
Research Article

A Cognitive Radio Spectrum Sensing Method for an OFDM Signal
Based on Deep Learning and Cycle Spectrum

Guangliang Pan ,1 Jun Li ,2 and Fei Lin2

1School of Electrical Engineering and Automation, Qilu University of Technology (Shandong Academy of Sciences),

Jinan 250353, China
2School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology (Shandong Academy

of Sciences), Jinan 250353, China

Correspondence should be addressed to Jun Li; rogerjunli@sdu.edu.cn

Received 13 September 2019; Accepted 14 February 2020; Published 6 March 2020

Academic Editor: Jintao Wang

Copyright © 2020 Guangliang Pan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In a cognitive radio network (CRN), spectrum sensing is an important prerequisite for improving the utilization of spectrum
resources. In this paper, we propose a novel spectrum sensing method based on deep learning and cycle spectrum, which applies
the advantage of the convolutional neural network (CNN) in an image to the spectrum sensing of an orthogonal frequency
division multiplex (OFDM) signal. Firstly, we analyze the cyclic autocorrelation of an OFDM signal and the cyclic spectrum
obtained by the time domain smoothing fast Fourier transformation (FFT) accumulation algorithm (FAM), and the cyclic
spectrum is normalized to gray scale processing to form a cyclic autocorrelation gray scale image. Then, we learn the deep
features of layer-by-layer extraction by the improved CNN classic LeNet-5 model. Finally, we input the test set to verify the
trained CNN model. Simulation experiments show that this method can complete the spectrum sensing task by taking
advantage of the cycle spectrum, which has better spectrum sensing performance for OFDM signals under a low signal-noise
ratio (SNR) than traditional methods.

1. Introduction

The emergence of the fifth-generation mobile communica-
tion network (5G) [1] has greatly promoted the develop-
ment of broadband wireless communication [2], and
orthogonal frequency division multiplex (OFDM) is one of
the popular physical transmission technologies for wireless
communication [3, 4]. Many of its characteristics meet the
requirements of cognitive radio (CR) [5–7]. Therefore,
OFDM is the preferred technology for CR communication.
As the core technology of the cognitive radio network
(CRN), spectrum sensing can improve spectrum utilization
and alleviate spectrum resources [8–10]. Traditional spec-
trum sensing is mainly done by mathematical methods of
signal processing, including energy detection [11], matched
filter detection [12], and cyclostationary feature detection
[13]. [14] proposed a spectrum sensing method based on

correlation detection, the correlation of cyclic prefix (CP)
was used in OFDM, and the sampled data was subjected to
correlation operation. In [15], the signal and noise were esti-
mated simultaneously by the time domain correlation func-
tion, and the estimated threshold was continuously adjusted
by the estimated value to complete the spectrum sensing of
an OFDM signal. In [16], the received autocorrelation func-
tion was estimated at each OFDM symbol of its symbol
period, and then, the multivariate statistical theory was used
to calculate the judgment amount and the decision thresh-
old. Finally, the judgment amount and the decision thresh-
old were compared to obtain the judgment result. In the
face of complex wireless network communication environ-
ments, these methods cannot meet the needs of spectrum
sensing. In [17], focusing on classifying different OFDM sig-
nals, authors proposed a two-step detection and identifica-
tion method. However, this method is not combined with
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the deep learning model, and the spectrum sensing perfor-
mance is general.

The contributions of this paper are summarized as
follows:

(i) We analyze the cyclic autocorrelation of an OFDM
signal, using the time domain smoothing fast Fou-
rier transformation (FFT) accumulation algorithm
(FAM) to achieve cyclic spectrum and transforming
the spectrum sensing problem into an image pro-
cessing and recognition problem

(ii) We convert the cyclic spectrum into a gray scale
image, transforming the spectral perception prob-
lem into an image processing problem

(iii) We adopt an improved CNN based on LeNet-5 to
generate a spectrum sensing model to complete
spectrum sensing

The remainder of the paper is organized as follows.
Section 2 introduces the related work. Section 3 analyzes
the cyclic autocorrelation of an OFDM signal, and cyclic
spectrum is obtained by the FAM algorithm, which is con-
verted to a gray scale image. Section 4 presents the OFDM
spectrum sensing model designs based on the improved
CNN classical structure LeNet-5. Section 5 carries out sim-
ulation experiments and performance evaluation on the
proposed new method. In the end, we conclude this article
in Section 6.

