, game theorists add the assumption that players are mutu-
ally consistent; that is, each player’s belief is consistent with what
the other players actually do. Taken together, mutual rationality
and mutual consistency define equilibrium.

In many real-world games, however, such as the stock mar-
ket, some players believe, incorrectly and overconfidently, that
the other participants are not doing as much thinking as they
themselves are. In these situations, the players are not in equi-
librium because some players’ beliefs are mistaken.

In his book, General Theory of Employment, Interest, and
Money, Keynes [1936] likens the stock market to a newspaper
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contest in which people guess which faces others will judge to be
the most beautiful. “It is not the case of choosing those which, to
the best of one’s judgment, are really the prettiest, nor even those
which average opinion genuinely thinks the prettiest. We have
reached the third degree, where we devote our intelligences to
anticipating what average opinion expects the average opinion to
be. And there are some, I believe, who practice the fourth, fifth,
and higher degrees” [p. 156].

The essence of Keynes’s observation is captured in the
“beauty contest” game, in which players are asked to pick num-
bers from 0 to 100, and the player whose number is closest to 2⁄3
of the average wins a prize. Equilibrium theory predicts each
contestant will reason as follows: “Even if all the other players
guess 100, I should guess no more than 2⁄3 times 100, or 67.
Assuming that the other contestants reason similarly, however, I
should guess no more than 45 . . . ” and so on, finally concluding
that the only rational and consistent choice for all the players is
zero.

When the beauty contest game is played in experimental
settings, the group average is typically between 20 and 35. Ap-
parently, some players are not able to reason their way to the
equilibrium value, or they assume that others are unlikely to do
so. If the game is played multiple times with the same group, the
average moves close to 0.

There are other games where players are surprisingly close
to equilibrium, however. Consider a stylized business entry game,
in which n players decide simultaneously whether to enter a
market with known demand d, where d � n. The payoffs are
such that players prefer to enter if a total of d or fewer players
enter, and they prefer to stay out otherwise. Equilibrium theory
predicts the total amount of entry will be very close to the demand
d, and this is exactly what happens, even in one-shot experiments
where the usual forces that might lead to equilibration (such as
learning) have not yet had a chance to operate.

In this paper we propose an alternative to equilibrium the-
ory—a cognitive hierarchy model—that explains empirical behav-
ior in both of these games. In cognitive hierarchy theories, each
player believes he understands the game better than the other
players. Specifically, CH models posit decision rules that reflect
an iterated process of strategic thinking (see Binmore [1988]).
The iteration formalizes Selten’s [1998, p. 421] intuition that “the
natural way of looking at game situations . . . is not based on
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circular concepts, but rather on a step-by-step reasoning
procedure.”

The CH model consists of iterative decision rules for players
doing k steps of thinking, and the frequency distribution f(k)
(assumed to be Poisson) of step k players. The iterative process
begins with “step 0” types who do not assume anything about
their opponents and merely choose according to some probability
distribution (for simplicity, we assume uniform). “Step k” think-
ers assume that their opponents are distributed, according to a
normalized Poisson distribution, from step 0 to step k � 1; that
is, they accurately predict the relative frequencies of players
doing fewer steps of thinking, but ignore the possibility that some
players may be doing as much or more. Step 2 players of the
beauty contest game, for example, assume the other players are a
combination of step 0 players (whose average guess is 50), and
step 1 players (who guess 2⁄3 times 50).

A Poisson distribution is described by a single parameter �,
which is the mean and variance.1 In 24 beauty contest data sets,
the median estimate is �̂ � 1.61. This value explains why the
convergence process stops at an average around 30 in the beauty
contest game, rather than converging to the equilibrium of zero.
Our model, with a similar � value, also offers an explanation of
the “instant equilibration” that occurs in business entry games.
Indeed, values of � between 1 and 2 explain empirical results for
nearly 100 games, suggesting that assuming a � value of 1.5 could
give reliable predictions for many other games as well.

The paper is organized as follows. The next section describes
the model. Section III collects some theoretical results. Section IV
reports estimation of the � parameter from six classes of games.
Section V explores the “economic value” of CH and other theories.
Section VI notes how the Poisson-CH model can help account for
two patterns of broad economic interest-speculation and money
illusion. Section VII concludes and sketches future research.
More details are in our longer paper [Camerer, Ho, and Chong
2002].

1. Future work could endogenize the distribution f(k) based on trade-offs
between benefits and costs of thinking harder.
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II. THE POISSON COGNITIVE HIERARCHY (CH) MODEL

II.A. Decision Rules

Denote player i’s jth strategy by s i
j and assume that i has

finitely many (mi) strategies. The iterative rules for our model
start with 0-step players, who choose according to a probability
distribution that is not derived from strategic thinking. A conve-
nient special case used in this paper is uniform randomization (a
placeholder assumption which could easily be relaxed in later
research2). Assuming uniform randomization, the 0-step think-
ers’ choice probabilities are P0(s i

j ) � 1/mi @j.
Denote a k-step player’s belief about the proportion of h-step

players by gk(h). We assume that players doing k � 1 steps do
not realize that others are using more than k steps of thinking
(that is, gk(h) � 0, @h � k � 1). This is plausible because the
brain has limits (such as working memory in reasoning through
complex games) and also does not always understand its own
limits. We also assume that people are overconfident and do not
realize there are others using exactly as many thinking steps as
they are (i.e., gk(k) � 0). This is consistent with psychological
evidence of persistent overconfidence about relative skill in many
domains (e.g., Camerer and Lovallo [1999]). Both assumptions
imply, for example, that a 1-step player optimizes against per-
ceived random response.3

We assume that k-step players have an accurate guess about
the relative proportions of players who are doing less thinking
than they are. They normalize these actual frequencies to form
their beliefs about the competition, so that gk(h) � f(h)/¥l�0

k�1 f(l ),

2. In maximum-likelihood estimation, algorithms find a value of the model
free parameter (in this case, �) which implies predicted probabilities that maxi-
mize the product of the predicted likelihoods of all the strategies that are actually
chosen by the subjects. If there is any chosen strategy that is predicted to have
zero probability, then the product of all the likelihoods is zero. This is a problem
because one parameter value might yield much more accurate predictions than
another parameter value, but if the more accurate model includes a single zero
probability the product is zero. Assuming that 0-step thinkers randomize across
all possible strategies means that the predicted probability of each strategy is at
least f(0)/mi (if there are mi strategies). Therefore, no chosen strategies have zero
predicted probability and the zero-likelihood problem does not arise. Readers
more familiar with game theory will appreciate that having all strategies chosen
with positive probability also solves two familiar theoretical problems—eliminat-
ing noncredible threats (since all threats are “tested” by randomizing 0-step
thinkers) as subgame perfection does; and eliminating ad hoc rules for Bayesian
updating after zero probability events (since all events have probability greater
than zero).

3. This is the familiar “principle of insufficient reason” of Laplace (see Banks,
Camerer, and Porter [1994] and Haruvy and Stahl [1998]).
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@h � k. This specification exhibits “increasingly rational expec-
tations”: As k increases, the total absolute deviation between the
actual frequencies f(h) and the beliefs gk(h) shrinks. This alge-
braic property implies that as k grows large, players doing k and
k � 1 steps of thinking will, in the limit, have the same beliefs,
make the same choices, and have the same expected payoffs.
Thus, for a large k, there is no marginal benefit for a k-step player
to think harder. This could prove useful for establishing limited
thinking through some kind of cost-benefit analysis (see, for ex-
ample, Gabaix and Laibson [2000], Gabaix et al. [2003], and
Chen, Iyer, and Pazgal [2003]).

Denote another player �i’s strategy by s �i
j � , and player i’s

payoffs from choosing s i
j when the other player chooses s �i

j � by
�i(s i

j, s �i
j� ). Given the k-step thinker’s beliefs, the expected payoff

to a k-step thinker from choosing strategy s i
j is Ek(�i(s i

j)) � ¥j��1
m�i

�i(s i
j, s �i

j� ){¥h�0
k�1 gk(h) � Ph(s �i

j� )}. For simplicity, we assume that
players best-respond (Pk(s*i) � 1 iff s*i � argmax s i

j Ek(�i(s i
j))),

and randomize equally if two or more strategies have identical
expected payoffs.4 Given a specific distribution f(k), the model
can be solved recursively, starting with 0-step player behavior
and iterating to compute P1(s i

j), P2(s i
j), . . . . (In practice, we

truncate the recursion at a k large enough that the remaining
frequencies, f(k�) for k� � k, are tiny.)

