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Abstract

DNA methylation plays a fundamental role in the regulation of the genome, but the optimal strategy for analysis of

genome-wide DNA methylation data remains to be determined. We developed a comprehensive analysis pipeline

for epigenome-wide association studies (EWAS) using the Illumina Infinium HumanMethylation450 BeadChip, based

on 2,687 individuals, with 36 samples measured in duplicate. We propose new approaches to quality control, data

normalisation and batch correction through control-probe adjustment and establish a null hypothesis for EWAS

using permutation testing. Our analysis pipeline outperforms existing approaches, enabling accurate identification

of methylation quantitative trait loci for hypothesis driven follow-up experiments.

Background

DNA methylation is involved in the regulation of nu-

merous biological processes, including gene expression

[1], cell differentiation [2] and X-chromosome inactiva-

tion [3]. Altered DNA methylation has been linked to

complex human diseases including cancer [4], schizo-

phrenia [5], multiple sclerosis [6] and type 2 diabetes

[7-9]. Recent technological developments, in particular

the release of the Illumina Infinium HumanMethyla-

tion450 BeadChip (450 K methylation array), make it

possible to measure DNA methylation on a genome-

wide scale [10]. However, the 450 K methylation array

includes multiple different probe types, each using dif-

ferent chemistry. Furthermore the methylation assay in-

volves bisulphite conversion of DNA and other steps

that introduce assay variability and batch effects. Mul-

tiple methods have been proposed for analysis of the

complex data generated by the 450 K methylation array

[11-17]; however, there is currently no consensus on the

optimal analysis pipeline.

We propose a comprehensive approach to the analysis

of 450 K methylation array data. Our method was devel-

oped using data from over 2,600 samples from the London

Life Sciences Prospective Population (LOLIPOP) study,

including 36 samples measured in duplicate and identifies

differential methylation on a single-marker level. Our

pipeline, termed CPACOR (incorporating Control Probe

Adjustment and reduction of global CORrelation), per-

forms superiorly to published methods, and provides a

blueprint for the analysis of large-scale Epigenome-Wide

Association Studies (EWAS).

Results and discussion

Initial quantification and quality control

We analysed two DNA methylation datasets: a population

study of type 2 diabetes comprising 2,687 samples; and a

technical replication dataset comprising 36 samples mea-

sured in duplicate (Materials and Methods). To maximise

the impact of technical factors in the replication dataset,
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the initial and repeat sample analyses were carried out in

separate batches.

We performed an initial top-level quality control fol-

lowing analysis recommendations given by Illumina. We

excluded 22 samples (sample call rate <98% or incorrect

gender). The distributions for methylation values differ

between autosomal and gender chromosome markers

(Additional file 1: Figure S1); we therefore analyse these

separately. Markers that are predicted to cross-hybridise

[18], with a SNP in the probe-sequence, or that measure

methylation at non-CpG sites were retained but flagged.

Evaluating the detection P value threshold

We initially used a detection P value of P <0.05 for

marker calling based on Illumina recommendations. We

noted though that calculated detection P values reported

by minfi [15] range from 1 to 2.2 × 10−16, with values

lower than 2.2 × 10−16 reported as zero (Additional file 1:

Figure S2). To investigate the impact of detection P value

threshold, we first evaluated call rates on the Y-

chromosome among females in the population study;

these are expected to be zero for all 416 markers. In

contrast, we found that >50% of Y-chromosome

markers had non-zero call rates in females (Figure 1),

suggesting that the default detection P value (P <0.05)

is not sufficient to prevent spurious results. When the

detection P value threshold is lowered to P <10−16 the

proportion of Y-chromosome markers with non-zero

call rate in females is reduced from 55% to 10%. The

majority of these remaining markers represent previ-

ously unidentified cross-hybridising probes (Additional

file 1: Table S1). A more stringent detection threshold

does not impact materially on Y-chromosome calling

in males (Figure 1 and Additional file 1: Figure S3).

To extend these findings to autosomal markers, we

quantified the proportion of extreme values (outliers) at

each marker in the population study as a metric for

quality of marker calling (Methods). Adoption of a more

stringent detection P value threshold (P <10−16) reduces

the proportion of outlying values, especially at markers

with lower call rates, consistent with improved calling

(Additional file 1: Figure S4).