2. Related Work

The existing spectrum sensing methods mainly use the neu-
ral network as a classifier, and the data set is a complex fea-
ture statistic, and the sensing effect is not ideal [18–21].
[22] proposed multigene genetic programming- (MGGP-)
based feature engineering was conducted to transform the
cumulants of the received signals into highly discriminative
features, and then, authors use a logistic regression classifier
to achieve classification of overlapping signal modulation.
[23] presented a study about the possibility of implementing
approximations to the Neyman-Pearson (NP) detector
with C-Support Vector Machines (C-SVM) and 2C-SVM.
It was based on obtaining the functions that these learning
machines approximate to after training to minimize the
empirical risk, and on the possible implementation of the
NP detector with these approximated functions. In [24],
authors tested the application of deep neural networks to
the automatic modulation classification in AWGN and flat-
fading channel. Three training inputs were used: (1) in-
phase and quadrature (I-Q) constellation points, (2) the cen-
troids of constellation points employing the fuzzy C-means
algorithm to I-Q diagrams, and (3) the high-order cumulants
of received samples. The unsupervised learning from these
data sets was done using the sparse autoencoders, and a
supervised Soft-max classifier was employed for the classifi-
cation. The above intelligent algorithms are limited to long
training time and only propose applications in signal recog-

nition and classification, which are not applicable in spec-
trum sensing.

3. Spectrum Sensing and Cyclic Spectrum

3.1. OFDM Cyclic Autocorrelation and FAM Algorithm.
Targeting the OFDM signal model, the equivalent baseband
signal can be expressed as

s tð Þ = 〠
N−1

i=0

di exp j2π
i

T
t

� �

, ð1Þ

where t ∈ ½0, T�.
After OFDM signals pass through AWGN channel, the

complex baseband signal is obtained as

r tð Þ = s tð Þ + h tð Þ, ð2Þ

where hðtÞ represents zero mean white noise.
The OFDM signal model is obtained as

x tð Þ =〠
k

〠
G−1

l=0

ck,lp t − lTc − kT sð Þ, ð3Þ

where G represents the total length of OFDM signal, Tc

represents the chip time, Ts represents the effective period,
pðtÞ represents the rectangular pulse, ck,l represents the l

th sampling point of the kth OFDM symbol inserted
into CP.

The time domain expression can be followed as

ck,l =
1
ffiffiffiffi

N
p 〠

N−1

n=0

ak,n exp j2π l −Dð Þ n
N

h i

, ð4Þ

where N represents the effective length and D represents the
length of inserted l = 0, 1,⋯,G − 1. ak,n represents the mod-

ulated data on the nth subcarrier of the kth OFDM signal
in the frequency domain, n = 0, 1,⋯,N − 1.

In the kth OFDM symbol of the signal, the autocorrela-
tion of the time domain data ck,l with delay sample point nτ
ð0 ≤ n

τ
≤NÞ can be followed as
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Regardless of other interference factors, the correlation
function from equation (3) is
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Rx t, τð Þ = E x tð Þx∗ t − τð Þ½ � =〠
k

E 〠
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"
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l=0
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#

,
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where τ = nτTc.
Inserting the CP introduces the correlation characteristic.

It can be known from equation (6) that the OFDM signal has
two cycle periods: the small period is Tc and the large period
is Ts, and the expression can be followed as

where τN = ∣τ∣ −NTc.
It is proved from the above that the OFDM signal has

cyclic characteristics, Rxðt, τÞ has periodicity, and further

Rxðt, τÞ pairs do discrete Fourier transform (DFT), the
expression can be expressed as

where α represents the cycle frequency.
It can be seen from the above that the OFDM signal has

second-order cyclostationary characteristics. The OFDM sig-
nal has two cycles of Tc and Ts, and Rxðt, τÞ has periodicity.
According to the nature of Fourier transform, the Fourier
transform of t will appear discrete spectrum line at α =m/
Tc and α =m/Ts.

