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1 Laboratoire de Physique des Solides, (UMR 8502), bâtiment 510, Université Paris-Sud, 91405 Orsay,
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Abstract

We review the first experiment on dynamic transport in a phase-coherent quantum conductor.

In our discussion, we highlight the use of time-dependent transport as a means of gaining

insight into charge relaxation on a mesoscopic scale. For this purpose, we studied the ac

conductance of a model quantum conductor, i.e. the quantum RC circuit. Prior to our

experimental work, Büttiker et al (1993 Phys. Lett. A 180 364–9) first worked on dynamic

mesoscopic transport in the 1990s. They predicted that the mesoscopic RC circuit can be

described by a quantum capacitance related to the density of states in the capacitor and a

constant charge-relaxation resistance equal to half of the resistance quantum h/2e2, when a

single mode is transmitted between the capacitance and a reservoir. By applying a microwave

excitation to a gate located on top of a coherent submicronic quantum dot that is coupled to a

reservoir, we validate this theoretical prediction on the ac conductance of the quantum RC

circuit. Our study demonstrates that the ac conductance is directly related to the dwell time of

electrons in the capacitor. Thereby, we observed a counterintuitive behavior of a quantum

origin: as the transmission of the single conducting mode decreases, the resistance of the

quantum RC circuit remains constant while the capacitance oscillates.

(Some figures may appear in colour only in the online journal)

This article was invited by S Washburn.
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List of symbols

e elementary charge

h Planck constant

h̄ reduced Planck constant

kB Boltzmann constant

ne electronic density

µe electronic mobility

τRC RC time

τd dwell time

τ0 roundtrips time inside the cavity

C geometric capacitance

Cq quantum capacitance

Cµ electrochemical capacitance

Rq charge-relaxation resistance

RK von Klitzing constant

Rc contact resistance

f Fermi–Dirac distribution

ǫF Fermi energy

N density of states

µL,R electrochemical potential of the left, right reservoir

ω angular frequency

si,j scattering matrix

T transmission probability

R reflection probability

r reflection amplitude

� energy level spacing in the cavity

�⋆ renormalized energy level spacing by Coulomb

interactions

h̄Ŵ width of the energy level

vd drift velocity

l circumference of the cavity

φ accumulated phase in the cavity

gdc dc conductance of the 2DEG

gac ac conductance of the 2DEG

G conductance

Z impedance

Vi electric potential of the reservoir

U electric potential in the cavity

Vg gate voltage

X, Y in-phase and out-of-phase signals

ϕ phase of the signal

1. Introduction

In view of recent developments in quantum electronics, the

increasing interest in manipulating and measuring a single

electronic charge raises the question of whether a quantum

limit of the charge-relaxation time in an electronic circuit

exists. In the classical sense, the charge relaxation corresponds

to the exponential decay of charges, while its characteristic

time is directly related to both the dissipation in the conductor

and the electronic interaction. The charge relaxation of the

RC circuit illustrates this correlation. The relaxation time of

the charge on a conductor is given by the product τRC =
R × C, where C is the self-capacitance of the conductor

and R is the resistance connecting the conductor’s self-

capacitance to an electronic reservoir. Thus, the realization

Figure 1. Gedankenexperiment. An electron is confined to the
electrode of a capacitor C by a voltage source: V = e/C. The
length of the circuit L is assumed to be smaller than the phase
coherence length Lφ .

of the quantum equivalent of the RC circuit presents a starting

point for characterizing the time scales governing the quantum

dynamics of electrons. Before describing the quantum RC

circuit in detail, let us first imagine a Gedankenexperiment

involving quantum capacitance. In quantum electronics,

a circuit is known to have an electronic wave function

that preserves its phase coherence over the whole device.