As a final test, we compared results for the 36 samples

that were measured in duplicate. We observe a higher

correlation (P = 2.91 × 10−11) between duplicate pairs

when a detection P value threshold of P <10−16 is ap-

plied compared to a threshold P <0.05 (Additional file 1:

Figure S5), providing further evidence for improved

quantification of methylation with a more stringent de-

tection P value threshold.

This approach provides a roadmap for researchers to

determine the detection P value threshold that is optimal

for their dataset. Based on our results, we chose P <10−16

as detection P value threshold, providing a high accuracy

at minimal loss of data. We recalculated sample call rates

and excluded one further sample from the population

study dataset with a call rate below 98% leaving 2,664

samples for further analysis.

Data normalisation

Data normalisation is frequently applied in the analysis

of microarray data to reduce technical biases across

measurements. To establish a consensus approach for

normalisation of the 450 K methylation array we

Figure 1 Marker call rates on the Y-chromosome. Distribution of call rates for 416 Y-chromosome markers in males (red points and red line)

and females (green bars). Y-chromosome markers in females are represented in light green if their respective probes sequences are predicted to

cross-hybridise with multiple genomic regions. Values greater than 80 are represented by numbers. (A) For a detection threshold P <0.05 more

than 50% of Y-chromosome markers show non-zero call rates (call rate >0.05%) in females, even though females do not possess a Y chromosome.

(B) For a detection threshold P <10−16 only 10% of Y-chromosome markers show non-zero call rates in females. Marker call rates in males (shown

in red) are not materially affected by the more stringent detection P value threshold.
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assessed the performance of 10 different normalisation

methods [11,14,18-21] using the relationship between

beta values for the 36 samples measured in duplicate

(Additional file 1: Figure S6). The highest correlations

between the paired measurements of methylation were

achieved after quantile normalisation of intensity values

for markers, subdivided by probe type, probe sub-type

and colour channel (Additional file 1: Figure S7 and S8,

Table S2). Functional normalisation (FN) [22], subset

within array normalisation (SWAN) [20] and quantile

normalisation of beta values performed significantly

worse, while within-array approaches showed little or no

improvement compared to non-normalised data.

While correlation between technical replicates as-

sesses Type-I statistical error, it may not assess over-

normalisation. To quantify the ability to detect true

signal after each normalisation method, we performed

spike-in simulations based on the population study.

Case–control status was randomly assigned to samples

and beta values of 100 randomly selected markers were

increased (‘spiked’) in the case samples. We then deter-

mined the proportion of the spiked markers that were

ranked in the top 100 methylation markers by univari-

ate regression analysis. Confirming our initial finding,

quantile normalisation of intensity values performs

best, followed by quantile normalisation of beta values

and subset quantile normalisation. Whereas most methods

lead to improved performance, some over-normalise

resulting in a reduction of true signal compared to no nor-

malisation (Additional file 1: Figure S9; Table S3).

On the basis of these results, which are in agreement

with previous findings [23,24], we performed quantile

normalisation of intensity values for all samples in this

study.

Removal of technical biases

To investigate whether there were remaining technical

biases after quantile normalisation, we used linear re-

gression to compare the paired measurements of beta

values from the 36 samples measured in duplicate. We

observed a high degree of statistical inflation (λ = 2.11,

Figure 2) indicating strong residual biases between the

duplicates, consistent with batch and other technical

effects.

Existing methods to further reduce technical biases re-

quire knowledge of relevant experimental factors such as

bisulfite conversion batch, array number, position on

array, date or time [25]. These data may not be available,

or where available may not accurately measure the tech-

nical bias (Additional file 1: Figure S10). To overcome

these limitations and improve upon existing approaches,

we developed Control Probe Adjustment as a new

method to correct for technical biases in the 450 K

methylation data. We first retrieved signal intensities for

the 450 K methylation array control probes, which assess

multiple aspects of the chemistry involved in quantifica-

tion of methylation, such as bisulfite-conversion effi-

ciency (Additional file 1: Table S4). To take into account

the high degree of correlation between these control

probes (Additional file 1: Figure S11), we performed a

principal component analysis (PCA) of control probe in-

tensities, and then included the principal components

(PCs) as linear predictors in the regression analysis of

the 36 samples measured in duplicate. The PCs correlated

closely with multiple technical parameters, including bi-

sulfite batch and plates (Additional file 1: Figure S12).