Our Poisson-CH model has some distinct advantages over
alternative CH models, such as making gk(k � 1) � 1�; that is,
k-step players think all others do only k � 1 steps of thinking (see
Nagel [1995], Stahl and Wilson [1995], Ho, Camerer, and Weigelt
[1998], Costa-Gomes, Crawford, and Broseta [2001a], and Costa-
Gomes and Crawford [2004]). This alternative model fits data
about as well as our specification but exhibits increasingly irra-
tional expectations—i.e., gk(h) gets farther from the true f(h) as
k grows, rather than closer—and makes implausible predictions

4. Allowing stochastic response gives rise to other models (and could easily be
incorporated into CH). In quantal response equilibrium [Rosenthal 1989;
McKelvey and Palfrey 1995, 1998], players’ beliefs and choices of other players are
consistent, are stochastic. The Poisson CH model retains best-response (except for
0-step thinkers) and weakens equilibrium (i.e., belief-choice consistency). QRE
retains equilibrium but weakens best-response. Weiszacker [2003] allows
the degree of stochastic response 	i and beliefs about stochastic response of others
	̂j to be different (	i � 
 and 	̂j � 0 is 1-step thinking). Capra’s “thinking
tree” [1999] uses one parameter that simultaneously weakens best-response and
equilibrium.
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in some games.5 Assuming that players respond stochastically
instead of best-responding is obviously a plausible alternative
too, but requires an extra parameter and generally improves fit
only a little in most games we have studied.

Another possibility is to assume that k-step players realize
there are other k-step thinkers ( gk(k) � 0). Self-awareness of
this sort is a step away from the goal of creating a precise
disequilibrium theory, because it imposes consistency of beliefs
and choices within each group of same-step thinkers. Such a
model is also more difficult to solve since finding a solution
requires finding a fixed point at each step of thinking. Moreover,
when evaluated relative to the gk(k) � 0 specification for five
data sets (in our working paper), gk(k) � 0 achieves a worse fit.

II.B. The Distribution f(k)

One way of getting a rough idea of a natural distribution of
thinking steps, f(k), is to let f(0), f(1), . . . f(k) be free parameters
up to some reasonable k, then use data to estimate each f(k)
separately using maximum likelihood (cf. Stahl and Wilson
[1995], Ho, Camerer, and Weigelt [1998a], and Bosch-Domenech
et al. [2002]). Estimation of this sort reveals substantial frequen-
cies of levels 0–2 (see our working paper), and medians of 1–2.6

To determine a precise parametric distribution f(k), we first
outline a list of properties such a distribution should have: since
the thinking steps are integers, a discrete distribution of f(k) is
natural (see also Stahl [1998]). The decision rules described above
also require more and more steps of computation as k rises,
because a k-step thinker does all the computations the lower-step
thinkers do, and then combines the results to calculate her own
expected payoffs. If this process is sharply constrained by work-
ing memory, it is plausible that as k rises, fewer and fewer

5. In the entry game described in more detail in subsection III.C below, the
gk(k � 1) � 1 specification leads to cycles in which e(i,d) entry functions predict
entry for d � .5 and staying out for d � .5 for i even, and the opposite pattern for
i odd. Averaging across these entry functions gives a step function E(k,d) with a
single step at d � .5. This is too simple because entry frequencies are smoothly
monotonic across d rather than jumping at d � .5.

6. This fact is consistent with the last part of Keynes’s passage on newspaper
beauty contests and the stock market: “there are some, I believe, who practise the
fourth, fifth, and higher degrees [of reasoning about reasoning].” Keynes’s word-
ing suggests he believed that few investors do more than three steps, an intuition
corroborated by these experimental estimates 50 years later.
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players do the next step of thinking beyond k.7 A reduced-form
way to express this constraint is that the relative proportion
f(k)/f(k � 1) declines with k. If this decline is captured by
assuming that f(k)/f(k � 1) is proportional to 1/k, then f(k) is the
Poisson distribution, f(k) � e���k/k!, which is characterized by
one parameter � (both its mean and variance). Values of � can be
further pinned down by restrictions on particular f(k) values
(e.g., if k � 1 is the mode, then � � (1,2)).8

We focus on the one-parameter Poisson distribution for f(k)
because the simpler one-parameter Poisson form fits almost as
well as a seven-parameter model (with frequencies f(k) up to k �
7)—allowing each f(k) to be independent results in less than a 1
percent decrease in log likelihood—in four of the five data sets we
examined. The Poisson model is also easier to compute and esti-
mate, and easier to work with theoretically (see Section III).

III. SOME THEORETICAL PROPERTIES OF THE POISSON-CH MODEL

The combination of optimizing decision rules and the one-
parameter Poisson structure makes the Poisson-CH model rela-
tively easy to work with theoretically. This section illustrates
some of its properties.

III.A. Dominance-Solvable Games

When f(k) is Poisson-distributed, the relative proportions of
types one step below and two steps below a k-step thinker, f(k �
1)/f(k � 2) � � /(k � 1), puts overwhelming weight on the k � 1
types if � is very large (i.e., k � �). In that case, a k-step thinker
acts as if almost all others are using k � 1 steps. This property of
the Poisson distribution provides a simple way to link thinking

7. Devetag and Warglien [2003] report evidence that working memory plays
a role in strategic thinking. They measure the amount of working memory using
a classic “digit span” task (i.e., how many digits a person can remember from a
long string). Working memory is modestly correlated with the tendency to
eliminate iteratedly dominated strategies. Other evidence of limited thinking is
reported by Hedden and Zhang [2002].

8. If f(1) is maximized compared with the neighboring frequencies f(0) and
f(2), or if 0- and 2-step thinking are equally common, then � � �2. If f(0) �
f(1) � 2f(2), then � � (�5 � 1)/2 � 1.618, a remarkable constant known as the
“golden ratio” (see Livio [2002]). The golden ratio is the limit of the ratios of
adjacent numbers in the Fibbonaci sequence. It is often used in architecture
because rectangles with golden ratio proportions are aesthetically pleasing. It also
occurs in spiral patterns of seashells and hawks circling their prey. None of these
different assumptions (and resulting �) are more compelling than the others. They
just show how an exact � value can be derived by adding a simple restriction to a
one-parameter distribution.
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steps to iterated deletion of dominated strategies.9 First note that
1-step thinkers will never choose weakly dominated strategies,
because those strategies are never best responses to the random
strategies of 0-step types.10 Now assume that � is very large. Then
2-step thinkers act as if they are playing a mixture of (almost) all
1-step thinkers who have deleted weakly dominated strategies,
and a small percentage of 0-step thinkers who are random. These
2-step thinkers will not play strategies which are strictly domi-
nated or strategies which are weakly dominated after deleting
weakly dominated strategy play by others. This logic can be
extended to iteratively eliminate as many dominated strategies
as one likes, because k-step thinkers will act as if almost all other
thinkers are one step below them (i.e., gk(k � 1) � 1 � ) when
k is much smaller than �.

Another important property of our CH model is if a k-step
thinker plays a (pure) equilibrium strategy, then all higher-step
thinkers will play that strategy too.11 This means that once a type
k reaches a pure equilibrium strategy all higher types will play it
too.

Thus, as � 3 
, the prediction of the Poisson-CH model will
converge to any Nash equilibrium which is reached by finitely
many iterated deletions of weakly dominated strategies. It is not
generally true, however, that CH converges to Nash in all games
as � 3 
.

The Poisson-CH model makes an interesting prediction
about the beauty contest games that Nash equilibrium does not.
In beauty contest games with two or more players, the game is
dominance-solvable and has a unique Nash equilibrium. How-
ever, the two-person beauty contest game is special because it can
be solved by one step of weak dominance. In the two-person game,

9. This means first eliminating dominated strategies, then eliminating any
remaining strategies which are dominated (assuming the strategies eliminated in
the first round will not be played), and so on. Note that different outcomes may
result depending on whether the eliminated strategies are strictly dominated (i.e.,
always yields a lower payoff than another strategy) or weakly dominated (i.e.,
never yields a better payoff than another strategy, and sometimes yields a lower
payoff).

10. This property holds even if 0-step thinkers do not randomize uniformly,
as long as all their strategy choices have strictly positive probability.