We implement the cyclic spectrum by FAM algorithm.
The flow of the implementation steps of algorithm can be
shown in Figure 1.

Through the above cyclic autocorrelation analysis, the
FAM algorithm is used to simulate in simulation software,
and simulation parameters are shown in Table 1.

The three-dimensional cyclic spectrum of OFDM under
H0 (H0: it represents the absence of OFDM signal; that is,
the authorized user does not exist.) and H1 (H1: it represents
the presence of OFDM signal, that is, the presence of autho-
rized users.) are obtained, as shown in Figures 2 and 3.

3.2. Spectrum Sensing Model. The CR user discovers and uti-
lizes opportunistically the available spectrum opportunities
to access dynamically the idle licensed spectrum. According
to the available spectrum opportunities of CR users, the CR

spectrum perception can be defined as a binary hypothesis
model as follows:

y tð Þ =
n tð Þ, H0,

gs tð Þ + n tð Þ, H1:

(

ð9Þ

The binary hypothesis model has false alarm errors Pf

and missed detection errors Pm, which are represented by
false alarm probability and missed detection probability
as follows:

Pf = Pr Y > λ ∣H0ð Þ,
Pm = Pr Y < λ ∣H1ð Þ,

(

ð10Þ

where Y represents the decision statistic and λ represents
the threshold. According to the NP criterion, in order to
improve the spectrum sensing performance of CR users, it
is necessary to reduce Pm as much as possible under certain
Pf constraints.

The three-dimensional cyclic spectrum is normalized and
gradated, and a two-dimensional cyclic autocorrelation gray
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map containing Gaussian white noise under H0 and H1 are
obtained, as shown in Figures 4 and 5.

The gray value is used to represent the size of the autocor-
relation value (the gray value is positively correlated with the
autocorrelation value). According to the distribution of two-
dimensional gray map under H0 and H1, it has four peaks
under H1, which can map the spectrum perception to image
processing [25].

4. Method

4.1. CNN Design. The spectrum sensing of OFDM signal is
completed by the deep learning framework, and the imple-
mentation framework is shown in Figure 6, which is divided
into a model training process and a model testing process.

CNN is a model of deep learning. It has the characteris-
tics of local connection and parameter sharing. It has strong
advantages in image processing. LeNet-5 model is a classic
model of CNN. We change the input of the LeNet-5 model
to gray scale image of 36 ∗ 36 and change the size of the con-
volution kernel and sampling window. Spectrum sensing
depends on the spectrum occupancy of authorized users,
changes the output to 2 neurons, and converts to binary clas-
sification; label 0 representsH0, and label 1 representsH1. An
improved LeNet-5 model for spectrum sensing is shown in
Figure 7.

4.2. Train and Test. The CNN based on the improved LeNet-
5 model is trained by the error back propagation (BP) algo-
rithm. The training process of BP algorithm is divided into
forward calculation of data, back propagation of error, and
update of weight. δk represents the partial derivative of input
layer error for this layer, which is called sensitivity [26].

For forward calculation of data, the hidden layer output
values are defined as

aHh =WH
h × Xi,

bHh = f aHh
� �

,

(

ð11Þ

where WH
h represents the weight of layer H, Xi represents

the current node input, and f ð·Þ represents the current layer
activation function.

The output layer output values are defined as

ak =〠Whk × bHh : ð12Þ

Input OFDM
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Window
processing
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e
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Figure 1: Process.

Table 1: Simulation experiment parameters.