Adjustment for the first 30 PCs almost entirely removed

test statistic inflation consistent with effective correc-

tion for batch and technical effects (λ = 1.01; Figure 2,

Additional file 1: Figure S13).

To further evaluate this strategy, we applied Control

Probe Adjustment to the population study of 2,664 sam-

ples. This effectively removed the biases introduced by

known technical factors (Additional file 1: Figure S14).

Null hypothesis and global correlation patterns

To determine the P value distribution under the null hy-

pothesis we randomly re-assigned case–control status

among the 2,664 samples of the population study and

performed a logistic regression for each marker using

quantile normalised beta values and adjusting for control

probe PCs. We repeated this 1,000 times to give 1,000

Figure 2 Correcting for statistical inflation due to technical

biases. Quantile-Quantile (QQ) plot for the comparison of 36 samples

measured in duplicate reveals high statistical inflation before (Genomic

Inflation Factor λraw = 12.74; brown points) and after quantile

normalisation (λQN = 2.11; green points) due to technical biases.

Batch-correction based on control probes removes technical biases

and statistical inflation (λCP= 1.01; green points).
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sets of P values under no association. Despite permuta-

tion of the case–control status to remove true associ-

ation we observed substantial departure from the null

expectation. This includes both overall statistical defla-

tion for the majority of permutations, but also a small

number of permutations with a high degree of statistical

inflation (λmedian = 0.96; λ2.5%tile = 0.84; λ97.5%tile = 1.46,

Figure 3A).

Theoretically expected P values are based on the as-

sumption of independence for each test. In contrast we

observe a high degree of correlation (and anti-correlation)

between 1,000 randomly chosen markers (Additional file 1:

Figure S15). We hypothesised that this correlation be-

tween markers reduces the number of independent tests

and may explain the apparent deflation of P values. To

test this hypothesis, we randomly reassigned beta values

for each marker to re-establish independence between

markers. This effectively abolished test-statistics deflation

and revealed a narrow prediction interval around the

expected (λmedian = 1.00; λ2.5%tile = 1.00; λ97.5%tile = 1.01;

Additional file 1: Figure S16).

Factors driving global correlation patterns

Correlation between methylation markers may arise

from technical and biological confounders. We therefore

carried out a further PCA of the population study data-

set to identify the primary patterns of covariation

between the genome-wide measurements of autosomal

methylation in peripheral blood. We then used the PCs

to explore relationships of methylation to technical and

biological factors (Figure 4).

The first three PCs were strongly associated with mul-

tiple white blood cell sub-populations. To further ex-

plore this aspect we generated a complementary set of

white blood cell subpopulations, which were estimated

from the methylation data itself [26]. The estimated

white blood cell subsets accurately reproduce white

blood cell measurements (Pearson correlation coefficient

r = 0.82-0.56; Additional file 1: Figure S17), but provide

cell type proportions of four additional lymphocyte sub-

populations. We also found significant correlations of

PCs with age, but not with any other clinical variables.

Adjustment for biological factors in the population

samples reduced the correlation between markers and

test statistic inflation, with the greatest reduction result-

ing from adjustment for white blood cell subpopulations

(Additional file 1: Figure S18-S19). To make a final cor-

rection for global covariation that is still unaccounted by

the biological factors included in the regression we per-

formed a final PCA of the residuals after adjustment for

technical and biological factors. Adjustment for the first

five PCs (which explain 3.7% of the variation; Additional

file 1: Figure S20), further reduced the correlation between

markers (λmedian = 1.00; λ2.5%tile = 0.97; λ97.5%tile = 1.05;

Figure 3B). On the basis of these results we calculated a

95% prediction interval and propose an epigenome wide

Figure 3 Prediction interval under the null hypothesis of no association. Quantile-quantile (QQ) prediction intervals for 1,000 permutations

of the case–control status. The λ-value represents the median (2.5 percentile to 97.5 percentile) of all genomic inflation factors λ. (A) Quantile

normalisation and adjustment for control probe PCs. Under no association we observe and overall statistical deflation, but also a high degree of

statistical inflation for a small number of permutations. (B) Quantile normalisation, adjustment for control probe PCs, gender, age, white blood

cells and PC1-5. Adjustments abolishes overall statistical deflation and results in a substantially more narrow prediction interval.
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significance threshold of P <10−7 that is consistent with

approximately 470,000 independent tests.