Specifically, the characteristic length of the circuit is smaller

than the phase coherence length (L ≪ Lφ) [1–3]. Next let

us consider an electron of charge −e, which is confined in

the electrode of a capacitor C due to a voltage source at a

fixed voltage of V = e/C (see figure 1). The electronic wave

function is delocalized over the electrode and its energy is set

to e2/C. If the voltage source suddenly drops to V = 0,

the delocalized electronic wave function reaches an energy

uncertainty of �E = e2/C and according to the Heisenberg

principle, its lifetime is τ ∼ h/e2 C. When compared to the

RC time, the lifetime leads to a typical value of the charge-

relaxation resistance of Rq ∼ h/e2, even without considering

the presence of any dissipative part in the circuit.

Interestingly, this simple Gedankenexperiment presents

the resistance quantum, which according to the von Klitzing

constant, is RK = h/e2 [4, 5]3. However, the resistance

quantum usually applies to a dc transport experiment. A

question that arises from this observation is whether RK, which

we introduced through a dimensional argument, is exactly the

quantum of charge-relaxation resistance involved in dynamic

transport.

RK usually refers to the integer quantum Hall effect

(IQHE), which can be observed at sufficiently low temperature

in a two-dimensional electron gas (2DEG) in the presence

of a perpendicular magnetic field [6]. In this specific

case, the 2DEG has quantized energy levels called Landau

levels, while the Hall resistance exhibits plateaus at quantized

values of Rn = RK/n with n integer. However, the

presence of a magnetic field is not necessary for observing

such a quantization. Another well-known phenomenon

revealing quantized resistance is demonstrated by electron

transport through quantum point contacts (QPCs), the quantum

equivalent of a resistor [7]. A QPC comprises of a tunable

narrow constriction connecting two large conductors. Since

the constriction behaves as an electronic waveguide, the dc

3 Since 1990, the von Klitzing constant RK = 25 812.807 557(18) 	

represents the new definition of the standard of electrical resistance.
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resistance decreases in quantized steps Rn, as the constriction

widens. Each step corresponds to an electron-propagating

mode in the waveguide4. Although these two dc experiments

appear different, they can be described within the same theory.

In this regard, the insights of Landauer and Büttiker provide

an exemplary description of electronic transport at sufficiently

low temperature by viewing charge transport as a quantum

transmission of conducting channels [8]. With this in mind,

the dc conductance is then given at a low temperature level

by the so-called Landauer–Büttiker formula for a two-contact

conductor:

G =
e2

h

∑

n

Tn, (1)

where each channel contributes a unit of conductance

multiplied by the transmission probability Tn of the channel.

In the QPC, the conducting channels are based on the set of

transverse electronic wave functions, whereas the conducting

channels are supported by a set of states located near the edges

of the conductor in the IQHE. It is especially interesting to

observe once again that the resistance of a ‘perfect’ single

channel conductor (a QPC with a fully transmitted channel

T = 1) is not 0, but is actually equal to the resistance quantum

RK = h/e2. The origin of this residual resistance usually

refers to the sum of the two contact resistances Rc = h/(2e2),

one for each reservoir–lead interface [9–13]. Going back

to the Gedankenexperiment, we see that the electronic wave

function can only relax in one reservoir. Given the context,

we examine the following questions: is it sufficient to claim

that the charge-relaxation resistance will be equal to the

contact resistance? Which kind of transmission dependence

is expected for the charge–relaxation resistance? To answer

these questions, we realized the quantum equivalent of an RC

circuit in a 2DEG by associating a QPC and a submicrometer

quantum dot (QD) (see figure 2). The QD is capacitively

coupled to a metallic electrode and can exchange electrons

only with an electron reservoir via a single channel of the

QPC. At the outset, one might expect that this circuit is the

simple association of the QPC resistance h/(e2
T ) in series

with a geometric capacitance C (see figure 2 top). However,

the quantum RC circuit is a fully phase-coherent system,

where interferences between the QPC and the QD lead to

discrepancies with its classical counterpart. Although the

RC time can still be written as the product of resistance and

capacitance in the low frequency regime ωτRC ≪ 1, Prêtre

et al predicted in [14–16] that, for a single spin-polarized

quantum channel, the quantum RC circuit would involve a

constant charge-relaxation resistance Rq = Rc = h/(2e2)

and a transmission-dependent electrochemical capacitance Cµ.