11. Simple proof: the k-step thinker plays the equilibrium strategy, call it se,
against a perceived mixture of types 0 to k � 1. The k � 1-step thinker faces a
perceived mixture of types 0 to k � 1 (with relative weight ¥h�0

k�1 f(h)/¥h�0
k f(h)

and type k (with relative weight f(k)/¥h�0
k f(h)). But by definition se is a best-

response to the mixture of types 0 to k � 1, and a best response to k’s play of se
(since it is a pure equilibrium strategy). By linearity of the expected payoffs, se is
therefore a best-response to the mixture of types from 0 to k � 1 and type k.
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one player will always be high and one low, and 2⁄3 times the
average will be closer to the lower player’s number. Therefore,
rational players want to choose the lowest number possible—
zero. In the Poisson-CH model (with any distribution f(k)) ap-
plied to the two-person game, all players using one or more
thinking steps will choose 0 (i.e., the data should consist of ap-
proximately 1 � f(0) players choosing exactly 0). This is not true
in the three-player game; a smart player wants to choose a
number between the other two numbers if they are sufficiently far
apart. In experiments by Grosskopf and Nagel [2001] and new
results we report below, there are more choices of 0 in two-player
games than in three-player games, although not nearly as many
as the Poisson-CH model predicts.

III.B. Coordination Games

Many interesting games, and models of the macroeconomy,
have multiple equilibria (e.g., Cooper [1999]). This raises an
important question of how players, or an entire economy, can
coordinate on an equilibrium, and which types of equilibria are
most likely to arise. A large game theory literature on “refine-
ments” has struggled with the problem of how to add further
mathematical restrictions in order to refine or limit the number of
plausible equilibria. The holy grail being sought in this scientific
process is a definition that would guarantee existence of a unique
refined type of equilibrium. No such definition has been discov-
ered. Our CH model goes in an opposite direction. Since the CH
model allows players to have incorrect beliefs about each other, it
can be seen as a behavioral refinement that makes a precise
prediction about what will happen in coordination games.12

Multiple equilibria typically arise because of the mutual con-
sistency assumption. For instance, there are many economic sit-
uations where there is one equilibrium that is Pareto- or payoff-
dominant (i.e., better for everybody) but seems intuitively riskier
than another, Pareto-inferior equilibrium (e.g., Cooper [1999] and
Camerer [2003, chapter 7]). Players will enter a Pareto-inferior
equilibrium if each correctly believes that the others will play the
less risky strategy, even though it is not optimal.

12. In an extensive-form game, each equilibrium may require a different level
of cognitive effort from the players. Ho and Weigelt [1996] show that players use
simplicity as the refinement criterion and choose the equilibrium that needs the
least cognitive effort. The multiple equilibria in this paper require the same level
of cognitive effort so the simplicity criterion does not help.
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A model of this type of situation is the “stag hunt” (or “as-
surance”) games. Table I shows a stag hunt game in which each
of n players simultaneously choose either L or H. The group
choice is H if everyone chooses H, and L otherwise (i.e., if at least
one person picks L). The row player earns 1 if everyone chooses H,
earns 0 if she chooses H and the group outcome is L, and earns x
(0 � x � 1) if she chooses L (and the group choice is therefore L).
Everyone choosing H is a Pareto-dominant equilibrium, but
reaching it depends on everyone thinking everyone else is likely
to choose H. Choosing L is also an equilibrium, but pays less than
if players could somehow coordinate on everyone choosing H.

Game theorists have developed concepts to refine intuitions
about when the (L,L) or (H,H) equilibria are likely to arise. Our
CH model can replicate some of these intuitions and predicts an
important effect of group size which has been observed in experi-
ments—namely, that as the group size n increases, the group is
more likely to get drawn into the inefficient (L,L) equilibrium
[Van Huyck, Battalio, and Beil 1990; Camerer 2003, chapter 7].

In the two-player stag hunt game, 1-step thinkers choose H if
x � 1⁄2 and choose L if x � 1⁄2 because they optimize against
0-step thinkers who randomize. (If x � 1⁄2, then all players
randomize equally.) Higher-step thinkers do exactly what the
1-step thinkers do. In the three-player game, however, a 1-step
player thinks she is facing two 0-step players who randomize
independently; so the chance of at least one L is .75. As a result,
the 1-step player (and higher-level players) choose H iff x � .25.
Thus, for values .25 � x � .5, the Poisson-CH model predicts
mostly H play in 2-player games and mostly L-play in 3-player
games (the frequencies of H and L play, respectively, are 1 �
( f(0))/ 2, or 89 percent for � � 1.5). This is a simple way of
expressing the idea that there is more strategic uncertainty in

TABLE I
ROW PLAYER’S PAYOFFS IN AN n-PERSON STAG HUNT GAME

Row choice

Group outcome

L H

L x —
H 0 1
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games with more players, and fits the experimental fact that the
inefficient (L,L) outcome occurs more often in larger groups.

There is an interesting connection between the “selection
principle” of risk-dominance in 2 � 2 coordination games [Har-
sanyi and Selten 1988] and our CH model. In 2-player symmetric
coordination games, CH predicts that all players (except half the
0-step thinkers) will choose the risk-dominant equilibrium (see
our working paper for details), which matches a wide range of
experimental data showing that players tend to choose risk-
dominant strategies rather than payoff-dominant ones in these
games [Camerer 2003, chapter 7].

III.C. Market Entry Games

In Section IV below we report experimental results from a
simple business entry game. In this game, N entrants simulta-
neously decide whether to enter a market or stay out (denoted 1
and 0, respectively). Denote the market demand by d � N (ex-
pressed as a fraction of the number of potential entrants N, so
0 � d � 1). If d or fewer players enter (i.e., supply is equal to or
less than demand), the entrants all earn a payoff of 1. If more
than d enter (i.e., supply is greater than demand), the entrants
earn 0, while staying out yields a certain payoff of 0.5. For
theoretical simplicity, assume that there are infinitely many at-
omistic entrants. (In our empirical estimation we do not make
this assumption.) If entrants are atomistic and risk-neutral, they
only care about whether the fraction of others entering is above d
or not: if the fraction of others entering is below d, they should
enter; if it is above, they stay out. Denote the entry function of
step k players for demand d by e(k,d) : d 3 [0, 1]; this function
maps the demand into a decision to enter (1) or stay out (0).
Denote the interim total entry function for all steps up to and
including k by E(k,d) : d 3 [0, 1]. The function E(k,d) adds up
the entry functions of the types up to and including k, and
normalizes (by dividing by ¥h�0

k f(h)). The prediction of the model
about how many players will enter for each value of d is the
limiting case E(
,d) (which will depend on �).

Appendix 1 shows that in the Poisson-CH model, a particular
thinking-step type k has a series of cutpoints which prescribe
values of d at which the k-step thinker will enter or not (which,
naturally, depend on �). For example, a 1-step thinker will stay
out for d � .5 and enter for d � .5 (and is indifferent when d �
.5); the entry-function therefore has one cutpoint at .5. The Ap-
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pendix proves that the cumulative entry function E(
,d) will be
weakly monotonic in d—markets with bigger demand attract
more entrants—iff 1 � 2� � e�, or � � 1.25.13

Figure I shows the predicted entry functions for CH players
using 0, 1, and 2 levels of reasoning (e(0,d), e(1,d), e(2,d)) and
the interim cumulative entry function (E(2,d)), for � � 1.5. Note
how the entry function e(2,d) of the 2-step type “smoothes” the
cumulative entry function E(2,d). The 2-step thinkers only enter
when they think they can exploit the fact that too few lower-0-
and 1-step thinkers entered (for .5/(1 � �) � d � .5 and (.5 �
�)/(1 � �) � d � 1), and stay out when they think too many 0-
and 1-step types entered (for 0 � d � .5/(1 � �) and .5 � d �
(.5 � �)/(1 � �)).

Note that if the entry game were actually played sequen-

13. When � is a little greater than 1.25, as it seems to be empirically in many
experimental data sets, there is a small nonmonotonicity in which there is more
entry at values just below d � .5 than the rate of entry at higher demands just
above d � .5. This is because 1-step thinkers never enter when d � .5 and always
enter when d � .5. Their anticipated entry function e(1,d) invites all higher-step
thinkers to enter for values just below .5, and to stay out for values just above .5.
The cumulative effect of the higher-step thinkers’ entry is never overturned as k
grows large, for low �. The downward-blip in overall entry just below and above
d � .5 is probably a small effect empirically but also illustrates a sharp, coun-
terintuitive prediction that could be tested in experiments with a large entry pool
N � 100 and values of d bracketed closely around .5, like d � .49 and d � .51.