Impact on local correlation

Previous studies have reported an increased degree of

correlation between neighbouring CpG sites (<1 kb dis-

tance) [27,28], which are likely to reflect biologically

functional units. We replicated these findings, and also

show that our adjustments for technical and biological

factors remove correlation between markers with a high

genomic distance (>1 kb) while retaining correlation be-

tween markers in direct genomic neighbourhood (<1 kb)

(Additional file 1: Figure S21, Table S5). These observa-

tions support the view that our approach to data analysis

preferentially removes the long-range correlations be-

tween markers that are more likely to be spurious.

Performance

We used simulated case–control datasets to assess the

performance of the CPACOR analysis pipeline (Figure 5,

Additional file 1: Table S6). Based on the spike-in approach

described above, we show that the proportion of spiked

markers achieving high rank is improved successively by

each of the stages of our pipeline including quantile nor-

malisation, adjustment for control probes, and adjustment

for biological factors (Figure 6, Additional file 1: Table S7).

We conclude that these adjustments increase the power

to identify true association signals and reduce system-

atic biases between samples.

We used simulations to compare the performance of

our analysis pipeline with published methods [11-17].

This analysis focuses on single marker comparisons to

identify differentially methylated CpG sites, rather than

a multi-marker approach [29] to avoid regional biases

introduced by the non-random selection of CpG sites

targeted by the HumanMethylation450 BeadChip [10].

We found that most of the published methods could not

be completed using datasets of >2,000 samples, even on

a dedicated high-performance computing cluster with

2 TB of RAM (Additional file 1: Figure S22; Table S8).

Figure 4 Principal component analysis identifies global correlation patterns. We carried out a PCA of the methylation data (based on

residuals after quantile normalisation and Control Probe Adjustment) to identify the primary patterns of covariation and used the PCs to explore

relationships to biological factors such as measured (m) and estimated (e) white blood-cell subsets, gender, age and others. Colours represent

P values for correlation of different factors with PCs 1 to 10.
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In contrast our approach achieves improved computational

performance through parallelisation. Although different

methylation studies may require different approaches to

analysis, results from spiked data of a smaller dataset

(250 cases, 250 controls) indicate that CPACOR performs

significantly better than published methods (Additional

file 1: Figure S22, Tables S9 and S10).

Adjustment using reference-free approaches

Reduction of statistical inflation is crucial for the analysis

of EWAS. Here we use direct adjustment for known bio-

logical confounders to achieve this. Several recently devel-

oped methods for epigenome-wide association attempt to

adjust for biological confounders without prior knowledge

or reference datasets [30,31]. These so-called ‘reference-

free’ approaches attempt to correct for biological con-

founders by identifying clusters of covariation in the data

and removing this covariation by adjustment. For ex-

ample, the EWASher method [30] attempts to reduce stat-

istical inflation by constructing a methylation similarity

matrix based on CpGs most strongly associated with the

endpoint. It includes this similarity matrix as the covari-

ance component in a Linear Mixed Model (LMM) regres-

sion. However, because this adjustment is based on

methylation values of the most strongly associated CpGs,

this approach may remove variation attributable to the

endpoint (Additional file 1: Figure S23).

RefReeEWAS, a different reference-free approach, ex-

cludes variation attributable to the endpoint before adjust-

ment [31]. However, we find that it performs substantially

less well than CPACOR (Additional file 1: Figure S24).

This may partly be explained by the very considerable

computational requirement which limit the number of

bootstraps for deriving P values.

Figure 5 Workflow of CPACOR (incorporating Control Probe Adjustment and reduction of global CORrelation) for Epigenome-wide

Association Studies using the Illumina HumanMethylation450 BeadChip. Signal intensities are filtered for multiple Quality Control criteria

followed by quantile normalisation and calculation of beta values. In addition intensities from Illumina control probes are used to derive principal

components (control-probe PCs). Based on beta values, proportions of white blood cell subpopulations are estimated and PCs are derived (from

intermediary residuals; see Methods for details). To detect differential methylation regression analysis is performed for each methylation marker

predicting disease status as a function of the (quantile normalised) beta value adjusted for technical and biological factors and PCs.
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Our data suggest that reference-free approaches per-

form less well than the direct adjustment implemented

in our pipeline. However, for tissue samples where

relevant reference datasets are not available these ap-

proaches may provide a strategy to reduce statistical

inflation.

