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Abstract— STT-RAM is an emerging NVRAM technology that
promises high density, low energy and a comparable access speed
to conventional SRAM. This paper proposes a hybrid L1 cache
architecture that incorporates both SRAM and STT-RAM. The
key novelty of the proposal is the exploition of the MESI cache co-
herence protocol to perform dynamic block reallocation between
different cache partitions. Compared to the pure SRAM-based
design, our hybrid scheme achieves 38% of energy saving with a
mere 0.8% IPC degradation while extending the lifespan of STT-
RAM partition at the same time.

I. INTRODUCTION

The concern about energy consumption in the current tech-

nology nodes has driven researchers to examine alternative

solutions. To reduce the increasing leakage energy in con-

ventional SRAM-based caches, several non-volatile random-

access memory (NVRAM) technologies [1] are being investi-

gated as candidates for future on-chip processor caches, and

off-chip primary memory. Among these NVRAM solutions,

spin-torque transfer RAM (STT-RAM) [2] has emerged as one

of the promising candidates. Besides its non-volatility, STT-

RAM offers an access (read) speed comparable to SRAM, a

high integration density comparable to DRAM, and is compat-

ible with the CMOS process.

However, there are three main challenges in deploying STT-

RAM as on-chip caches. The first two are its long write latency

and high dynamic write energy. Many architectural solutions to

mitigate these issues [3, 4, 5, 6, 7, 8, 9] have been investigated,

mostly with the STT-RAM used in last level caches. Sun et.

al. [10] has recently proposed architectures for pure STT-RAM

L1 caches. Still, there is a third challenge that few of the earlier

work had considered: reliability. In this paper, we would like to

address all three challenges in using STT-RAM in the highest

level of the cache hierarchy.

The key insights of the paper are that under a shared mem-

ory multicore environment, most of the private L1 cache blocks

have predictable behaviors during an application’s execution,

and the transition between different cache coherency states pro-

vides a good approximation of a block’s future behavior. Based

on these observations, we propose a novel hybrid private L1

cache design scheme that operates with a small SRAM parti-

tion, and a larger STT-RAM partition. Our approach not only

brings energy benefits to processors, but also significantly re-

duces the performance impact as well as the risk of STT-RAM

cell failure. In particular, this paper makes the following con-

tributions:

• We present a hybrid L1 cache architecture design that at-

tempts to mitigate the performance and energy penalty in-

duced by the slow and energy-consuming write operation

of STT-RAM.

• We propose three different cache block migration schemes

that are based on the MESI protocol. Simulation shows

that while compared to a conventional pure SRAM-based

cache design, our approach achieved significant energy

savings with minor IPC degradation.

• We investigate the write endurance issue of STT-RAM

and evaluate the improvement achieved by our hybrid

cache architecture. We found that the write endurance of

STT-RAM cache in our hybrid design is significantly im-

proved compared to a pure STT-RAM-based design.

II. STT-RAM BASICS

The data storage unit inside a STT-RAM cell is the magnetic
tunnel junction (MTJ). Fig. 1 shows a typical one transistor,

one MTJ (1T-1MTJ) cell structure. The MTJ has two ferromag-

netic layers that are separated by an oxide tunnel barrier. The

ferromagnetic layer at the bottom (the reference layer) comes

with a fixed magnetization direction while that for the top layer

(the free layer) can be changed. When the magnetization direc-

tion of the free layer is parallel (anti-parallel) to the reference
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Fig. 1. STT-RAM cell structure
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Fig. 2. The hybrid cache hierarchy.

layer, the overall resistance of the device is in low (high) state,

which can be read out by injecting a sensing current. Concep-

tually, logical ‘1’ is represented by low conductivity while log-

ical ‘0’ corresponds to the high conductive state. To write the

device, a strong polarized current is applied from source-line to

bit-line, which switches the magnetization direction of the free

layer and turns the cell into parallel or anti-parallel state.

The data retention time (the expected time until a bit flip ap-

pears) of the STT-RAM cell can vary from 10+ years to micron-

second level, depending on the MTJ designs [10].

III. HYBRID L1 CACHE ARCHITECTURE

A. The Proposed Hybrid Cache Hierarchy

Fig. 2 illustrates our proposed hybrid cache hierarchy for a

quad-core machine. Each of the processor core has a private

L1 cache comprising of a SRAM and a STT-RAM partition

while sharing a unified L2 cache. The L1 cache controller is

responsible for handling cache access operations, and transfer-

ring cache blocks between the two partitions when necessary.