More precisely, the capacitance Cµ is the serial combination

of the geometric capacitance C and the quantum capacitance

Cq [17, 18] resulting from the Pauli exclusion principle in

the QD.

The most remarkable result we observed was the

universal charge-relaxation resistance quantization at half of

4 At zero magnetic field, the resistance of a QPC is actually Rn = RK/(2n).

The factor 2 appears as a result of spin degeneracy. In the present review, all the

measurements were performed in the presence of a magnetic field, resulting

in the spin degeneracy being lifted.

Figure 2. The quantum RC circuit was realized using a 2DEG. The
capacitor consists of a metallic electrode (gold) on top of a
submicrometer 2DEG QD (blue) that defines the second electrode.
The resistor is a QPC connecting the dot to a wide 2DEG reservoir
(blue), which itself is connected to a metallic contact (dark gold).
The QPC controls the number of electronic modes and their
transmission. Top: the equivalent circuit of the QPC and the
geometric capacitance considered separately. Bottom: the
equivalent circuit of the coherent RC circuit. As predicted by the
Büttiker theory, the relaxation resistance Rq = h/2e2, which enters
the equivalent circuit for the coherent conductance, is
transmission-independent and equal to half of the resistance
quantum. The capacitance Cµ is the serial combination of the
quantum and the geometric capacitances (Cq and C, respectively).
Cq is transmission-dependent and strongly modulated by gate
voltages.

the resistance quantum RK at arbitrary transmission [14, 19–

21]. While the dc resistance of a single channel conductor

is limited by twice the contact resistance, the charge-

relaxation resistance always equals this contact resistance and

corresponds to the dissipation experienced by the quantum

RC circuit [22]. Aside from the case of the RC circuit, the

quantization of the charge-relaxation resistance including its

generalization in non-equilibrium systems, is an important

concept that can be applied to a large number of situations.

For example, it is highly relevant to the study of very different

problems such as the quantum-limited detection of charge

qubits [23–25], the study of high-frequency-charge quantum

noise [26, 27], of the dephasing in an electronic quantum

interferometer [28], or in the study of electronic interactions

in quantum conductors [29]. In molecular electronics,

the charge-relaxation resistance is also relevant to the THz

frequency response of systems such as carbon nanotubes [30].

In this review, we focus on the experimental realization

of the quantum RC circuit and the measurement of the charge-

relaxation resistance [31]. Before describing the experiment,

we first derive in section 2 the dc and ac conductances of

a two-contact coherent conductor by applying the scattering

theory of Landauer–Büttiker. The comparison between

the two emphasizes the importance of the self-consistent

approach to obtaining current conserving expressions for

frequency-dependent conductances. Following these general

considerations, in section 3, we propose a scattering model

for the coherent RC circuit and compare it with the

3
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experimental results. Our experiments demonstrate that

the series association of a quantum capacitor and a single

channel quantum resistor leads to a constant charge-relaxation

resistance of h/2e2. In section 4, we describe the experimental

setup for the measurement of the in-phase and out-of-phase

parts of the linear ac conductance of a coherent conductor.

Despite its simplicity, the non-interacting and full coherent

model presented in this review is remarkably useful in

providing an elementary understanding of our experimental

results. Moreover, these first experimental investigations have

sparked a growing interest in more realistic regimes, both

theoretically and experimentally. A brief overview of these

works will be given in the conclusion.

2. Finite frequency conductance in coherent
conductors: the RC circuit

2.1. General considerations

In applying the Landauer–Büttiker theory, one can describe

how the current flows through mesoscopic conductors that are

connected to electron reservoirs [1–3]. In such conductors

(nano-structures at sufficiently low temperature), the coherent

length is larger than the typical size of the conductor, such

that the wave nature of electrons plays a significant role

in the transport. The non-equilibrium steady-state currents

are thus described by means of the scattering matrix s(ǫ)

that encodes the scattering of non-interacting electronic

waves at energy ǫ in the conductor leads. The electron

populations of the incoming states of the leads are imposed

by the electron reservoirs and given by the Fermi–Dirac

distribution f with an electrochemical potential fixed by the

reservoir. As an example, consider a spin-polarized single

electronic mode transmitted from a left reservoir to a right

reservoir (see figure 3). If the conductor is dc voltage-biased,

electrochemical potentials are given by µL = ǫF − eV for

the left reservoir, and µR = ǫF for the right one, where ǫF is

the Fermi energy and V the dc voltage. The dc conductance

gdc ≡ I/V is then given by

gdc =
e2

h

∫

dǫ
(

1 − s⋆
LL(ǫ)sLL(ǫ)