Marker subtypes and sex chromosomes

To investigate for potential biases arising from other

marker specific properties, we assessed the impact of

markers in three categories (Materials and methods): (1)

non-CpG markers; (2) cross-hybridising markers; and

(3) markers with a SNP in the probe-sequence (Add-

itional file 1: Table S11). We found very little evidence

to suggest these markers reduce overall data quality. In-

cluding them during quantile normalisation does not

materially affect correlation between technical duplicates

(mean r = 0.9979 in both cases). P value distributions

under no association show no evidence that non-CpG

markers or markers with SNPs in the probe sequence

are more likely to generate spurious results, but we ob-

serve a slight increase in correlation for cross-hybridising

markers (Additional file 1: Figure S25). We therefore rec-

ommend retaining, but flagging these markers.

Adjustment for technical and biological factors also

reduces correlation between markers on the sex chro-

mosomes, although to a lesser extent than autosomal

markers, resulting in broader prediction intervals

(Additional file 1: Figure S26). This suggests a higher

probability of both Type-1 and Type-2 errors during

analysis of sex-chromosome data, compared to auto-

somal results.

Conclusions

The emergence of the Illumina 450 k methylation array

now enables investigation of the relationships between

DNA methylation and phenotype in population studies.

We provide a blueprint for an EWAS analysis pipeline

based on data from the Illumina 450 Methylation array.

We show that the default detection P value is insuffi-

ciently stringent to prevent spurious results, identify the

optimal approach to data normalisation, describe a new,

highly effective method for dealing with technical bias,

and demonstrate the importance of accounting for bio-

logical confounders. On the basis of these results we

demonstrate an epigenome-wide significance threshold

of P <10−7, that is consistent with Bonferroni correction.

We show that our approach significantly outperforms

existing methods for identification of true association.

Furthermore our approach is scalable and, unlike many

existing methods, capable of handling large-scale data-

sets involving several thousand samples. Our compre-

hensive set of instructions for the analysis of Illumina

450 k methylation will advance the ability of EWAS to

accurately identify methylation quantitative trait loci for

hypothesis driven follow-up experiments.

Materials and methods

In the first section we describe in detail the consecutive

steps of our EWAS analysis pipeline. The corresponding

scripts are provided in Additional file 2 (usage requires

knowledge of R-programming and scripts may have to

be adapted to the user’s hardware and software require-

ments). The subsequent sections provide details on data

generation and additional analyses performed to compare

and evaluate the various methodological components.

EWAS analysis pipeline

1. Quality control

Illumina Infinium 450 K data are retrieved using the

minfi R package (version 1.2.0) [15] and downstream

analyses are performed using minfi and R. We

remove 65 single nucleotide polymorphism (SNP)

markers and apply Illumina Background Correction

to all intensity values. Methylation markers on

autosomes and gender chromosomes are analysed

separately. A detection P value threshold of P <10−16

was chosen and intensity values with detection

P ≥10−16 are set to missing data. We determine the

proportion of missing data points per sample,

enabling calculation of the sample call rate and

Figure 6 Simulation analysis shows successive improvement of

each stage of the CPACOR pipeline. We increased (‘spiked’) beta

values of 100 randomly selected markers and determined the

proportion of the spiked markers that were ranked among the

top 100. The proportion of spiked markers achieving top 100

ranks is improved successively by each of the stages of the

CPACOR pipeline.
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exclude samples with sample call rate <98%. We also

remove samples with swapped gender labels

identified by high call rates for Y-chromosome

markers.

2. Quantile normalisation of intensity values

Intensity values are separated into six different

probe-type categories defined by colour channel,

probe-type and M/U subtype (Type-I M red, Type-I

U red, Type-I M green, Type-I U green, Type-II red,

Type-II green). Within each category intensity values

are quantile normalised using limma [32]. Normalised

intensity values are then used to calculate the

percentage methylation at each CpG site (beta value).

3. Control Probe Adjustment

We use intensity values from the Infinium 450 K

control probes (Additional file 1: Table S4) to adjust

for technical bias. Control probe intensities

(excluding negative control probes) are obtained

using minfi [15]. A PCA of the control probe

intensities is performed and the resulting PCs 1 to

30 are subsequently included as linear predictors in

regression models (steps 5 and 6).

