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A Cognitive Odyssey:

From the Power Law of Practice to a General Learning Mechanism

and Beyond

Paul S. Rosenbloom

University of Southern California

This article traces a line of research that began with the establishment of a pervasive
regularity in human performance — the Power Law of Practice — and proceeded
through several decades' worth of investigations that this opened up into learning and
cognitive architecture. The results touch on both cognitive psychology and artificial
intelligence, and more specifically on the possibility of building general learning
mechanisms/systems. It is a story whose final chapter is still to be written.

In the fall of 1979 I returned to my position as a PhD
student in the Computer Science Department at Carnegie
Mellon University (CMU) after a year as a visiting graduate
student in the Psychology Department at the University of
California, San Diego (UCSD).
absence from CMU in 1978 with a strong interest in both

I had taken a leave of

artificial intelligence and cognitive psychology — viewing
them as complementary ways of understanding the
processes underling intelligent behavior — but in training
and thought processes I was very much a computer scientist
rather than a psychologist. During my year at UCSD in the
LNR Research Group (the acronym refers to the group's
three founders, Peter Lindsay, Donald Norman and David
Rumelhart, but at this time it was led by the latter two along
with James —Jay- McClelland) I had the privilege to witness
the beginning of the resurgence of neural network modeling
in psychology, while also learning something about what it
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meant to be a psychologist.

On returning to CMU, I brought with me some ideas I
had developed in the area of activation-based production
systems, along with an implemented system — eXperimental
Activation Based Production System (XAPS) — based on
combining my earlier experiences at CMU working with
Allen Newell on production system architectures with what
I had recently learned about neural networks at UCSD.
XAPS will come back into the story later on, but on
returning to CMU I did not have a strong sense of where to
go from there with it, and was somewhat at loose ends
overall in figuring out what to do next.

Around this same time, Allen Newell had agreed to
contribute to the Sixteenth Annual Carnegie Symposium on
Cognition, to be held in May of 1980 on the acquisition of
cognitive skills (Anderson, 1981). He wanted to look more
deeply into the purported power law structure of human
practice curves, and into what the implications of this might
be for the overall architecture of cognition. Cognitive
architecture — the fixed structure underlying cognition — was
an abiding interest for Allen Newell (culminating in his final
book on Unified Theories of Cognition, Newell, 1990); and it
was the opportunity to work with him on this topic that
originally intrigued me enough as a prospective graduate
student (in 1976) to lure me from California to Pittsburgh.

What was particularly intriguing about the power law
structure of practice curves in this context was that if this
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regularity were truly as ubiquitous as it was beginning to
appear to be — and if it weren’t dictated by either the
structure of the environment or some simple statistical
regularity (as is the case with the bell curve and Zipf's law,
Zipf, 1949) — it would likely reveal a ubiquitous constraint
on how learning was implemented and functioned as part of
the architecture of human cognition. This notion became
even more compelling later on as it became clear that the
leading models of practice in existence did not lead to power
law learning curves.

So, in 1979, Newell asked me to begin a new effort with
him on this topic, pointing towards the upcoming
Symposium, and I agreed. The first major outcome of this
effort was the analysis — via a combination of regression and
search — of a broad range of practice curves, focusing
particularly on data relating time to perform a task versus
the number of times the task had been performed, that
showed such curves were best modeled via a general power
law of the form T = A + B(N + E)% where T is the time to
perform the task, N is the number of times that the task has
been performed during the experiment (i.e., the number of
trials), & is the learning rate, A is the asymptotic response
time, E is a parameter reflecting the amount of effective
practice that has occurred prior to the start of the
and B
asymptote) the first time the task is performed (i.e., when
N+E =1).

This first outcome helped establish the ubiquity of the

experiment, is the performance time (above

Power Law of Practice, and set the stage for the second
major outcome: the analysis of existing models of practice to
determine whether any of them could yield power law
practice curves — with the conclusion that they couldn’t —
along with the development of a new model. This new
model — the Chunking Theory of Learning — was grounded
in the earlier concept of chunks from work in perception and
memory (Miller, 1956), and proved capable of producing
practice curves that closely mimicked power laws by
enabling performance to be increasingly based on higher
level patterns that short circuited lower level processing.
Together, these two outcomes formed the basis for the
article being celebrated in this special issue (Newell &
Rosenbloom, 1981).