) f (ǫ) − f (ǫ + eV )

eV
, (2)

sLL(ǫ) is the amplitude of the probability to be reflected from

the left reservoir to itself at energy ǫ, such that s⋆
LL(ǫ)sLL(ǫ) in

equation (2) is the reflection probability R. Note that we have

artificially broken the symmetry between the two reservoirs:

the current I = ILL − ILR measured in the left reservoir

corresponds to the difference between the current coming from

the left reservoir ILL ∝ (1 − s⋆
LL(ǫ)sLL(ǫ)) f (ǫ − µL) and the

current coming from the right one ILR ∝ s⋆
LR(ǫ)sLR(ǫ)f (ǫ −

µR) where s⋆
LR(ǫ)sLR(ǫ) is the transmission probability T =

1 − R. At small excitation (eV ≪ kBT ) and in the case that

the scattering matrix does not depend on the energy scale kBT ,

we recover the Landauer–Büttiker formula gdc = e2

h
T where

h/e2 ≃ 25.8 k	 is the quantum of resistance. Altogether, this

formalism has proven to be an essential and invaluable tool for

theoretically investigating phase-coherent electron transport

[1–3] and understanding the relevant experiments [7].

Figure 3. (a) Scanning electron microscope view of a QPC. The
2DEG (blue) is connected to ohmic contacts (not shown) well
described by the Landauer–Büttiker reservoirs. (b) Schematics of
the QPC circuit.

2.2. Dynamic conductance in the Landauer–Büttiker

formalism

Although most of the experiments focused on dc measurement,

Büttiker and his group also addressed the question of the ac

conductance in the early 1990s [15, 32]. Indeed, mesoscopic

conductors can be driven out of equilibrium by applying

oscillating voltages Vac at frequency ω. Firstly, what makes

investigating frequency-dependent transport interesting is that

one expects the ac conductance to directly probe the intrinsic

time scales of the conductor. Secondly, at non-zero frequency,

current is no longer given by the steady-state currents in the

coherent conductor and thus, displacement current has to be

considered. We will therefore show in the following that the

ac conductance gives access to

– the dwell time τd of the electrons in the mesoscopic

capacitance, and

– the characteristic charge-relaxation time τRC that

takes into account Coulomb interaction effects in the

mesoscopic capacitance.

Now consider a general mesoscopic RC circuit made of

a mesoscopic cavity connected via a single lead to a reservoir

and capacitively coupled to a gate (see figure 4). V1 = 0 is

the potential of the reservoir, while V2 = Vac cos ωt is the

time-dependent potential applied to the gate, and U is the

electrostatic potential in the cavity. For simplicity, we assume

that the potential U in the cavity is uniform. To determine

the ac conductance resulting from the particle current coming

from the reservoir, it is necessary to set the potential in the

cavity, which is a priori time-dependent. According to gauge

invariance, an overall potential shift −U cannot have any effect

on the system. We can therefore consider that the reservoir

and the gate have oscillating potentials −U and Vac − U

while the potential in the cavity is set to zero. The particle

current Ipart(ω) flowing in the electronic reservoir can then

be calculated, thus defining the conductance gac(ω) relating

Ipart(ω) to the oscillating potential −U applied to the reservoir.

But in ac transport, the particle current alone does not satisfy

current conservation. This is particularly clear in the single

terminal geometry considered here and depicted in figure 4.