4. Estimation of white blood cell sub-populations

Six white blood cell sub-populations are estimated

using the approach described by Houseman et al.

[26]. Estimates are based on 500 markers most

informative of white blood cell subpopulations as

measured by the Illumina Infinium 27 K methylation

array. Of these 470 are also present on the Illumina

Infinium 450 K methylation array and are therefore

used in this analysis. Estimated white blood cell

subpopulations (WBCest) and (measured) total

white blood cell counts (WBCtot) are subsequently

included as linear predictors in regression models

(steps 5 and 6).

5. PCA of intermediary residuals

To make a final correction for global covariation

that is still unaccounted for, we perform a linear

regression predicting the (quantile normalised) beta

values adjusted for technical and biological factors

and study-specific confounders such as gender and

age (1).

Beta QNð Þ
e

age þ gender þ WBCest

þ WBCtot þ PC1−30ctrl−probes ð1Þ

We then perform a PCA on the resulting regression

residuals (excluding markers with missing data) and in-

clude PC 1 to 5 as linear predictors in the final regres-

sion model (step 6).

6. Logistic regression analysis to identify differential

methylation

To detect differential methylation we perform a final

(logistic) regression analysis for each methylation

marker predicting disease status Y as a function of

the beta value adjusted for technical and biological

factors and PCs (2).

Y
e

Beta QNð Þ þ age þ gender þ WBCest

þWBCtot þ PC1−30ctrl−probes þ PC1−5 ð2Þ

Data generation

Two DNA methylation datasets were generated in this

study: (1) a population study of 2,687 samples (1,080

Type 2 Diabetes cases, 1,607 controls); and (2) a replica-

tion dataset of 36 samples measured in duplicate. Gen-

omic DNA was extracted from peripheral blood and

analysed in batches of 288 samples. To maximise the

impact of technical factors in the replication dataset, the

initial and repeat sample measurements were carried out

in separate batches. Methylation was quantified following

standard protocol (Infinium_HD_Methylation_Assay_

Guide_15019519_B) with 1 ug of DNA as starting material

and an elution volume of 14 uL after bisulphite conversion

(using the EZ-96 methylation kit; Zymo). Microarrays

were imaged using an Illumina HiScan scanner.

Initial quality control

Illumina Infinium 450 K data were retrieved as described

and an initial top-level Quality Control was performed

following the analysis recommendations given by the

array manufacturer. In brief, we applied Illumina Back-

ground Correction to all intensity values and calculate

the percentage methylation at each CpG site assayed

(the beta value). An initial detection P value threshold of

P <0.05 was chosen based on Illumina recommenda-

tions; beta values with detection P ≥0.05 were set to

missing data. We determined the proportion of missing

data points per sample and per marker, enabling calcula-

tion of sample and marker call rates, respectively. For

the population study we excluded 17 samples with

sample call rate <98%. We also removed five samples

with swapped gender labels identified by high call rates

for Y-chromosome markers. After re-evaluation of the

detection P value threshold, beta values with detection

P ≥10−16 were set to missing data. We re-calculated

sample call rates and excluded one further individual

with sample call rate <98% from the study.

Outliers and outlier rate

For each methylation marker we define outliers based

on the interquartile range (IQR), such that beta values

Lehne et al. Genome Biology  (2015) 16:37 Page 8 of 12



are considered as outliers if they fall below Quartile

1–1.5 × IQR or above Quartile 3 + 1.5 × IQR. Outlier

rates are calculated as the number of outlying beta

values divided by the number of non-missing beta

values.

Data normalisation

We evaluated 10 methods to data normalisation: (1)

quantile normalisation of beta values separated by

probe-type and colour channel (Type II, Type I red,

Type I green) using limma [32]; (2) quantile normalisa-

tion of intensity values separated by colour channel (red

and green channel; termed QN-I2) using limma [32]; (3)

quantile normalisation of intensity values separated by

colour channel and probe-type (Type I red, Type I green,

Type II red, Type II green; termed QN-I4) using limma

[32]; (4) quantile normalisation of intensity values sepa-

rated by colour channel, probe type and M/U subtypes

(Type I M red, Type I U red, Type I M green, Type I U

green, Type II red, Type II green; termed QN-I6) using

limma [32]; (5) Illumina Control Probe normalization as

implemented by minfi [15] (‘normalize.illumina.control’;

not to be confused with CPA); (6) subset within-array

normalisation (SWAN) [20]; (7) peak-based correction

[11]; (8) Beta MIxture Quantile dilation (BMIQ) [19]; (9)

subset quantile normalisation [14]; and (10) functional

normalisation (FN) [22]. All normalisation methods were

implemented using the R packages supplied with the

publications.