FIGURE I
Behaviors of Level 0, 1, and 2 Players (� � 1.5)
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tially, it is easy to see how perfect equilibration could occur:
exactly d of N players would enter, because all the later entrants
would know how many earlier players had entered. (For example,
in a subgame perfect equilibrium the first d entrants would enter,
and all the subsequent entrants would stay out). Because the
Poisson-CH model is recursive, the game becomes effectively
“pseudo-sequential”: higher-level players act as if they are mov-
ing “after” they have observed what other players do, even though
they are actually playing simultaneously. The pseudo-sequen-
tiality created by the recursive structure of the CH model approxi-
mates the equilibration that would occur if the game were actu-
ally played sequentially.

A wide variety of experimental data show that in entry
games like these, the entry rate is usually remarkably monotonic
in demand d even though players do not communicate and have
no way to organize their choices to enter with the correct fre-
quency (e.g., Rapoport and Seale [in press]; and Camerer [2003,
chapter 7]). Remarking on the surprising similarity between pre-
dicted entry rates across values of d and actual entry in pilot
experiments he conducted, Kahneman [1988] wrote that “to a
psychologist, it looks like magic.” The Appendix proof shows how
the Poisson-CH model can produce entry that is monotonic in d
and approximates equilibrium—the “magic” which surprised
Kahneman. However, players also collectively overenter at low
values of d and underenter at high values of d so their behavior
is not entirely in equilibrium. The Poisson-CH model also ac-
counts for overentry at low d and underentry at high d, due to the
lingering effect of 0-step thinkers who enter half the time regard-
less of d. The Poisson-CH can therefore explain the magic of
approximate equilibration—monotonicity of entry with the de-
mand d—as well as systematic departures from equilibrium ob-
served in the data.

IV. ESTIMATION AND MODEL COMPARISON

This section estimates values of � in the Poisson-CH model
and compares its fit to Nash equilibrium. Exploring a wide range
of games and models is useful in the early stage of a research
program. Models that sound appealing (perhaps because they are
conventional) may fit surprisingly badly, thus redirecting atten-
tion to novel ideas. Fitting a wide range of games turns up clues
about where models fail and how to improve them.
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Since our model is designed to be general, it is particularly
important to check its robustness across different types of games
and see how regular the best-fitting values of � are. Once � is
specified, the model’s predictions about the distribution of choices
can be easily derived by iterating steps of thinking (and bounding
the procedure at a high value of k).

IV.A. The Beauty Contest Games

An empirical warm-up example is the beauty contest game
described above, in which the player whose number (from 0 to
100) is closest to 2⁄3 times the average wins a fixed prize. Table II
shows estimates of � in 24 p-beauty contest games ( p is the
multiplier, which, so far, has been 2⁄3), which were chosen to
minimize the (absolute) difference between the predicted and
actual mean of chosen numbers (see our working paper). The
table is ordered from top to bottom by the mean number chosen.
The first seven lines show games in which the equilibrium is not
zero; in all the others the equilibrium is zero.

The first four columns describe the game or subject pool, the
source, group size, and total sample size. The fifth and sixth
columns show the Nash equilibrium and the difference between
the equilibrium and the average choice. The middle three col-
umns show the mean, standard deviation, and mode in the data.
The mean choices are generally far off from the equilibrium; they
choose numbers that are too low when the equilibrium is high
(first six rows) and numbers that are too high when the equilib-
rium is low (lower rows). The rightmost six columns show the
estimate of � from the Poisson-CH model, and the mean, predic-
tion error, standard deviation, and mode predicted by the best-
fitting estimate of �, and the 90 percent confidence interval for �
estimated from a randomized resampling (bootstrap) procedure.

There are several interesting patterns in Table II. The pre-
diction errors of the mean (column 13, “error”) are extremely
small, less than .6 in all but two cases. This is no surprise since
� is estimated (separately in each row) to minimize this prediction
error. The pleasant surprise is that the predicted standard devia-
tions and modes which result from the error-minimizing estimate
of � are also fairly close (across rows, the correlation of the
predicted and actual standard deviation is .72) even though �’s
were not chosen to match these moments.

The values of � have a median and mean across rows of 1.30
and 1.61, close to the golden ratio (1.618 . . . ) and �2 (� 1.41)
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values derived from simple axioms mentioned above. The confi-
dence intervals have a range of about one in samples of reason-
able size (50 subjects or more).

Note that nothing in the Poisson-CH model, per se, requires
� to be fixed across games or subject pools, or across details of how
games are presented or choices are elicited.14 Outlying low and
high values of � are instructive about how widely � might vary,
and why. Estimates of � are quite low (0–.1) for the p-beauty
contest game when p � 1 and, consequently, the equilibrium is at
the upper end of the range of possible choices (rows 1–2). In these
games, subjects seem to have trouble realizing that they should
choose very large numbers when p � 1 (though they equilibrate
rapidly by learning; see Ho, Camerer, and Weigelt [1998]). Low
�’s are also estimated among the PCC (Pasadena City College)
subjects playing two- and three-player games (rows 8 and 10).
High values of � (� 3–5) appear in games where the equilibrium
is in the interior, 72 (rows 7–10)—small incremental steps toward
the equilibrium in these games produce high values of �. High �
values are also estimated in games with an equilibrium of zero
when subjects are professional stock market portfolio managers
(row 19), Caltech students (row 20), game theorists (row 24), and
subjects self-selecting to enter newspaper contests (row 25). The
latter subject pools show that in highly analytical and educated
subject pools (especially with self-selection) � can be much higher
than in other subject pools.

A sensible intuition is that when stakes are higher, subjects
will use more steps of reasoning (and may think others will think
harder too). Rows 3 and 6 compare low stakes ($1 per person per
period) and high stakes ($4) in games with an interior equilib-
rium of 72. When stakes are higher, � is estimated to be twice as
large (5.01 versus 2.51), which is a clue that some sort of cost-
benefit analysis may underlie steps of reasoning.

Notwithstanding these interesting outliers, there is also sub-
stantial regularity across very diverse subject pools and payoff
levels. About half the samples have confidence intervals that
include � � 1.5. Subsamples of corporate CEOs (row 13), high-
functioning 80-year old spouses of memory-impaired patients

14. Our working paper notes that in games where beliefs about the choices of
others are elicited (along with one’s own choices), the number of thinking steps
sometimes shifts upward. Forcing somebody to articulate what they think others
will do apparently gets them to think harder.
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[Kovalchik et al. forthcoming; row 15], and high school students
(row 16) all have � values from 1.1–1.7.

Since CH-type models are ideally suited to capture limited
equilibration in dominance-solvable games like the beauty con-
test game, it is important to see how well the same model and �
values fit games with different structures. So we fit five other
data sets using maximum likelihood estimation (MLE) procedure
(see Appendix 2 for a list): three sets of matrix games with 2–4
strategies (33 games in total); the binary entry game described
above with 12 players and demands d � {2,4,6,8,10}; and 22
games with mixed equilibria.

The estimation aims to answer two questions: is the esti-
mated value of � reasonably regular across games with very
different structures? And how accurate is the Poisson-CH speci-
fication compared with Nash equilibrium?

IV.B. How Regular Is �?

Table III shows game-by-game MLE estimates of � in the
Poisson CH model, and estimates when � is constrained to be
common across games within each data set. The interquartile
range across the 60 estimates is (.98,2.21) and the median is 1.55.
Five of 60 game-specific � estimates are high (four or more), and
a few are zero.

Appendix 3 shows bootstrapped 95 percent confidence inter-
vals for the � estimates. Most of the intervals have a range of
about one. The common � estimates are roughly 1–2; a � of around
1.5 is enclosed in the 90 percent interval in three data sets, and
� seems to be about one in the Cooper-Van Huyck and entry data.
These reasonably regular �’s suggest that the Poisson-CH model
with � � 1.5 can be used to reliably predict behaviors in new
games.

In future work, variation in estimates of � could be useful in
sharpening a theory of how steps of thinking are chosen endog-
enously. While endogenizing thinking steps or � is beyond the
scope of this paper, it is likely that some kind of model comparing
perceived benefits of thinking further, with thinking costs (con-
strained by working memory, and permitting individual differ-
ences) will do better. Three pieces of evidence point to the promise
of a cost-benefit endogenization: (1) � is estimated to be quite
large in p-beauty contest games in subject pools with unusual
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analytical skill (e.g., Caltech undergraduates) or special training
(game theorists and computer scientists who study multiagent
machine learning), which is a clue that lowering thinking costs
due to skill or training leads to higher �. (2) Unpublished data we
have collected also show larger estimates of � (about .5 steps
more) in Caltech undergraduates than in comparable students
from a nearby community college (more evidence of skill or lower
cognitive cost as an important variable). (3) Unpublished data
show that in incomplete-information signaling games, � is esti-
mated to be lower (less than 1). Bayesian updating on what
another player’s signal choice reveals about her likely thinking-
step type presumably consumes more working memory than sim-
ply computing expected payoffs (raising thinking costs), so lower
�’s in these games are also consistent with cost-benefit calculus.