To recover current conservation, it is necessary to consider

4



Rep. Prog. Phys. 75 (2012) 126504 J Gabelli et al

gate

2DEG

reservoir

 

1 µm

(a)

(b)

ILL

QPC

Figure 4. (a) Scanning electronic microscope view of the sample:
the 2DEG (blue) is connected to an ohmic contact (not shown) on
the left side and is capacitively coupled to a top gate (yellow) on the
right side. The QPC (yellow side gates) is used to tune the
transmission T of the electronic wave. (b) Schematics of the
mesoscopic RC circuit: the ac conductance gac(ω) of the coherent
2DEG is in series with the geometric capacitance C.

the displacement current Idisp(ω) that flows into the metallic

armature of the gate and which equals the particle current

flowing into the quantum conductor: Idisp = Ipart = I (ω). In

this respect, we are interested in the conductance G(ω) of the

whole circuit, connecting the current I (ω) to the voltage drop

across the whole circuit Vac, and that needs to be distinguished

from gac(ω), the conductance of the coherent part of the circuit.

Thus, the calculation of G(ω) may be performed in two steps:

(i) calculating gac(ω) for non-interacting electrons; and

(ii) self-consistently determining the voltage drop between the

cavity and the gate with the help of current conservation.

Interactions between the charges in the cavity and the

gate are treated in the mean field approximation using the

geometric capacitance C.

Regarding step (i), as far as a single mode conductor with a

single reservoir is concerned (see figure 4), the ac conductance

changes drastically when compared to the dc conductance.

Although there is no dc conductance in this case (gdc = 0

because R = s⋆
LL(ǫ)sLL(ǫ) = 1 in equation (2)), the ac

conductance gac(ω) = I (ω)/U(ω) is given by

gac(ω) =
e2

h

∫

dǫ
(

1 − s⋆
LL(ǫ)sLL(ǫ + h̄ω)

)

×
f (ǫ) − f (ǫ + h̄ω)

h̄ω
. (3)

To highlight the role of finite frequency and the validity

domain of equation (3), let us compare it to equation (2).

First, one can notice that the energy eV , resulting from the

dc voltage bias, is replaced here by h̄ω. Here the bias

voltage imposed on the reservoir is −U . Due to the linear

response of the capacitance C, −U is time-dependent and

oscillates at the same frequency as V2 = Vac cos ωt . Thus,

an ac bias voltage −U cos ωt is imposed on the reservoir

and the electron wave functions acquire an extra phase

factor
∑

n Jn(eU/h̄ω) exp(inωt), where Jn is the ordinary

Bessel function [33]. In the low voltage limit, eU/h̄ω ≪ 1,

this phase factor reduces to 1 + (eU/2h̄ω) exp(iωt) −
(eU/2h̄ω) exp(−iωt) at the first order in eU/h̄ω. Thus,

the current ILL(ω) oscillating at frequency ω arises from the

interference of processes, where electrons absorb or emit one

photon at energy h̄ω; each absorption/emission process is

weighted by an amplitude ±eU/2h̄ω. As a result, ILL(ω)

exhibits the Fermi–Dirac factors (f (ǫ) − f (ǫ + h̄ω))/h̄ω.

Furthermore, one can notice that the ac current, unlike the dc

one, is clearly related to the intrinsic dynamics of the conductor

via the term s⋆
LL(ǫ)sLL(ǫ + h̄ω)5.

Regarding step (ii), in the process of self-consistently

determining U , the displacement current Idisp is the time-

derivative of the charge in the cavity, which has to be identified

to particle current Ipart = Idisp = I (ω) in order to recover the

current conservation6:

gac(ω)U = iCω (Vac − U) (4)

Finally, G(ω) = I (ω)/Vac(ω) is given by

G(ω) =
1

1/gac(ω) + 1/(iCω)
. (5)

The total conductance is equivalent to the series addition of

the geometric capacitance C and the impedance 1/gac of the

coherent conductor. Although we considered a single mode

conductor in this case, both equations (3) and (5) can be easily

extended to the multi-mode case by considering gac as the

parallel addition of channel conductances [16].