After each normalisation we determined the Pearson

correlation coefficients between replicates for the 36

samples measured in duplicate. Pearson correlation coef-

ficients are calculated (1) at the marker level: correlation

coefficient between the 36 paired measurements for each

of the 470,000 markers assayed (thus generating ap-

proximately 470,000 test results; Additional file 1: Figure

S6A); and (2) at the sample level: correlation co-efficient

between the paired measurements of the approximately

470,000 markers assayed in each of the 36 duplicate

samples (thus generating 36 test results; Additional file 1:

Figure S6B). A paired Wilcoxon test was used to assess

the difference between the normalisation methods.

To assess the degree of true signal detectable after

each normalisation method, we performed spike-in sim-

ulations. Based on the population study, disease labels

were randomised to generate 10 permutated datasets.

From each permuted dataset 100 markers were ran-

domly selected and spiked. For each ‘spike-marker’ raw

beta values of samples with a case label are increased by

a defined proportion of the standard deviation of the re-

spective marker. Based on these spiked beta values we

calculate intensity values for the methylated and the

unmethylated probe, such that for half of the spiked

probes the methylated intensity is changed and for the

other half the unmethylated intensity is changed. Nega-

tive intensity values resulting from this process are set to

zero. Intensity values were spiked over a range of magni-

tudes (as percentage of SD of the beta value) resulting in

10 sets per magnitude (10 permutations per magnitude).

Using univariate logistic regression we calculated P values

for each permuted datasets and ranked the 100 spiked

markers by their association P values. For each magnitude

the 10 permuted dataset provide a total of 1,000 ranks for

1,000 spiked markers.

Analysis of technical replicates

To assess the degree of technical biases and batch ef-

fects, we analysed a technical replication dataset com-

prising 36 samples measured in duplicate. To maximise

the impact of technical factors the initial and repeat

sample analyses were carried out in separate batches.

We performed regression analyses to identify differen-

tially methylated positions between replicates. Using

paired linear regression we predict replicate status as a

function of the beta value with and without adjustments

for control probe PCs.

Replicate
e

Beta QNð Þ ð3Þ

Replicate
e

Beta QNð Þ þ PC1−30ctrl − probes ð4Þ

Batch correction using ComBat

We performed batch correction for technical technical

replication dataset based on quantile normalised beta

values using ComBat [25] to compare its performance to

CPA. ComBat, as implemented in ChAMP (champ.

runCombat) [16], performs a batch correction based

on the Bead-Chip (Sentrix ID) and returns corrected

methylation values. All samples measured on relevant

Bead-Chips were included for batch correction. To

avoid ComBat deliberately preserving differences at-

tributable to the outcome of interest (replicate status),

gender was defined as the Sample Group.

Permutations of the disease status

To make permutation-analysis of the large-scale popula-

tion study computationally tractable for 1,000 permuta-

tions we performed a linear regression of model (5) and

retrieved the residuals. These were used as predictors in

a logistic regression, with the (permuted) disease-status

(Yperm) as outcome (6). This approach is in almost per-

fect agreement with a conventional model that directly

adjusts for all linear predictors (2): we calculated coeffi-

cients of determination (R2-values) for -log(P values)

and beta-coefficients with respect to results from model

(2) and found R2 > 0.999 (analysis performed for permu-

tation 1 to 10).
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Beta QNð Þ
e

age þ gender þ WBCest þ WBCtot

þ PC1 − 30ctrl−probes þ PC1 − 5 ð5Þ

Y perm e
residuals ð6Þ

Assessment of white blood cell estimates

For the population study estimated white blood cell sub-

populations (WBCest) explain a higher proportion of vari-

ance in the methylation data than measured white blood

cell subpopulations, which may reflect the wider range of

lymphocyte sub-classes in estimated sub-populations. Ad-

justment for white blood cells is therefore based on esti-

mated white blood cell sub-populations and (measured)

total white blood cell counts (WBCtot).