B. A Naı̈ve Solution

Due the high write latency and write energy of STT-RAM, it

is desirable to move writes to the SRAM partition, and only

read from the STT-RAM partition. However, the difficulty

lies in predicting a cache block’s access pattern. A naı̈ve so-

lution would allocate all read-miss blocks to STT-RAM, and

write-miss blocks to SRAM when a cache miss happens. This

method assumes for every cache block, the first operation on

it would be the dominant one for this block until it is evicted.

However, such an assumption does not guarantee to hold all the

time. For example, during an application’s warming up phase,

cache behavior is generally unstable, and would easily invali-

date this assumption.

Fig. 3 illustrates a read operation under the naı̈ve implemen-

tation. Both cache partitions are accessed simultaneously, and

at most one partition would produce a cache hit. On a cache

hit, the corresponding data would be sent via a 2-to-1 MUX

to the processor. The MUX is selected by the hit signal. In

any case, the additional delay caused by the MUX is negligible

when compared to a pure SRAM design as the two accesses are

done in parallel.
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Fig. 3. Read from the hybrid cache.
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Under this hybrid model, cache miss is defined by none of

the partitions produces a hit. When it happens, a prediction is

made and the data block is loaded into the partition that po-

tentially can maximize the performance and energy benefits.

Fig. 4 illustrates this process. A DEMUX is added at the top to

direct the input data from lower level memory to corresponding

cache partition based on the prediction. Since STT-RAM has

a longer write latency than SRAM, read-misses require more

time to handle than write-misses. In addition, the hit ratio (HR)

of each partition can be calculated separately by

HR SRAM =
#Hits SRAM

#Hits SRAM +#Misseswrite

HR STT−RAM =
#Hits STT−RAM

#Hits STT−RAM +#Misses read

C. Analysis of Cache Block Behavior under MESI

Although the naı̈ve prediction method does reduce the en-

ergy consumption by a certain amount when compared to the

pure SRAM baseline, it incurs a relatively large impact on per-

formance (Section IV.B). The critical point is to mitigate the

performance penalty induced by those ill-placed blocks which

reside in a less beneficial cache partition.
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Fig. 5. Immediate transfer (IT) diagram.

Under the MESI protocol, if at one point in time a cache

block is in the MODIFIED (M) state, it must have been writ-

ten to before, and more importantly, it probably will be written

to again exclusively by the current owner in the near future.

In other words, such blocks are likely to be overwritten many

times, and might benefit more by staying in the SRAM par-

tition rather than in STT-RAM partition. On the other hand,

EXCLUSIVE (E) and SHARED (S) states indicate that the block

is a clean copy for now, and is likely to remain clean as a read-

only exclusive/shared copy. Hence, it is better to keep such

blocks in the STT-RAM partition of the cache. In addition,

during a program’s runtime, it can happen that a cache block

may have to be moved from one partition to the other in order

to take the advantages of both caches. Thus, some mechanisms

are required to take care of the block transfer decision.

D. Transfer Mechanism 1 (Immediate Transfer)

Our first proposed block transfer mechanism is called the im-
mediate transfer policy (IT). Fig. 5 shows a block’s transition

state and movement under this policy. While the naı̈ve solution

is based entirely on temporal locality, IT takes things a step

further. A remote read operation hit on SRAM partition would

cause the corresponding block to be evicted, and transferred to

the STT-RAM partition in the new S state, while a local write

hit on a STT-RAM partition makes the block dirty, and neces-

sitate its transfer to the SRAM partition of the cache under its

new M state. Note that here we only consider those operations

that can change the coherent state, so there is no extra informa-

tion required. Besides, the way of handling cache misses is the

same as in the naı̈ve solution.

Note that the order of handling the actual memory request

and transferring the affected cache blocks can potentially cause

differences in performance and energy saving, but we found

that the variations is generally small, and can be safely ignored.

Throughout this paper, we assume a block transfer completes

before serving the memory request.

E. Transfer Mechanism 2 (Delayed Transfer)

Although IT does result in a better overall performance than

the naı̈ve approach, it fails to consider certain cases. In a typical

scenario of a single producer with multiple consumers, some

cache blocks may keep changing their states between M and

S. IT may therefore be too aggressive under this circumstance.

The delayed transfer policy (DT) differs from IT by delaying

the transfer triggered by the first operation. Fig. 6 illustrates the

transfer decision making process. Block migration only hap-

pens when two consecutive operations satisfying the transfer

condition are encountered. In particular, to move a cache block

M E IE MIS S

2nd Local Write 
(consecutive)

2nd Remote Read 
(consecutive)

1st Remote Read

1st Local Write
SRAM STT-RAM

Write Miss Read Miss

Fig. 6. Delayed transfer (DT) diagram.

from SRAM partition to STT-RAM partition, we need to have

two remote reads with no intervening writes, while in order to

move a block from STT-RAM partition to SRAM partition, two

consecutive local writes must have be encountered.