Parameters Data

Number of OFDM in one frame 20

Number of subcarriers (N) 128

Proportion of cyclic prefix 1/4

Symbol rate 12.5 kbps

Carrier frequency 1 × 106 Hz

Sampling frequency 4 × 107 Hz

Chip rate 5 × 105 Hz

Smooth points 20

Cyclic frequency resolution 2 × 106 Hz
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Figure 3: Cycle spectrum H1.
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In Tensorflow, the one-hot method is usually used for
error back propagation and weight update. The cross entropy
function is defined as

lossc = −y log f xð Þð Þ: ð13Þ

The output layer feeds back to the reverse derivation of
the fully connected layer. According to the one-hot method,
only one value is 1 and the rest is 0. The cross entropy can
be followed as

loss f xð Þ,yð Þ = −〠y log f xð Þð Þ = − 0 × log f x1ð Þð Þ+⋯+1ð
× log f xnð Þð ÞÞ = − log f xnð Þð Þ:

ð14Þ

Loss value is as follows:

loss = − y − log f xð Þð Þð Þ: ð15Þ

Let y = 1 get

loss = − 1 − log f xð Þð Þð Þ: ð16Þ

The output layer uses Soft-max, and the formula for the
full connection layer weight update is as follows:

δloss

δW
= −

1

m
× 1 − f xð Þð Þf ′ xð Þ + λW: ð17Þ

The pooled layer feeds back to the reverse derivation of
the convolutional layer, and its convolutional layer sensitivity
can be followed as

δ
l
j = pool δ

l+1
j ∗ h′ alj

� �� �

, ð18Þ

where ∗ represents the dot multiplication. The convolutional
layer feeds back to the reverse derivation of pooling layer,
assuming that l is a pooling layer, l + 1 is a convolutional
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layer, and the convolutional layer has m features, and the
sum of pooling layer sensitivity can be followed as

δ
l
j = 〠

m

j

δ
l+1
j ⊙ K ij, ð19Þ

where ⊙ represents a convolution operation. The sensitivity
is obtained by the above calculation, and then, weights and
offsets in the CNN can be followed as

δloss

δW ij

= Xiδ
i+1
j ,

δloss

δbij
= Σδ

i+1
j :

ð20Þ

After BP algorithm trains CNN, it is verified by the
test set.

We takeN pairs of test sets fðx1, y1Þ, ðx2, y2Þ,⋯, ðxi, yiÞg,
and the difference between the predicted value and the true
value can be followed as

Ω = YW ,b xið Þ − yi
�

�

�

�

�

�

�

�, ð21Þ

where YW,bðxiÞ represents the output value of last layer of

CNNmodel,W represents the weight, b represents the offset.
Then, the accuracy of this test set is obtained as

Accuracy =
n

N
, ð22Þ

where n represents the number of tests meeting the Ω <Ωth

condition.
It can be seen from equation (22) that the higher accuracy,

the better performance of spectrum sensing.

5. Experiment and Analysis

This section simulates the performance evaluation of pro-
posed spectrum sensing method to verify its feasibility. The
OFDM frame is built in simulation software, and the OFDM
signal is generated by the analog transmitter.

As shown in Table 2, labels 0 and 1 denote the state of
channel as idle and busy, respectively. The balance of positive
and negative samples is 1 : 1. The channel setting is refer-
enced [27]. After through the Rayleigh fading channel and
the Gaussian white noise channel, the data sampled by
receiving end is preprocessed according to the second sec-
tion. We complete the train and test of model in TensorFlow
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Figure 7: Improved structural model of CNN.

Table 2: Data set.

Type Label Effective sample

Train set
0 2000

1 2000

Test set
0 200

1 200

Table 3: CNN parameter setting.

Parameter Value

Training set 4000 (36 × 36)

Test set 400 (36 × 36)

Number of network layers (N) 6

Activation function Sigmoid

Learning efficiency (α) 0.001

Weight fading factor (λ) 0.1

Test error threshold (Ωth) 0.05

Minibatch 20
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deep learning framework. The performance of spectrum
sensing is determined by two aspects. On the one hand, it is
evaluated by Pf and Pm mentioned in the second section,
and the probability of detection PdðPd = 1 − PmÞ is derived
from Pm. On the other hand, it is evaluated by the training
time and test time of CNN, which is the efficiency of percep-
tion. The parameter settings of CNN are shown in Table 3.

5.1. Analysis of the CNN Model. Since the structure of CNN
model will affect training and test results, the detection rate
of spectrum sensing will change.

By modifying the size of convolution kernel, we design
five different CNN structures, the input data set remains
unchanged. The different layer structure can be shown in
Table 4. The CNN models of five different structures are
trained under the same training set and test set as in
Table 3. Under the same training times, the accuracy and
total loss (cross entropy loss and regularization loss) of the
training process of five different structures CNN model are
statistically analyzed. The performance curve can be shown
in Figures 8 and 9.