Of the two outcomes - establishing the Power Law of
Practice and developing the Chunking Theory of Learning —
it was the second one that had the far bigger impact on
Newell’'s and my research careers. It led us, and an
increasing set of collaborators — most notably, John Laird,
with whom Newell and I jointly formed and led the long-
term, multi-disciplinary Soar project (Rosenbloom, Laird &
Newell, 1993) — on more than two decades worth of
investigations into the role of chunking in the architecture of
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cognition and of the implications of the interactions between
chunking and the other aspects of cognition - both
architecture and content (i.e., knowledge represented on top
of the architecture) — for cognitive processing in general.
(Although Allen Newell died in 1992, and I moved on to
other things in 1998, efforts have continued to this day
under John Laird and others.)

The first steps beyond the paper being celebrated here
involved instantiating the abstract conceptual model
provided by the Chunking Theory via a sequence of
implementations of chunking in the context of cognitive
architectures, in which experimental tasks could be
performed, performance time could be measured, and
chunking could speed up performance over repeated trials
through the acquisition of rules that bypassed the more
extensive processing that was previously required to
perform the tasks. Each successive implementation
involved either a significant generalization of chunking or of
the underlying cognitive architecture within which it was
implemented.

The first implementation was task dependent
(Rosenbloom & Newell, 1982; Rosenbloom & Newell, 1987).
The cognitive architecture — XAPS2, a descendent of the
XAPS architecture mentioned earlier that was adapted to the
constraints imposed by the needs of chunking — was task
independent. However, the implementation of chunking
only worked for one task: a 1023-choice reaction-time task
The

implementation was hardwired to chunk regions of lights

involving ten lights and ten buttons (Seibel, 1963).

and regions of buttons and to relate light regions to button
regions, and thus wasn’t task independent and couldn’t be
This
produced learning curves, but it was too slow to run for

considered truly architectural. implementation
many trials, and chunking learned too quickly to acquire
plausible learning curves. A meta-simulation enabled
“simulating the simulator” at a more rapid pace, and adding
a probability of chunk acquisition slowed down the effective
rate of learning, to where a power law learning curve could
be generated for this task.

The second implementation yielded a task-independent
version of chunking (Rosenbloom, 1986; Rosenbloom &
Newell, 1988).

performance in terms of a very fine-grained goal hierarchy,

The core innovation was conceiving of

and defining chunks in terms of patterns of goal inputs,
patterns of goal results, and connections relating input and
result patterns. Chunks sped up task performance by
replacing extended goal processing with firing of rules that
generated results from inputs. In this model, tasks were
represented as specific goal hierarchies, but the processing
and chunking of these hierarchies could be defined in a task

independent manner, providing the first truly architectural



implementation of chunking. This drove several additional
changes to the wunderlying cognitive architecture, to
introduce goal processing into the architecture and to
eliminate activation (which turned out to hide information
from chunking, leading to incorrect learning), yielding the
XAPS3 architecture. Practice curves were generated for the
Seibel task as well as for a range of stimulus-response
compatibility tasks (Duncan, 1977; Fitts and Seeger, 1953;
1962), task-
nature of chunking and enabling the

Morin and Forrin, demonstrating  the
independent
interactions between practice and compatibility to be
explored.

The third

generalization of the underlying cognitive architecture. John

implementation involved a radical
Laird, a fellow graduate student who had simultaneously
been working with Newell on a general, rule-based, goal-
oriented, problem solving architecture called Soar (Laird,
1986), created an implementation of chunking in the context
of Soar. Soar was based on a problem space model of
performance, consisting of states, and operators that
generate new states from existing states. It embodied the
concept of Universal Subgoaling, which enabled goals to be
generated automatically not only for task-oriented activities
but also for arbitrary problems in the system’s own
performance, such as the inability to choose between a set of
candidate actions to perform or the lack of a problem space
within which to work on task performance. This enabled
chunking to improve performance on both task and
reflective/meta-level goals (Rosenbloom, Laird & Newell,
1988).

The implementation of chunking in Soar yielded a
system that not only could produce power law practice
curves (Rosenbloom, Laird & Newell, 1989), but also had
much broader possibilities as a model of human cognition,
as well as showing significant promise as a general
architecture for artificial intelligence (Laird, Rosenbloom &
Newell, 1986a; Laird, Newell & Rosenbloom, 1987). This led
to an explosion of work investigating different tasks and
capabilities in Soar, with learning by chunking being a key
aspect of much of this work. Several early overviews of the
varieties of research on learning in Soar can be found in
Rosenbloom, et al. (1986), Laird & Rosenbloom, 1987 and
Steier, et al. (1987); and a later, albeit briefer, overview can
be found along with many of the papers from 1991 and
earlier in Rosenbloom, Laird & Newell, 1993.