TABLE III
PARAMETER ESTIMATE � FOR COGNITIVE HIERARCHY MODELS

Data set
Stahl and

Wilson
Cooper and
Van Huyck

Costa-Gomes
et al. Mixed Entry

Game-specific �
Game 1 2.93 15.90 2.28 0.98 0.70
Game 2 0.00 1.07 2.27 1.71 0.85
Game 3 1.40 0.18 2.29 0.86 —
Game 4 2.34 1.28 1.26 3.85 0.73
Game 5 2.01 0.52 1.80 1.08 0.70
Game 6 0.00 0.82 1.67 1.13
Game 7 5.37 0.96 0.88 3.29
Game 8 0.00 1.54 2.18 1.84
Game 9 1.35 1.89 1.06
Game 10 11.33 2.26 2.26
Game 11 6.48 1.23 0.87
Game 12 1.71 1.03 2.06
Game 13 2.28 1.88
Game 14 9.07
Game 15 3.49
Game 16 2.07
Game 17 1.14
Game 18 1.14
Game 19 1.55
Game 20 1.95
Game 21 1.68
Game 22 3.06

Median � 1.86 1.01 1.89 1.77 0.71
Common � 1.54 0.82 1.73 1.48 0.73
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IV.C. Which Models Fit Best?

Table IV shows log likelihoods (LL) and mean-squared devia-
tions for several models estimated game-by-game or with com-
mon parameters across games in a data set.15 This table answers
several questions. Focusing first on the Poisson-CH model, game-
specific estimates of � fit almost as well as common within-column
estimates in most data sets (except for the Stahl-Wilson data).
The Poisson-CH model also fits substantially better than Nash in
every case. This shows that relaxing mutual consistency can be a
fruitful approach to building a descriptive theory of disequilib-
rium behavior in games.

A graphical comparison of how much the theories’ predictions
deviate from the data gives a quick snapshot of how accurate they
are. Each point in Figures II–III represents a distinct strategy in

15. When the Stahl-Wilson games 2, 6, 8 are included, the common � is 0
because these games swamp the other ten, so we excluded those games in doing
the common-� estimation. Poisson-CH fits badly in those games because the Nash
strategy is not reached by any number of thinking steps, but is frequently chosen.
The best the model can do is to pick �̂ � 0 so that 1⁄3 of the players are predicted
to pick it (since there are three strategies). These games show boundary condi-
tions under which the model fails badly. Modifying the model so that a fraction �
of the 0-step players are actually choosing Nash (which will then lead 1-step types
to choose Nash if � is large enough) would patch this problem. Including some
self-awareness would also explain these anomalies.

TABLE IV
MODEL FIT (LOG-LIKELIHOOD LL AND MEAN SQUARED DEVIATION MSD)

Data set
Stahl and

Wilson
Cooper and
Van Huyck

Costa-Gomes
et al. Mixed Entry

Log-likelihood
Cognitive hierarchy

(Game-specific �) �360 �838 �264 �824 �150
Cognitive hierarchy

(Common �) �458 �868 �274 �872 �150
Nash equilibriuma �1823 �5422 �1819 �1270 �154

Mean squared
deviation

Cognitive hierarchy
(Game-specific �) 0.0074 0.0090 0.0035 0.0097 0.0004

Cognitive hierarchy
(Common �) 0.0327 0.0145 0.0097 0.0179 0.0005

Nash equilibrium 0.0882 0.2038 0.1367 0.0387 0.0049

a. The Nash Equilibrium result is derived by allowing a nonzero mass of 0.0001 on nonequilibrium
strategies.
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FIGURE II
Mean Absolute Deviation for Matrix Games: Nash Versus Cognitive Hierarchy

(Common �)

FIGURE III
Mean Absolute Deviation for Mixed Games: Nash Versus Cognitive Hierarchy

(Common �)
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each of the 33 matrix games (Figure II) and 22 mixed games
(Figure III). Each point represents the absolute deviation be-
tween the Nash prediction and the data (on the x-axis) and the
Poisson-CH prediction (using a common � within each data set)
and the data (on the y-axis). Points in the lower right of the graph
represent strategies in which CH is more accurate than Nash;
points in the upper left represent strategies in which Nash is
more accurate than CH.

The graphs enable us to answer an important question visu-
ally: when the Nash predictions are good approximations, is Pois-
son-CH almost as accurate? The answer appears to be yes, be-
cause there are few points with low Nash deviations and high
Poisson-CH deviations (i.e., few points in the upper left of the
graphs). And when the Nash predictions are poor approxima-
tions, are CH predictions usually more accurate? The answer is
also Yes. Figure II shows that particularly in the matrix games
(where Nash often makes 0–1 pure strategy predictions), there
are many strategies in which the Nash prediction is off by more
than .50. For these strategies, the Poisson-CH prediction is usu-
ally off by less than .20. So Poisson-CH is able to correct the
largest mistakes made by the equilibrium prediction. Figure III
shows that both models are generally more accurate in mixed
games than in the Figure II matrix games, and that Poisson-CH
improves only a little on equilibrium.

IV.D. Predicting Across Games

Good theories should predict behavior accurately in new sit-
uations. A simple way to see how well Poisson-CH and equilib-
rium models can do this is to estimate the value of � on n � 1 data
sets and forecast behavior in each holdout data set separately.

TABLE V
CROSS-GAME FIT (LOG-LIKELIHOOD LL AND MEAN SQUARED DEVIATION MSD)

Data set
Stahl and

Wilson
Cooper and
Van Huyck

Costa-Gomes
et al. Mixed Entry

Log-likelihood
Cognitive hierarchy

(Common �) �469 �956 �293 �884 �154
Mean squared deviation
Cognitive hierarchy

(Common �) 0.0416 0.0335 0.0237 0.0215 0.0046
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The result of this kind of cross-game estimation is reported in
Table V. Across games, the Poisson-CH model fits only a little less
accurately than when estimates are common within games. This
suggests that the Poisson-CH model has some promise for pre-
dicting behavior in one set of games, based on observations from
other games.

IV.E. Two Examples

Two specific games help illustrate concretely how the Pois-
son-CH model can explain where Nash predictions succeed and
fail. These games were chosen because they have the median
likelihood ratio of Poisson-CH relative to Nash within their re-
spective data sets, so they are statistically representative of the
overall result and are not biased either for or against the CH and
Nash models.

Table VI shows game 8 from Costa-Gomes, Crawford, and
Broseta [2001] (numbered 9a in their paper). The Nash prediction
is pure play of (T,L). Most row players do choose T, but a third of
the column players choose R instead of the equilibrium response
L. The Poisson-CH model (using the common-�̂ within the Costa-
Gomes, Crawford, and Broseta data set) predicts 82 percent play
of T because it is a dominant strategy and so all players using
more than 0 steps are predicted to choose it. It also predicts 45
percent of players will choose R because half the 0-step players
and all the 1-step players choose it (though players using two or
more steps pick L). So CH is able to approximate the accurate
Nash prediction about dominant strategy play of T, but corrects
Nash theory’s mistaken prediction of how often R is played. The
key point is that 1-step thinkers play R. Only column players

TABLE VI
GAME 8 FROM COSTA-GOMES ET AL. [2001]

L R Data Nash CH

T 45, 66 82, 31 .92 1 .82
TM 22, 14 57, 55 0 0 .06
BM 30, 42 28, 37 0 0 .06
B 15, 60 61, 88 .08 0 .06
Data .64 .36
Nash 1 0
CH .55 .45
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doing two or more steps of thinking figure out that row players
will pick T (and respond optimally with L), so the relative infre-
quency of high-step thinkers explain why R is chosen so often.

Table VII shows game 4 from Binmore, Swierzbinski, and
Proulx [2001]. This game has a mixed equilibrium in which row
players are predicted to choose B, and column players are pre-
dicted to choose R, both at 67 percent of the time.