It can be seen from Figure 8 that under the maximum
pooling aggregation mode, as the number of training
increases, the robustness of five different CNN structures
are continuously enhanced, when the number of training is
10001 (more the optimization effect of high training times
will be better, but this paper only takes 10001 times and has
no effect on the research problem). No. 3 and no. 4 are the
best relative to other three structures, and the actual training
accuracy is 0.96. Meanwhile, the total loss corresponding to
No. 3 and no. 4 is the lowest as seen in Figure 9.

5.2. Performance Comparison Analysis of Algorithms. [22]
uses logistic regression to distinguish signals, and [23] uses
SVM to achieve radar signal recognition. Our method is
compared with these two machine learning algorithms. The
signal is set to Gaussian white noise signal and OFDM signal.
Under different sample sizes (90% of the data is used for
training, and 10% of the data is used for testing), we adopt
the same data set, and the Performance of three algorithms
are shown in Table 5.

It can be seen from Table 5 that the CNN spectrum sens-
ing method has obvious advantages in terms of various per-
formances compared with others. The CNN is better than
other two algorithms in image classification processing. The
machine learning algorithm is good, and the OFDM cyclic
spectrum feature is more suitable for CNN. For the test time

Table 4: Design CNN with 5 different network structures.

C1 S2 C3 S4 C5
Num Con-kernel Output S-window Output Con-kernel Output S-window Output Con-kernel Output

1 3 × 3ð Þ × 6 34 × 34ð Þ × 6 2 × 2 17 × 17ð Þ × 6 3 × 3ð Þ × 16 15 × 15ð Þ × 16 2 × 2 8 × 8ð Þ × 16 8 × 8ð Þ × 120 1 × 1ð Þ × 120

2 4 × 4ð Þ × 6 33 × 33ð Þ × 6 2 × 2 17 × 17ð Þ × 6 4 × 4ð Þ × 16 14 × 14ð Þ × 16 2 × 2 7 × 7ð Þ × 16 7 × 7ð Þ × 120 1 × 1ð Þ × 120

3 5 × 5ð Þ × 6 32 × 32ð Þ × 6 2 × 2 16 × 16ð Þ × 6 5 × 5ð Þ × 16 12 × 12ð Þ × 16 2 × 2 6 × 6ð Þ × 16 6 × 6ð Þ × 120 1 × 1ð Þ × 120

4 6 × 6ð Þ × 6 31 × 31ð Þ × 6 2 × 2 16 × 16ð Þ × 6 6 × 6ð Þ × 16 11 × 11ð Þ × 16 2 × 2 6 × 6ð Þ × 16 6 × 6ð Þ × 120 1 × 1ð Þ × 120

5 7 × 7ð Þ × 6 30 × 30ð Þ × 6 2 × 2 15 × 15ð Þ × 6 7 × 7ð Þ × 16 9 × 9ð Þ × 16 2 × 2 5 × 5ð Þ × 16 5 × 5ð Þ × 120 1 × 1ð Þ × 120
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Figure 8: Fitting process for accuracy.
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of 100 samples is 0.3841, the test time of a single sample is
within the range allowed by spectrum sensing. Our method
can meet the needs of spectrum sensing.

The training set and test set of OFDM signals are
obtained through different SNR channels in the simulation
platform. The logistic regression, SVM, and deep learning
OFDM (DP-OFDM) spectrum sensing model are used for
training and testing, and the error threshold Ωth is adjusted
to obtain the detection probability. As described in [28], a
cyclic feature detection method based on compressed sens-
ing, such as [11] proposed the energy detection method,
and [15] proposed the autocorrelation detection method.
Under the condition of false alarm probability Pf = 0:05,
the corresponding decision thresholds are set for each of
the above methods, and the above methods are simulated in
the simulation platform, respectively. The performance com-
parison of the detection probability can be shown in
Figure 10.