We were emboldened by this early success with
chunking in Soar, and by a sense of nearly limitless
untapped potential, to set out to test the hypothesis that a
general problem solver in combination with a simple
experience-based learning mechanism - that is, chunking,
which would feed off of the generality of knowledge and
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processing of the problem solver — could together yield a

general learning mechanism capable of improving
performance on all tasks, basing its improvements on any
knowledge that is available, improving all aspects of the
system, and transferring learned knowledge from one
situation to other comparable situations (Laird, Rosenbloom
& Newell, 1986a). The remainder of this article focuses on
the history of this expedition.

The core of the early work in Soar focused on its use as a
general problem solver, in which weak-method - that is,
knowledge-lean — search in problem spaces, along with
Universal Subgoaling, were the key performance concepts,
and puzzles and games formed the main task domains
(Laird & Newell, 1983). Thus, the first results with chunking
in Soar focused primarily on improving task performance
through the acquisition of search-control rules and macro-
operators — by chunking over subgoals in which lookahead
search yielded evaluation and preference information useful
in deciding which options to take — that would reduce the
amount of search that was initially required for these tasks
(Laird, Rosenbloom & Newell, 1984; Laird, Rosenbloom &
Newell, 1986a). It was shown that such learned knowledge
could improve performance within trial (i.e., during the trial
in which the knowledge is learned), across trial (i.e., on later
instances of the same task), and across task (i.e., to different
but related tasks).

Around this time we also began to stretch Soar’s reach
beyond puzzles and games to more substantive knowledge-
intensive tasks — such as the classic R1, computer
configuration, expert system problem (McDermott, 1982) —
with the accompanying question of what chunking would
What we found was that the

knowledge in such domains could be partitioned into task

do in such problems.

definition knowledge, which specifies a set of problem
spaces within which solutions can be found, and search
control knowledge that helps avoid missteps while leading
Without the former
knowledge, problems can’t be solved — or even defined —

the system directly to solutions.

while without the latter knowledge problems can be solved
but at the cost of extensive search. One main result was that
when the system was initialized with just the task definition
knowledge, chunking could perform a form of knowledge
compilation by acquiring the control knowledge that
converted a search-intensive system into a knowledge-
intensive one (Rosenbloom, et al., 1985). This work was then
followed up with investigations of learning in other expert
systems domains, such as algorithm design (Steier, 1987;
Steier & Newell, 1988), chemical process design (Modi &
Westerberg, 1989), and medical diagnosis (Washington &
Rosenbloom, 1993).

Although, through such investigations chunking was



beginning to yield a broadly useful skill acquisition
mechanism for artificially intelligent systems, two key
problems had started to show up in the performance of the
resulting learned systems. The first problem was
overgeneralization — whenever a chunk failed to capture
some of the conditions under which it was appropriate to be
used, it could apply where it should not, leading to errors in
performance (Laird, Rosenbloom & Newell, 1986b). Several
sources of overgeneralization were identified, some of
which were correctable through changes to the code that
implemented chunking, while more fundamental sources
had to be dealt with by learning more chunks that enabled
the system to recover from the effects of the incorrect ones
that had been learned earlier (Laird, 1988; Pearson & Laird,
2005).

The second problem was that the system would slow
down as more rules were learned. From a cognitive
modeling perspective, this could perhaps be ignored as an
implementation detail, but from both a pragmatic and an Al
perspective, it couldn’t be ignored as it could cause the
system to slow down to the point of being unusable. It
turned out that this utility problem (Minton, 1990) had two
aspects: (1) some individual chunks were expensive, in that
the time to determine their applicability was exponential in
their size (Tambe, Newell & Rosenbloom, 1990); and (2)
even when no individual chunks were expensive, adding
thousands or millions of chunks to the system could
significantly slow down processing (Doorenbos, Tambe &
Newell, 1992).
bounding the expressibility of chunks (and of all rules used

Approaches to the first aspect included

in the system) to limit their match costs (Tambe, Newell &
1990; Tambe & Rosenbloom, 1994) and
modifying chunking so that the cost of using a chunk was

Rosenbloom,

bounded by the cost of the problem solving from which it
was learned (Kim & Rosenbloom, 2000). The second aspect
was resolved via optimizations to the rule matcher, resulting
in successful experiments in which over a million chunks
were learned without a substantial slow down (Doorenbos,
1994).