The flowchart of DT is shown in Fig. 7. In the implementa-

tion, an extra transfer determine bit (TD bit) is added to each

cache blocks. All newly-allocated blocks will have the TD bit

reset to ‘0’, but the runtime set and reset policy is different be-

tween SRAM partition and STT-RAM partition. In the SRAM

partition, a remote read will set the TD bit to ‘1’ while any

write will have it reset to ‘0’. On the other hand, in the STT-

RAM partition, only local writes set the TD bit to ‘1’ and any

other reads will reset it to ‘0’. Hence, when a potential transfer-

trigger operation is encountered in a cache partition, TD bit can

be used to determine whether a transfer is actually needed. Un-

like IT, this transfer policy does not impose any MESI state

restriction of a cache block in the caches, hence we may en-

counter blocks with E or S state in the SRAM partition, as well

as M blocks in STT-RAM partition. The main objective here is

to eliminate the thrashing effect where a block keep moving be-

tween the two partitions without receiving enough references.

IV. EVALUATIONS

A. Experiment Setup

To evaluate our proposed design, we use the cycle-accurate

simulator MARSSx86 [11] to model a conventional multicore

x86-64 processor with a 2-level cache hierarchy as shown in

Fig.2. Ten diverse multi-threaded workloads from PARSEC

2.0 [12] benchmark suite were chosen for the experiment. The

complete list of simulator parameters is given in Table I. Both
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TABLE I

SIMULATION PLATFORM.

Processor Core 3GHz frequency, 4 cores

Pipeline Width 4

Functional Units 2 ALUs, 2 FPUs, 2 LUs, 1 SU

ROB / LSQ Entries 128 / 80

In-flight Branches 24

ITLB/DTLB Entries 32 / 32

Cache Block Size 64-byte

L1 I-Cache (SRAM) 64KB, 8-way, 3-cycle latency

L1 D-Cache (SRAM) 4-64KB, 8-way, 3-cycle latency

L1 D-Cache (STT-RAM) 64/128KB, 8-way, 3-cycle read

latency, 9-cycle write latency

Coherent Protocol Illinois MESI

Shared L2 Cache (SRAM) 2MB, 16-way, 15-cycle latency

10.00%

9.00%

31.50%

2.40%

26.20%

12.80%

8.10%

System energy breakdown

Instruction fetch

Decode and renaming

Execution

MMU

Load/Store

L2 cache

Interconnect

Fig. 8. Energy breakdown for each pipeline stage.

of the SRAM and STT-RAM cache energy and latency num-
bers were generated using NVSim [13] with a 32nm tech-
nology node assumed. To improve the write performance of
STT-RAM, its non-volatility is relaxed with a retention time of
26.5μs [10]. This assumes that a conventional DRAM-style
refresh scheme is used to maintain data integrity. The baseline
reference is a pure 64KB SRAM cache and we took care not to
exceed the silicon area of this when exploring possible hybrid
cache size configurations.

Before evaluating the energy consumption of our hybrid
cache architecture, we shall first show the energy distribution
for each component within the processor. Fig. 8 presents a typ-
ical breakdown of energy for each pipeline stage during run-
time using the McPAT tool [14] with our processor configura-
tion (Table I) as input. The statistics were generated according
to the event log of MARSSx86’s cycle-accurate simulation. In
particular, the load/store unit, and the L1 data cache in partic-
ular (which is part of the load/store unit) consumes more than
1/4 and 1/5 of the total energy, respectively. This result jus-
tify our effort in reducing the energy consumption of L1 cache.
To simplify the discussion, we will only focus on the energy
consumption of L1 data cache for the rest of the paper.

B. Performance

Fig. 9 shows the normalized instructions-per-cycle (IPC)
for the different hybrid cache configurations running under
the IT policy. All the hybrid cache configurations maintain a
comparable performance to the pure SRAM baseline. In the
worst case, only an average 1.5% performance degradation was
recorded for the smallest size configuration. This is even better
than the best case in the naı̈ve solution (Fig. 11).