Analysis of global correlation patterns (heatmap)

To identify global correlation patterns that can be ex-

plained by biological factors, we performed a PCA based

on methylation residuals after quantile normalisation

(QN) and CPA (7). PCs were linked to multiple pheno-

types (age, gender, white blood cells, and so on) using

linear regression. P values of association (between the

PCs and the phenotypes) were Bonferroni-corrected and

plotted on the -log10 scale (Figure 4).

Beta QNð Þ
e

PC1 − 30ctrl − probes ð7Þ

Local correlation

Local correlation was determined for all possible pairs of

autosomal markers up to 5,000 bp apart. Distance be-

tween markers was based on the annotated position of

the CpG sites on the forward strand. Pearson correlation

coefficient between marker pairs were calculated based

on beta values (raw) and residuals derived from models

(5) and (7). A large proportion of methylation markers

show very little variation, which limits their ability to

yield high correlation coefficients. To reflect the effect of

genomic distance on correlation more appropriately we

therefore selected the 5% most variable markers (based

on raw beta values) and represent their correlation

graphically on a continuous scale using a sliding 300 bp

mean. To demonstrate that adjustments preferentially

reduced correlation between markers with greater dis-

tance we calculated the difference in correlation coeffi-

cients per basepair distance (between two different

adjustments). To determine statistical significance we

then performed a linear regression of the differences

and the genomic distance.

Performance

Spike-in simulations were carried out as described. Each

permuted dataset was then analysed using different

stages of the CPACOR pipeline and other published

450 k analysis pipelines [11-17] (where computationally

tractable). Only approaches providing a complete ana-

lysis pipeline from signal intensities to detection of dif-

ferentially methylated CpG sites were considered. For

each pipeline default parameters were chosen as speci-

fied and ranks were calculated as described.

Reference-free approaches

Using ‘spike-in’ data generated as described, we assessed

the performance of EWASher [30] and RefFreeEWAS

[31]. Beta values were quantile normalised and control-

probe PCs 1 to 30 were provided as covariates to adjust

for technical biases. Because neither approach was com-

putationally tractable for the complete dataset (2,664

samples), analysis was performed on a smaller dataset

(250 cases, 250 controls).

EWASher was applied to all CpGs (including constitu-

tively methylated CpGs). Default parameters were

chosen as specified and results of each analysis step (lin-

ear regression, linear mixed model regression, linear

mixed model regression + PCs) were retrieved.

Adjusted and unadjusted beta coefficients were calcu-

lated using RefFreeEWAS. Dimensionality was estimated

as described by Houseman et al. (d = 133) and default

parameters were chosen as specified. To derive P values

we performed 50 bootstraps, which required 50 hours of

compute time and 130 GB RAM.

Marker categories

We assessed the following probe types for their impact

on association test results:

1. Non-CpG markers. Autosomal probes that measure

methylation at CpA and CpT rather than CpG sites

(N = 2,995) based on the Illumina annotation.

2. Cross-mapping probes. Methylation probe

sequences reported to map to >1 genomic location

(N = 39,963) identified by Price et al. [18].

3. Probes with SNPs. Methylation markers with one or

more SNPs located within the probe sequence

(including the G-base of the CpG site) that have

minor allele frequency >1% in the samples studied.

(N = 75,702).

Sex chromosomes

Analysis of methylation markers on the sex chromosomes

was performed as described for autosomal markers, but

separately in males (chromosome X and Y) and females

(chromosome X). In addition to samples with autosomal

call rates <98% we excluded samples with chromosome X

and Y call rates <98%. This results in 1,780 samples for

chromosome Y (25 samples excluded), 1,802 for chromo-

some X in males (3 samples excluded) and 859 samples
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for chromosome X in females. Separately for each dataset

we performed quantile normalisation and adjusted for

control probe PCs, age, white blood cells and PC 1 to 5.

Data availability

Methylation array data can be accessed through the Gene

Expression Omnibus at http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE55763.

Additional files

Additional file 1: Contains all supplementary figures and tables.

Additional file 2: Contains scripts and documentation for the

CPACOR EWAS analysis pipeline. Files can be read using a standard

text-editor. Usage requires knowledge of R-programming and may have

to be adapted to accommodate the software and hardware requirements

specific to the user’s system.
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