However, beyond these issues a deeper problem lurked.
Although chunking originated in the context of research on
perception and memory — as a core element in the
memorization of perceived patterns (Miller, 1956, Chase &
Simon, 1973) — it was becoming increasingly apparent that in
Soar it was far from obvious how chunking could be used to
support even the simplest form of rote learning. Consider,
for example, the problem of learning to recall a newly
perceived object. What is desired to be learned is a new rule
that can generate the perceived object later, perhaps in the
presence of relevant cues. However, if the object is attended
to, and examined piece by piece in a subgoal so as to
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generate it as the result of the subgoal - as is necessary for it
to be generated by a learned chunk — the resulting chunk
will test all aspects of the object as well as generate them,
thus only being applicable when the object is already
available. Such a rule can speed up the action of copying the
object when it is perceived — which is what was essentially
done in the subgoal — but cannot recall it when it is not
already present.

One approach to this problem might have been to add a
new learning mechanism to Soar in support of rote learning,
as for example exists in ACT-R (Anderson & Lebiere, 1998).
However, continuing to test the hypothesis that chunking in
Soar could provide the basis for a general learning
mechanism demanded persevering to see if there were a
solution that didn’t require a new architectural learning
mechanism, and what the implications of such a solution
might be should it exist. Although this was easier said than
done, a solution to the conundrum was eventually worked
out based on several new concepts. First, it was necessary to
reorganize the problem solving in the subgoal over which
recall learning was to occur so as to reconstruct the newly
perceived object from what was already known rather than
from what was currently perceived, so that generation of the
new object by the resulting chunk wouldn’t first test for its
being perceived (Rosenbloom, Laird & Newell, 1987).
Second, the fact that a chunk existed to generate an object
had to be taken as evidence that the object had been
perceived at some point in the past (Rosenbloom & Aasman,
1990).
possible to distinguish between all of the things that could

This second idea was needed so that it would be

be reconstructed via what was known — many of which
would have corresponded to things that never were or never
could be seen (such as a pink elephant) — and those things
that were actually perceived (and encoded into recall
chunks).

The details of all of this are yet subtler than what has
been presented here, including the need to acquire and use
recognition chunks for testing the success of the generation
process and the role of search control in chunk acquisition.
However, one of the most interesting take away lessons
from it was that by trying to live within the constraints of
the architecture, rather than jumping immediately to add
new mechanisms when the existing ones don’t obviously do
what is desired, we were driven to a model of rote learning
that was inherently reconstructive, with interesting parallels
to generate-recognize theories of recall, such as Watkins &
Gardiner (1979). Over the years, this general approach to
what we ended up referring to as data chunking, to
distinguish it from the earlier skill-acquisition uses of
(and
recognition) to cover cued recall (Rosenbloom, Laird &

chunking, was extended beyond simple recall



Newell, 1989) and concept acquisition from multiple
examples (Rosenbloom & Aasman, 1990; Miller & Laird,
1991; Miller & Laird, 1996; Rogers, 1996); and to a proposal
for a general framework for acquiring new knowledge
(Rosenbloom, 1988).

Simultaneously with the investigation of data chunking,
and continuing on for years afterwards, work was also
proceeding on a variety of other aspects, uses, and
implications of chunking in Soar. For example, we looked
at utilizing advice from humans in guiding problem solving
towards what would be useful to learn (Golding,
Rosenbloom & Laird, 1987; Laird et al., 1990); acquiring new
knowledge, including the task definition knowledge
delineating entire problem spaces, from instruction (Yost &
Newell, 1988; Lewis, Newell & Polk, 1989; Huffman & Laird,
1995); learning to draw valid conclusions in immediate
reasoning tasks such as syllogistic reasoning (Polk &
Newell, 1988; Polk, Newell & Lewis, 1989); abbreviating
strategic processing in the Tower of Hanoi (Ruiz & Newell,
1989); acquiring generalized rules and abstract plans by
chunking over abstracted problem spaces (Unruh &
Rosenbloom, 1989); learning to interact robotically with
external environments (Laird & Rosenbloom, 1990; Laird et
al., 1991); learning number conservation knowledge (Simon,
Newell & Klahr, 1991); learning to integrate multiple sources
of knowledge for natural language processing (Lehman,
& Newell, 1991);

Einstellung/masking effects (Tambe & Rosenbloom, 1993);

Lewis producing and overcoming
learning to explain the system’s own behavior (Johnson,
1994); learning from observation of the performance of
others (van Lent & Laird, 1999; van Lent & Laird, 2001); and
extending the procedural knowledge of a system in a
complex, dynamic environment (Pearson & Laird, 2005).