However, a particularly bad degradation of nearly 8% loss
in IPC was recorded in swaptions. Unlike the others,
swaptions requires more exclusive blocks for writing dur-
ing its execution. This is why there is a continuous perfor-
mance improvement as the size of the SRAM partition in-
creases. Without a sufficiently large SRAM partition, doubling
the size of STT-RAM partition will not compensate for the per-
formance loss.

Fig. 11 compares the performance for the different transfer
scenarios. Across all the cache size combinations, both IT and
DT perform better than the naı̈ve solution. On the other hand,
the IPC differences between IT and DT are marginal. The
largest one recorded is in the smallest cache size configura-
tion (4KB SRAM + 64KB STT-RAM), where DT outperforms
IT by around 1%. Notice that a serious IPC drop of 5.7% is
recorded when the baseline is directly replaced with pure STT-
RAM. This proves the importance of our hybrid design.

C. Energy

The total energy consumption is modeled by the sum of three
components: leakage energy, refresh energy and dynamic en-
ergy. Besides the usual runtime read/write energy, dynamic
energy in our context also includes the energy for probing both
cache partitions, and the transfer energy when one of the block
transfer policies is applied.

Fig. 10 shows the normalized energy consumption for the
hybrid cache with IT policy. In general, our design saves more
energy in those read-intensive benchmarks such as vips and
swaptions. Even for the most write-intensive benchmark,
raytrace, around 30% of energy saving is achieved in the
best case. When taking IPC into consideration, a medium
cache size combination (8KB SRAM + 64KB STT-RAM) pro-
vides the best trade-off among the four configurations tested.

Within the three transfer scenarios (Fig. 11), the largest en-
ergy saving occurs in the smallest cache configuration, though
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Fig. 9. Normalized IPC for hybrid cache with IT policy.

613

7A-5



50

55

60

65

70

75

80

85

90

Normalized Total 
Energy (%)

4KB SRAM + 64KB STT-RAM 8KB SRAM + 64KB STT-RAM

16KB SRAM + 64KB STT-RAM 4KB SRAM + 128KB STT-RAM

Fig. 10. Normalized total energy for hybrid cache with IT policy.

56

59

62

65

68

71

74

94

95

96

97

98

99

100

Pure 64KB
STT-RAM

4KB SRAM  +
64KB STT-RAM

8KB SRAM  +
64KB STT-RAM

16KB SRAM +
64KB STT-RAM

4KB SRAM +
128KB STT-RAM

Naïve IT DT Energy

×

× × ×

×Normalized IPC (%) Normalized Energy (%)

×

× ×

×

× ××
× ×
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the lowest IPC rates were recorded for all of them. This is
because the leakage and refresh energy consumed in a larger
cache is more significant than the energy spent in extra dynamic
operations that are caused by either a higher miss ratio (smaller
cache) or ill-placed blocks (naı̈ve solution). Although the pure
STT-RAM solution consumes the least energy, the difference
between it and the best hybrid scheme is merely 3%, while the
IPC drop is significant. Overall, we consider DT(4KB SRAM
+ 64KB STT-RAM) to be the best hybrid cache configuration
since it provides the best energy-IPC trade-off (saves 38% en-
ergy under a mere 0.8% IPC degradation).

D. Impact of Retention Time

The retention time of STT-RAM cells is related to the ther-
mal barrier Δ of an MTJ, which can be expressed as t = C ×
ekΔ where t is the retention time, and C and k are fitting con-
stants [9]. Any variations in the planar area and the thickness
of the MTJ affect the thermal barrier, and thus impact the reten-
tion time. However, given a particular set of read/write latency
and the cache size, the lowest possible retention time under a
DRAM-style refresh scheme is bounded by #cache blocks ×
(read latency + write latency)× cycle time.

Fig.12 shows the IPC and energy consumption under vari-
ous retention time values for a 4KB SRAM + 64KB STT-RAM
hybrid cache with IT policy. The data are normalized to the
perfect case when the refresh is completely eliminated (inf ).
In general, a lower retention time causes more refresh conflicts
and thus increases the latency for memory requests. It also
consumes more energy due to a more frequent refresh sched-
ule, but the impact become marginal while the refresh period
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4μs 8μs 16μs 32μs 64μs inf

IPC EnergyIPC (%) Energy (%)

Retention Time

Fig. 12. IPC and energy consumption for various retention time values of a
4KB SRAM + 64KB STT-RAM hybrid cache with IT policy.

is larger than 32μs. We demonstrate these results is because
STT-RAM are not yet in commercial deployment and the man-
ufacturing parameters are not fully known. An extreme short
retention period can seriously downgrade performance and lead
to a higher energy consumption.