The column player prediction is plausible because R pays either
1 or 0, and players actually chose it 83 percent of the time. The
Poisson-CH model reproduces this finding very closely because all
players doing one or more steps of thinking are predicted to choose
R, an aggregate frequency of 84 percent. The Nash prediction that
row players choose B most often is less plausible because B has no
positive payoffs; and in fact, it is the strategy chosen least often. In
equilibrium, of course, players are predicted to choose B because
they guess correctly that column players often choose R. In the
Poisson-CH model, however, 1-step thinkers do not anticipate the
play of R and mix between T and M. So the Poisson-CH model
predicts 25 percent choice of each T and M, which is closer to what
actually happens than the Nash prediction.

These examples illustrate how the Poisson-CH model can
mix limited thinking with strategic thinking (through the behav-
ior of players doing two or more steps of thinking), and as a result,
generally fit data from one-shot games better than equilibrium
models do.16 Remember that these are statistically typical exam-
ples; they were not chosen to highlight where Poisson-CH does
particularly well or poorly.

16. A web-based calculator is available to provide Poisson-CH prediction and
� estimate to fit data from one-shot games. The calculator is located at http://
groups.haas.berkeley.edu/simulations/CH/.

TABLE VII
GAME 4 FROM BINMORE ET AL. [2001]

L C R Data Nash CH

T 0, 0 2, �2 �1, 1 .33 .17 .25
M 2, �2 0, 0 �1, 1 .29 .17 .25
B �1, 1 �1, 1 0, 0 .28 .67 .50
Data .13 .04 .83
Nash .17 .17 .67
CH .08 .08 .84
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V. ECONOMIC VALUE OF THEORIES

In 1960 Schelling [p. 98] wrote, “A normative theory must
produce strategies that are at least as good as what people can do
without them.” Schelling’s definition suggests a simple measure
of the value of an economic theory when applied to a particular
game: how much greater a payoff do players earn when they
best-respond to a theory’s forecast rather than responding
naively?

A reasonable way to measure the “economic value” of a the-
ory applied to a particular game, is to take a set of experimental
data and compute the difference between the expected payoff
from using the best response given by the theory, and the average
payoff subjects actually earned (see Camerer and Ho [2001]).

If a player’s beliefs and the choices of others players are
mutually consistent, then equilibrium theory predicts the game
exactly. Thus, for a game where the players are in equilibrium,
the economic value of equilibrium theory will be 0. On the other
hand, if players are in equilibrium, then models that assume they
are not in equilibrium (such as the Poisson-CH model) will have
negative economic value. Thus, the economic value of equilibrium
for a game is a way of measuring the degree of equilibration.

Furthermore, if the Poisson-CH model is correct for a given
game, then the best response the theory dictates corresponds to
what the highest-step thinkers do. Thus, the economic value of
Poisson-CH can be interpreted as the marginal payoff to using
many steps of thinking, compared with average steps. If the
economic value is low—i.e., the marginal payoff to thinking very
hard is low—this fact could be used as a justification for an
evolutionary or “cognitive economics” explanation of why more
players do not think harder, which could potentially endogenize
the limits of thinking.

Table VIII reports the economic value of the Poisson-CH and
Nash models across several data sets. The economic value of
Poisson-CH is derived using parameters estimated on n � 1 data
sets to forecast the remaining data set.17 The payoffs from pre-

17. Economic value is only slightly higher when parameters are estimated
within each data set (see our working paper). One could argue that economic value
measured using within-game � is upward biased, because the model effectively
has access to data about the particular game which the typical subject does not.
The cross-game estimation below does not have this upward bias. It is true that
the cross-game Poisson-CH forecast uses other data the subject did not see—
namely, the behavior in the other four data sets—but this is typically the case in
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dicting “clairvoyantly” (i.e., using the actual distribution of strat-
egies chosen by all other subjects), are also reported because
these represent an upper bound on economic value.

The Poisson-CH approach adds value in all data sets, from 20
to 70 percent of the maximum possible economic value. Nash
equilibrium typically adds economic value, although only about
half as much as Poisson-CH, and subtracts value in one data set.
Recall that if players were in equilibrium, the Nash predictions
would have zero economic value, and disequilibrium models like
CH would have negative economic value. The fact that this pat-
tern is not observed is another way of saying players are not in
equilibrium, and economic value measures the “degree” of
disequilibrium.

VI. ECONOMIC IMPLICATIONS OF LIMITED STRATEGIC THINKING

Models of iterated thinking can be applied to several inter-
esting problems in economics, including asset pricing, specula-

forecasting (after all, distillation of data is part of what people pay for when they
buy forecasts). Furthermore, the subjects have “data” (or insight) which the model
does not have—namely, how people like themselves and their fellow subjects
might react to a particular game, and how they may have behaved in dozens of
other experiments they participated in.

TABLE VIII
ECONOMIC VALUE OF VARIOUS THEORIES

Data set
Stahl and

Wilson
Cooper and
Van Huyck

Costa-Gomes
et al. Mixed Entry

Observed payoff 195 586 264 328 118
Clairvoyance payoff 243 664 306 708 176
Economic value
Clairvoyance 48 78 42 380 58
Cognitive hierarchy

(Common �) 13 55 22 132 10
Nash equilibrium 5 30 15 �17 2
% Maximum economic

value achieved
Cognitive hierarchy

(Common �) 26% 71% 52% 35% 17%
Nash equilibrium 10% 39% 35% �4% 3%

The economic value is the total value (in experimental payoffs) of all rounds that a “hypothetical” subject
will earn using the respective model to predict other’s behavior and best responds with the strategy that
yields the highest expected payoff in each round.
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tion, competition neglect in business entry, incentive contracts,
and macroeconomics (see our longer paper for some ideas along
these lines). An example is Crawford’s [2003] model of optimal
lying. He shows that if “some of the people can be fooled some of
the time,” the presence of such foolable nonstrategic types influ-
ences rational players to misrepresent their intentions (much as
the presence of 0-step players influence the behavior of higher-
step thinkers). Similarly, Cai and Wang [2003] explain the ex-
perimental tendency for players to overcommunicate private in-
formation with a model of limited thinking.

We illustrate further with two economic applications that
have been studied experimentally: speculation, and money illu-
sion. The idea is to see whether the Poisson-CH model can help us
understand something fundamental about economics.

VI.A. Speculation

In 1982, Milgrom and Stokey proved a remarkable “Groucho
Marx theorem”: If rationality is common knowledge, risk-averse
players should not make speculative bets with one another (un-
less they have hedging motives). Of course, speculation goes on
constantly, in the form of sports betting and a large fraction of
trading in financial markets and other forums. It is difficult to
know from field data which assumption of the Groucho Marx
Theorem is violated: is widespread speculation due to hedging
(undoubtedly an important part of the operation of foreign ex-
change and futures markets)? Or to the extra fun from watching
a sports event after betting on it? Or is speculation due to limits
on knowledge of rationality? Since the Poisson-CH model does not
impose common knowledge of rationality, it contradicts the Grou-
cho Marx theorem and predicts that speculation will occur, even
when hedging and spectator fun do not matter. In CH, some
degree of betting comes immediately from the fact that 0-step and
1-step players are not thinking strategically about how the bet-
ting propensities of others depends on what those other players
know (cf. Eyster and Rabin [2000]).

Table IX illustrates a betting game originally studied experi-
mentally by Sonsino, Erev, and Gilat [2002] and replicated by
Sovik [2000]. There are four equally likely states, {A,B,C,D}. After
the state is determined, players are privately informed about a
set of possible states including the true one. Player I learns the
state is either A or B (denoted (A,B)) or C or D (i.e.,
(C,D)). Player II learns the state with certainty if it is A or D, or
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learns (B,C). Players then choose whether to bet, with payoffs
given in Table IX. If both players bet, they win or lose the
amounts in the table column corresponding to the true state.

In equilibrium there should be no mutual betting if rational-
ity is common knowledge and players think strategically. The
proof begins with the fact that rational player IIs will never bet
when they know the state is A, and will always bet when they
know the state is D. If player I is rational and believes player IIs
are too, she will figure out that she can never win by betting when
her information is (A, B). Iterating further, player II should never
bet in (B, C), which leads player I to not bet in information set (C,
D). Therefore, players should never mutually bet.

This counterintuitive no-betting result is also the prediction
of the Poisson-CH model with � 3 
. With the typical empirical
value of � � 1.5, however, a different picture emerges. One-step
player Is will bet when they know (A,B) because they think they
are equally likely to win 32 and lose 28 (they have not figured out
that they will never win 32 because rational player I’s never bet
in state A). However, two-step thinkers know that one-step player
IIs will not bet in A, so they will not bet in (A,B). The eventual
result of this iterated limited rationality across all information
states is high betting rates in the information states (A,B) and
(C,D) for player I, and in (B,C) for player II.