It can be seen from Figure 10 that under the condition of
Pf , we propose DP-OFDM spectrum sensing method is supe-
rior to the logistic regression and SVM algorithms. The same
training set and test set are used in different SNR environ-
ments, which are less affected by noise. Below −10dB, the
detection probability of CNN is better than traditional spec-
trum sensing algorithms, which indicates that our method
has better spectrum sensing performance under low SNR.
Under the condition of high SNR, the traditional spectrum
sensing algorithms have obvious performance advantages,
indicating that the traditional spectrum sensing algorithms
still have strong advantages under high SNR. Compressed
sensing-based loop feature detection is comparable to the
algorithm detection performance of this paper, but the algo-
rithm of this paper is more advantageous. The detection rate
of the traditional spectrum sensing algorithm is greatly
affected by SNR, especially when SNR is below −6 dB.

As can be seen from Section 2, performance indicator for
improving spectrum sensing is Pf . Under SNR is −12dB, the
receiver operating characteristic (ROC) curve of Pd changing
with Pf is plotted by different detection algorithms, which
can be shown in Figure 11.

It can be seen from Figure 11 that the detection probabil-
ity of energy detection algorithm is the lowest. The detection
probability of DP-OFDM detection method is significantly
higher than traditional spectrum sensing algorithms and
has a stronger advantage than the two machine learning
algorithms of logistic regression and SVM. The extracted

autocorrelation feature of OFDM cycle can reflect the char-
acteristics of spectrum, which is more suitable as the input of
CNN model. It also shows that CNN has more powerful
learning ability than other machine learning algorithms,
and spectrum sensing effect is better.

6. Conclusion

How to effectively improve the spectrum sensing perfor-
mance in complex and variable wireless environments is a
challenge. In this paper, we propose a cognitive radio spec-
trum sensing method for OFDM signal based on deep learn-
ing and cycle spectrum. The OFDM signal cyclic spectrum
feature is used as the data set of the improved CNN model,
which converts the spectrum sensing problem into an image
processing problem, and can better exert the powerful learn-
ing ability of CNN. Simulation results show that this method
is not only better than other machine learning methods but
also has higher detection probability than traditional spec-
trum sensing methods under low SNR. This method also

Table 5: Comparison of three algorithms.

CNN Logistic regression SVM
Data set Pd Pf Tr-time (s) T-time (s) Pd Pf Tr-time (s) T-time (s) Pd Pf Tr-time (s) T-time (s)

1000 0.9478 0.0821 5.3831 0.3841 0.6387 0.1728 178.43 17.8 0.8221 0.0982 361.42 29.2

2000 0.9492 0.0722 8.6242 0.6235 0.6525 0.1572 243.32 23.2 0.8292 0.0923 543.31 43.5

3000 0.9539 0.0632 10.4253 0.8212 0.6693 0.1384 301.21 29.3 0.8504 0.0951 742.83 59.8

4000 0.9578 0.0615 12.1235 0.9343 0.6852 0.1253 362.43 37.2 0.8525 0.0942 978.56 78.4

5000 0.9632 0.0523 13.2121 1.0215 0.6971 0.1132 415.37 48.5 0.8532 0.0965 1021.35 87.5

6000 0.9689 0.0494 14.5236 1.1245 0.7135 0.1012 523.41 56.1 0.8551 0.0937 1156.53 96.4
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Figure 10: Probability of detection versus SNR for various detection
algorithms Pf = 0:05.
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has certain disadvantages, such as a single feature input. In
short, this method has certain reference value for the applica-
tion of more advanced deep learning models in the field of
spectrum sensing.

Nomenclature

hðtÞ: Zero mean white noise
G: Total length of the OFDM signal
Tc: Chip time
Ts: Effective period
pðtÞ: Rectangular pulse
N : Effective length
D: Length of inserted CP
nτ: Delay sample point
α: Cycle frequency
Pf : False alarm errors
Pm: Missed detection errors
Y : Decision statistic
λ: Threshold

WH
h : Weight of layer H

Xi: Current node input
f ð·Þ: Current layer activation function
∗: Dot multiplication
⊙ : A convolution operation
YW ,bðxiÞ: The output value of the last layer of the CNNmodel

W: Weight
b: Offset.
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