E. STT-RAM Endurance Study

The write endurance issue for STT-RAM has so far been
only considered in the context of last level caches [15]. How-
ever, the issue is even more pressing when STT-RAM technol-
ogy is employed in L1 caches as they have a much higher write
activity than last level caches. Although a prediction of 1015

programming cycles [16] is often cited as the write endurance
for STT-RAM, real experiments thus far have showed that the
achieved endurance is only about 1013 write cycles [2]. This
would be a severe constraint on any pure STT-RAM L1 solu-
tion, and is one of the key motivations for our hybrid design.

Fig. 13 demonstrates the average number of writes to STT-
RAM partition happened within each CPU cycle. Among all
the benchmarks, facesim has the highest average writes per
cycle. Consider the case when the writes are perfectly dis-
tributed to all cache blocks in facesim for a pure STT-RAM
design, each block would need to stand 2.4 × 105 writes per
second. Under a conservative estimate, each block has a lifes-
pan of about 1.3 years.

However, further analysis shows that writes are not at all
evenly distributed. This is true within a single cache as well
as across different private caches. We observed that some
blocks are seldom used while several other blocks suffer from

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Writes / cycle Pure 64K Naïve IT DT

Fig. 13. Average number of STT-RAM writes occurs in each CPU cycle. All
hybrid caches use 4K SRAM + 64K STT-RAM with IT policy.
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TABLE II
STT-RAM CACHE LIFESPAN ESTIMATION BASED ON THE WRITE

FREQUENCY OF FACESIM .

Average
partition

Worst
partition

Worst
block

Pure STT-RAM 1.3 years 0.3 years < 22 mins
Hybrid Naı̈ve 3.5 years 1.0 year 0.9 hr
Hybrid IT 41.2 years 6.9 years 51.6 hrs
Hybrid DT 32.9 years 7.0 years 54.3 hrs

All hybrid caches use 4K SRAM + 64K STT-RAM.

a huge amount of writes. For example, about 15% writes tar-
get at a particular block in facesim, while the corresponding
cache partition receives nearly 50% writes among the four pri-
vate caches. In another words, assuming a 3 GHz clock and
a write endurance of 1013 write cycles, that STT-RAM block
may fail within half an hour if no proper measure is taken.
Due to the low-latency requirement and high access frequency
of L1 caches, existing wear-levelling methods for last level
caches [15] are not feasible.

Table II lists the average and worst case lifespan of the STT-
RAM cache for facesim under the write endurance assump-
tion of 1013 programming cycles. The “average partition” col-
umn assumes that the writes are perfectly distributed to all of
the private caches while the “worst partition” only assumes the
writes are evenly distributed within each private cache parti-
tion. In the “worst block” case, the actual number of writes per
cache block is computed. Compared to a pure 64KB STT-RAM
solution, the lifespan of the most write-intensive cache block in
a hybrid configuration with the DT policy is increased by up to
150×, while the worst cache partition lifespan is increased by
2333%. Although the DT policy performed slightly better than
IT policy in the worst case endurance, it suffered from a lower
average lifespan because the blocks in STT-RAM recieve more
writes by the delayed migration. Note that the naı̈ve solution
for hybrid cache is still insufficient for actual deployment.

In practice, caches would come with redundancy or error
correction code to improve reliability. Also, it is very unlikely
to see such a sustained high write frequency on a particular
block especially for personal workload. Thus the worst case
block lifespan should be much longer. Nonetheless, the risk
exists, especially for the current state-of-the-art in STT-RAM
technology. Our experiments showed clearly that the proposed
hybrid architecture can significantly reduce this risk.

V. CONCLUSION

This paper proposed a hybrid L1 cache architecture that uses
both conventional SRAM as well as the new STT-RAM tech-
nology. By exploiting the MESI cache coherence protocol, our
design mitigates the impact of STT-RAM’s high write latency
on IPC performance, while reducing the overall energy con-
sumption compared to a pure SRAM-based design. In addition,
our proposal enhances the reliability of STT-RAM, making it
more suitable for actual deployment. As the CMOS technology
continues to scale, increasing energy consumption and design
complexity demands for more power-efficient designs. We be-
lieve that our hybrid cache is an attractive architecture for the

next-generation non-volatile computing.
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