Table IX shows predicted betting rates (for � � 1.5) and Sovik

TABLE IX
POISSON CH PREDICTION AND EMPIRICAL FREQUENCY

FOR BETTING GAME [SOVIK 2000]

State of the world A B C D

Player I
Payoff for betting 32 �28 20 �16
Information set (A or B) (C or D)
Betting rate
Data 77% 53%
Poisson CH 46% 89%

Player II
Payoff for betting �32 28 �20 16
Information set A (B or C) D
Betting rate
Data 0% 83% 100%
Poisson CH 12% 72% 89%

887A COGNITIVE HIERARCHY MODEL



[2000]’s first-round data.18 The model does not track differences
in betting rates across the three ambiguous information states
particularly well, but it is an obvious improvement on the Nash
prediction of no mutual betting in any states. Furthermore, the
model makes testable comparative static predictions: for exam-
ple, if the payoff in the C state is changed from 20 to 32, betting
rates in (B,C) and (C,D) should fall dramatically (from 72 percent
and 89 percent to 12 percent and 46 percent). This example shows
how a small change in parameters can turn the predicted CH
result from a gross violation of the Groucho Marx Theorem to a
reasonable approximation of it. More generally, the example
shows how CH captures partial awareness of adverse selection,
which may be useful in understanding consumer product mar-
kets, the winner’s curse in common-value auctions, and so forth.

VI.B. Money Illusion

A long-running debate in macroeconomics concerns the ex-
tent of “money illusion,” the failure to adjust incomes and prices
for inflation. Fehr and Tyran [2002] investigate money illusion in
two parallel pricing games. In their games, groups of four players
choose integer prices from 1 to 30. In one game, prices are stra-
tegic substitutes—players earn more by pricing high when others
price low, and vice versa. In the other game, prices are strategic
complements—players earn more by matching prices of other
players. Each player’s nominal payoffs depend on his or her own
price and on the (rounded) average price of the other three play-
ers in his or her group. These nominal payoffs are displayed in a
30 � 30 table with the player’s own prices in 30 rows and the
average price of others in the 30 columns. To compute their real
payoffs, players had to divide the nominal numbers in the table
they see in front of them by the average price of the other players
in the group (which is clearly shown at the top of each column).

The research question is whether players use the nominal
payoff, or act as if they calculated real payoffs. If players use real
payoffs and are in equilibrium, they will either choose prices of 11
and 14 (depending on which of two cost structures, denoted x or y,
they have) in both the substitutes and complements conditions.
(This is also the prediction of CH with infinite �.)

18. The results of Sonsino, Erev, and Gilat [2002] are even more consistent
with CH, except that they report substantial betting and nonbetting rates by
player IIs in states A and D (about 20 percent) which suggests that � � 1.
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Fehr and Tyran [2002] found a striking regularity: in the
substitutes condition, players choose prices very close to the Nash
predictions of 11 and 14. But in the complements condition, prices
were far from equilibrium, a median of 22–23. This pattern leaves
unresolved whether players have money illusion or not. It ap-
pears that their money illusion depends on the strategic structure
of the game, which is an unsatisfying conclusion.

The Poisson-CH model with the typical value � � 1.5 can
account for this pattern (with one important modification19) rea-
sonably well. The key is that in the complements case, 1-step
thinkers have best responses which are prices in the 20s, well
above the Nash equilibria, and 2- and higher-step thinkers also
choose prices which are too high.

Table X shows summary statistics of predicted and actual
prices and the Poisson-CH predictions for � � 1.5 (which is not the
best-fitting value20). Median experimental prices are predicted
exactly in three of four samples. Repeating the main empirical

19. The Poisson-CH model fits best if we assume that the 1-step thinkers
believe the 0’s choices are perfectly correlated; i.e., the distribution of the average
price is uniform. A similar improvement in fit from assuming that lower level
types’ choices are correlated occurs in p-beauty contests (see Ho, Camerer, and
Weigelt [1998]) and weak link games [Camerer 2003, chapter 7]. The tendency for
players to think that a single 0-step player’s price distribution is representative or
an exemplar of the average price is an example of the “representativeness”
heuristic, which is well documented in research on the psychology of judgment
(e.g., Kahneman [2003]).

20. The best-fitting values are different in the two conditions, .6 in comple-
ments and 2.6 in substitutes. Fehr and Tyran [2002] note that this difference is
consistent with the fact that in the substitutes case, misestimating what others do
is a much more costly error than in the complements case. This is another clue for
how the number of thinking steps may respond endogenously to incentives.

TABLE X
POISSON CH AND NASH PREDICTION FOR PRICING GAME ON MONEY ILLUSION

[FEHR AND TYRAN 2002]

Nash
prediction:

Median Mean
Standard
deviation

Actual � � 1.5 Actual � � 1.5 Actual � � 1.5

x-comps 21 21 17.65 19.75 4.23 4.73
x plays 11 y-comps 22.5 26 20.55 23.95 6.35 6.18

x-subs 11 11 10.17 9.12 2.93 7.30
y plays 14 y-subs 14 14 12.5 10.16 4.10 7.79
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theme of this paper, the model can explain when Nash equilib-
rium is reached surprisingly quickly (in the substitutes treat-
ment), and can also explain when behavior is far from equilib-
rium (in the complements treatment). More importantly, the
model provides a clear answer to the central research question of
whether money illusion occurs. The answer is that players do
appear to have money illusion in both treatments, but observed
differences in equilibration in both cases may result from a com-
mon process of limited strategic thinking.21

VII. CONCLUSION

This paper introduced a simple cognitive hierarchy (CH)
model of games. The model is designed to be as general and
precise as Nash equilibrium. In fact, it predicts players are un-
likely to play Nash strategies that are refined away by subgame
or trembling-hand perfection, and always selects one statistical
distribution when there are multiple Nash equilibria, so it is even
more precise than simple Nash equilibrium.

This paper uses both axioms and estimation to restrict the
frequencies of players who stop thinking at various levels. Most
players do some strategic thinking, but the amount of strategic
thinking is sharply constrained by working memory. This is con-
sistent with a Poisson distribution of thinking steps that can be
characterized by one parameter � (the mean number of thinking
steps, and the variance). Plausible restrictions and estimates
from many experimental data sets suggest that the mean amount
of thinking � is between one and two. The value � � 1.5 is a good
omnibus guess which makes the Poisson-CH theory parameter-
free and is very likely to predict as accurately as Nash equilib-
rium, or more accurately, in one-shot games.

The main contribution is showing that the same model can
explain limited equilibration in dominance-solvable games (like
p-beauty contests) and the surprising accuracy of Nash equilib-
rium in some one-shot games, such as simultaneous binary entry
games in which players choose whether to enter a market with a
fixed demand. In one-shot games with no communication, the rate

21. When the Poisson-CH model is applied to players with no money illusion,
it fits the data poorly (since it predicts Nash-like play in the complements case).
It also fits poorly if 2- and higher-step players do not have money illusion but
lower-step players do.
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of entry in these entry games is “magically” monotonic in the
demand d, but there is reliable overentry at low values of d and
underentry at high values of d. The Poisson-CH approach pre-
dicts monotonicity (it is guaranteed when � � 1.25) and also
explains over- and underentry. Furthermore, the Poisson-CH
approach creates a kind of endogenous purification that explain
how a population mixture of players who use pure strategies (and
perhaps regard mixing as nonsensical) can approximate a mixed
equilibrium.

Because players do not appear to be mutually consistent in
one-shot games where there is no opportunity to learn, a theory of
how others are likely to play could have economic value—i.e.,
players could earn more if they used the model to recommend
choices, compared with how much they actually earn. In fact,
economic value is always positive for the Poisson-CH model,
whether � is estimated within a data set or across data sets.
Economic value is 10–50 percent of the maximum possible eco-
nomic value that could be achieved by knowing in advance the
sample frequencies of how others actually play. The Nash ap-
proach adds less economic value, and sometimes subtracts eco-
nomic value (e.g., in p-beauty contests with p � 1 players are
better choosing on their own than picking the Nash recommen-
dation of 0). Economic value provides a precise measure of Schell-
ing’s [1960] definition of how “normative” a theory is, and also
measures the degree of disequilibrium in economic terms.

There are many challenges in future research. An obvious
one is to endogenize the mean number of thinking steps �, pre-
sumably from some kind of cost-benefit analysis in which players
weigh the marginal benefits of thinking further against cognitive
constraint. In a cost-benefit approach, the fact that beliefs (and
hence, choices) converge as the number of steps rises creates
diminishing marginal benefits which leads to a natural trunca-
tion that limits the amount of thinking.