The most sophisticated learning system based on
chunking in Soar to date combined work on learning
through instruction (Huffman & Laird, 1995) and error-
recovery/procedural-learning in dynamic domains (Pearson
& Laird, 2005). The combined system could learn how to
perform new tasks through instruction, recover from errors
in performance by learning new procedural knowledge, and
even use instruction to help in the error recovery process
1997). The
comprehensive examination of Soar as a model of human

(Laird, Pearson & Huffman, most
memory, learning and skill can be found - along with a
broader examination of Soar as a candidate Unified Theory
of Cognition — in Newell (1990).

Chunking at its essence moves performance along a
store-versus-compute — or, equivalently, space-versus-time,
deliberation-versus-reaction or controlled-versus-automatic
(Shiffrin & Schneider, 1977) — tradeoff, extracting lessons
from experience in executing tasks and storing those lessons
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as rules that influence later behavior without the need of
repeating the earlier processing. As such, it bears a family
resemblance to a range of other learning and compilation
mechanisms, such as memo functions (Michie, 1968), macro-
operator learning (Fikes, Hart & Nilsson, 1972; Korf, 1985),
1978;
Anderson & Lebiere, 1998), explanation-based learning
(Mitchell, Keller & Kedar-Cabelli, 1986; Rosenbloom &
Laird, 1986), knowledge compilation (Laird, Rosenbloom &
Newell, 1986b; Selman & Kautz, 1996), and partial
evaluation (Jones, Gomard & Sestoft, 1993). A big part of

production composition/compilation (Lewis,

what has made it interesting — and something it shares with
production compilation in ACT-R (Anderson & Lebiere,
1998) - is its close connection with a more broadly functional
cognitive architecture. This combination has proven to yield
an intriguing range of capabilities and behaviors.

Yet, there are also three new investigations of learning in
Soar that start from the notion that, although chunking has
shown itself to have quite broad applicability, there are still
key forms of learning that are either too hard when using
chunking as the only learning mechanism, or whose non-
architectural/content components disrupt or compete with
critical task-based processing when the learning occurs via
chunking over the kinds of learning-oriented problem
solving required by data chunking. These three efforts are
investigating augmenting Soar with new learning
mechanisms that are particularly valuable in its current
primary role as an architecture for intelligent agents and
virtual humans in simulations and games (Tambe et al.,
1995; Hill et al., 1997; Jones et al., 1999; Laird, 2002; Hill et
al., 2003; Wray et al., 2005); in particular, to support
reinforcement learning (Nason & Laird, 2005), episodic
(Nuxoll & Laird, 2004),

memory/learning. This represents a focused backing off

learning and semantic
from the initial hypothesis of chunking in Soar providing a
completely general learning mechanism, but it is a well-
informed backing off, based on years of investigation into
the initial hypothesis. It will be interesting to see how the
newly augmented Soar architecture will function, and how
these new mechanisms will work with each other and with
the already existing ones.

To review the path we have traversed in this article, and
in this line of research, we began with establishing a general
regularity in human performance - the Power Law of
Practice — that was then used as a constraint in proposing a
learning mechanism to be incorporated as part of an overall
cognitive architecture. A sequence of implementations
ultimately yielded chunking in Soar, along with the
associated hypothesis that this combination could provide a
general learning mechanism. A wide range of loosely
coordinated investigations into this hypothesis turned up



much evidence in its favor, as well as some substantial
issues. Some of these issues have led to the current focus of
learning research in Soar on augmenting chunking with
three new learning mechanisms, with intended applications
in the areas of intelligent agents and virtual humans. This
overall path has led us a long way from our starting point in
analyzing human practice curves, but it hopefully shows the
fundamental power of sustained efforts focusing on
regularities in human performance and their interactions
with cognitive architectures.
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