Since the Poisson-CH model makes a prediction about the
kinds of algorithms that players use in thinking about games,
cognitive data other than choices—like prompting players to state
beliefs (which might shift 0-step thinkers to one or more steps),
information lookups, or brain imaging (e.g., Camerer, Prelec, and
Loewenstein [forthcoming])–can be used to test the model. For
example, Rubinstein [2003] reports response times in large web-
based experiments that are consistent with slower responses by
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players who use more thinking steps, though Chong, Camerer,
and Ho [in press] find no such relation. Costas-Gomes and Craw-
ford [2004] have a more detailed analysis using lookups.

The model is easily adapted to incomplete information games
because the 0-step players make choices that reach every infor-
mation set. This eliminates the need to impose delicate refine-
ments to make predictions. Explaining behavior in signaling
games and other extensive-form games with incomplete informa-
tion is therefore workable and a high priority. Extending the
model to extensive-form games is easy by assuming that 0-step
thinkers randomize independently at each information set, and
higher-level types choose best responses at information sets using
backward induction. Other models that link limited thinking
about other players to limited look-ahead in extensive-form
games could prove more interesting.

Finally, the ultimate goal of the laboratory honing of simple
models is to explain behavior in the economy. Models of iterated
thinking could prove useful in thinking about asset markets,
speculation and betting, contract structure, and other phenom-
ena (cf. Eyster and Rabin [2000]).

APPENDIX 1: ENTRY GAME ANALYSIS FOR POISSON-CH

We have

e�0,d� �
1
2 , @d

E�k,d� �
¥j�0

k f� j� � e� j,d�

¥j�0
k f� j�

�
¥j�0

k f� j� � e� j,d�

F� j� , where F� j� � �
j�0

k

f� j�.

In general, for k � 1,

e�k,d� � � 0 if E�k � 1,d� � d
1 if E�k � 1,d� � d .
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In general, E(k,d) is a step function with the following cutpoint
values (at which steps begin or end) with increasing d for d � 1⁄2

�1/d� f�0�

F�k�
,

�1/ 2� f�0� 	 f�k�

F�k�
,

�1/ 2� f�0� 	 f�k � 1�

F�k�
,

�1/ 2� f�0� 	 f�k � 1� 	 f�k�

F�k�
, . . . ,

�1/ 2� f�0� 	 f�2� 	 · · · 	 f�k�

F�k�
.

The cutpoint values for d � 1⁄2 are

�1/ 2� f�0� 	 f�1�

F�k�
,

�1/ 2� f�0� 	 f�1� 	 f�2�

F�k�
, . . . ,

�1/ 2� f�0� 	 f�1� 	 f�2� 	 · · · 	 f�k�

F�k�
.

(For d � 1⁄2 atomistic entrants are all indifferent and randomize
so E(k,.5) � .5 @k.)

These cutpoints imply two properties: the cutpoints are al-
ways (weakly) monotonically increasing in d for the d � 1⁄2
segment as long as f(k � 1) � f(k), @k � 2. For a Poisson f(k),
this is equivalent to � � 2. Furthermore, the last cutpoint for the
d � 1⁄2 segment is smaller than the first cutpoint of the d � 1⁄2
segment iff 1⁄2f(0) � f(2) � f(3) � . . . � f(k � 1) � f(k) �
1⁄2f(0) � f(1). This is equivalent to f(1) � f(2) � f(3) � . . . �
f(k), which implies that f(1) � 1 � f(0) � f(1). For Poisson this
implies that (1 � 2�) � e� or � � 1.25. Thus, � � 1.25 implies
weak monotonicity throughout both the left (d � 1⁄2) and right
(d � 1⁄2) segments of the entry function E(k,d) (since � � 1.25
satisfies the � � 2 condition and ensures monotonicity across the
crossover from the left to right halves of E(k,d)).

APPENDIX 2: DETAILS OF GAMES AND EXPERIMENTAL METHODS

The matrix games are twelve games from Stahl and Wilson
[1995], eight games from Cooper and Van Huyck [2003] (used to
compare normal- and extensive-form play), and thirteen games
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from Costa-Gomes, Crawford, and Broseta [2001]. All these
games were played only once without feedback, with sample sizes
large enough to permit reliable estimation.

In our experiments, subjects played five entry games with no
feedback. If the number of entrants was above (less than or equal
to) d, the entrants earned 0 ($1); nonentrants earned $.50. Sub-
jects also played 22 matrix games with mixed equilibria. The 22
games with mixed-equilibria are taken from those reviewed by
Camerer [2003, chapter 3], with payoffs rescaled so subjects win
or lose about $1 in each game. The 22 mixed games are (in order
of presentation to the subjects): Ochs [1995], (matching pennies
plus games 1–3); Bloomfield [1994]; Binmore, Swierzbinski, and
Proulx [2001], game 4; Rapoport and Amaldoss [2000]; Binmore,
Swierzbinski, and Proulx [2001], games 1–3; Tang [2001], games
1–3; Goeree, Holt, and Palfrey [2000], games 2–3; Mookerjee and
Sopher [1997], games 1–2; Rapoport and Boebel [1992]; Messick
[1967]; Lieberman [1962]; O’Neill [1987]; Goeree, Holt, and Pal-
frey [2000], game 1. Four games were perturbed from the original
payoffs: the row upper left payoff in Ochs’s original game 1 was
changed to 2; the Rapoport and Amaldoss [2000] game was com-
puted for r � 15; the middle row payoff in Binmore, Swierzbin-
ski, and Proulx [2001] game 2 was 30 rather than �30; and the
lower left row payoff in Goeree, Holt, and Palfrey’s [2000] game 3
was 16 rather than 37. Original payoffs in games were multiplied
by the following conversion factors: 10, 10, 10, 10, 0.5, 10, 5, 10,
10, 10, 1, 1, 1, 0.25, 0.1, 30, 30, 30, 5, 3, 10, 0.25. Currency units
were then equal to $.10.

The entry and mixed-equilibrium games were run in four
experimental sessions of twelve subjects each. Each game was
played (with no feedback) against a random opponent in the same
session and earnings accumulated. Two sessions used undergradu-
ates from Caltech, and two used undergraduates from Pasadena
City College (PCC), which is near Caltech. (Individual-level esti-
mation in progress suggests that the PCC subjects do about .5
steps of thinking fewer than Caltech students, men do about .2
steps more thinking than women, and the average number of
thinking steps drifts up by about .7 and the first and second
halves of 22 games.) Mixed equilibrium games were run on the
“playing in the dark” software developed by McKelvey and Pal-
frey. The entry games and some beauty contest games were run
on software Taizan Chan wrote, which is available from us.
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APPENDIX 3: 95 Percent Confidence Interval for the Parameter Estimate �
of Cognitive Hierarchy Models

Data set

Stahl and
Wilson

Cooper and
Van Huyck

Costa-Gomes
et al. Mixed Entry

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

Game-specific �
Game 1 2.40 3.65 15.40 16.71 1.58 3.04 0.67 1.22 0.21 1.43
Game 2 0.00 0.00 0.83 1.27 1.44 2.80 0.98 2.37 0.73 0.88
Game 3 0.75 1.73 0.11 0.30 1.66 3.18 0.57 1.37 — —
Game 4 2.34 2.45 1.01 1.48 0.91 1.84 2.65 4.26 0.56 1.09
Game 5 1.61 2.45 0.36 0.67 1.22 2.30 0.70 1.62 0.26 1.58
Game 6 0.00 0.00 0.64 0.94 0.89 2.26 0.87 1.77
Game 7 5.20 5.62 0.75 1.23 0.40 1.41 2.45 3.85
Game 8 0.00 0.00 1.16 1.72 1.48 2.67 1.21 2.09
Game 9 1.06 1.69 1.28 2.68 0.62 1.64
Game 10 11.29 11.37 1.67 3.06 1.34 3.58
Game 11 5.81 7.56 0.75 1.85 0.64 1.23
Game 12 1.49 2.02 0.55 1.46 1.40 2.35
Game 13 1.75 3.16 1.64 2.15
Game 14 6.61 10.84
Game 15 2.46 5.25
Game 16 1.45 2.64
Game 17 0.82 1.52
Game 18 0.78 1.60
Game 19 1.00 2.15
Game 20 1.28 2.59
Game 21 0.95 2.21
Game 22 1.70 3.63

Common � 1.39 1.67 0.74 0.87 1.53 2.13 1.30 1.78 0.42 1.07
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