2.3. Charge-relaxation resistance

At finite frequency, the conductance is a complex number,

made up of a real part (the conductance), and an imaginary

part (the susceptance). These two quantities are a combination

of dissipative elements (e.g. resistors) and reactive elements

(e.g. capacitors). To precisely define the nature of the ac

conductance G(ω), it is necessary to expand it to second order

in frequency. The first order term in the current response of the

whole circuit gives access to the electrochemical capacitance

Cµ of the circuit, whereas the second order term yields both

the relaxation time τRC = Rq × Cµ and the charge-relaxation

resistance Rq :

G(ω) = iωCµ(1 − iωτRC + O((ωτRC)2)). (6)

We now turn to expressing Cµ and Rq with respect to the

scattering matrix s(ǫ) related to the coherent cavity coupled

to the reservoir. For the sake of simplicity, let us consider

the low temperature limit, where the Fermi–Dirac factors in

equation (3) are simplified to a delta function. Since we deal

with a scattering problem that exclusively involves reflections,

s(ǫ) solely relates to the phase φn that an electron accumulates

in the nth channel mode of transmission: sn(ǫ) = eiφn(ǫ). Thus,

5 Equation (3) does not consider electron–electron interactions in the

reservoir. It is valid insofar as ω is smaller than frequencies associated

with electrodynamics, i.e. the plasma frequency of the 2DEG. In our

experiment, ω/2π ∼ 1 GHz and ωp/2π ∼ 1 THz at B = 1 T, leading to

ω/ωp ∼ 10−3 [34].
6 The complex representation of voltage drop across a capacitance is

conventionally V = I/(iCω), where angular frequency is positive.

5
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applying the derivation into the second order in frequency

of equation (3), and considering the addition of n parallel

channels, we identify

Cµ =
CCq

C + Cq

(7)

Cq = e2N(ǫF ) (8)

Rq =
h

2e2

∑

n τ 2
n

(
∑

n τn

)2
. (9)

where τn = h̄
dφn

dǫ
(ǫF ) is the time an electron in the nth channel

spends in the cavity, τd =
∑

n τn is the dwell time of the

electrons in the mesoscopic capacitance and N(ǫF) = τd/h

is the local density of states in the mesoscopic cavity. The

above expressions are valid when the third order in frequency

can be disregarded, i.e. for ωτd ≪ 1 (the development of the

conductance up to the third order corresponds to the addition

of an inductive contribution in series with the resistance and

capacitance [35]). According to equations (7) and (8), the

capacitance of the mesoscopic structure is found to be a series

combination of the geometric capacitance C and the quantum

one Cq [17]. Moreover, we see in equation (9) that the charge-

relaxation resistance is quantized in a peculiar way and does

not depend directly on the transmission. In the case of a single

spin-polarized channel, it reduces to half of the quantum of

resistance and is not transmission-dependent:

Rq =
h

2e2
(10)

3. Charge relaxation in the coherent RC circuit

3.1. Scattering theory and density of states of a mesoscopic

capacitor

As discussed in section 2, the quantum RC circuit depicted

in figure 4 consists of a submicrometer-sized electronic cavity

(or QD) tunnel coupled to a 2DEG through a QPC, whose

transmission T is controlled by the gate voltage Vg and

capacitively coupled to a macroscopic electrode deposited on

top of the 2DEG. In this quantum version of the RC circuit,

the dot and electrode define the two plates of a capacitor while

the QPC plays the role of the resistor. A large perpendicular

magnetic field is applied to the sample in order to reach the

integer quantum hall regime, where the electrons propagate

ballistically along the chiral edge channels. We consider the

situation where a single edge channel is coupled to the dot, such

that electronic transport can be described by the propagation

of spinless electronic waves in a one-dimensional conductor.

Thus, electrons in the incoming edge channel can tunnel

into the QD with the amplitude,
√

T =
√

1 − r2, perform

several roundtrips inside the cavity, each taking the finite time,

τ0 = l/vd, before finally tunneling back out into the outgoing

edge state (see figure 5(a)). For the sake of convenience, the

reflection amplitude r in these expressions has been assumed

to be real and energy-independent, while l and vd represent the

circumference of the QD and the drift velocity, respectively.

reservoir top gateQPC(a)

(b)

Figure 5. (a) One-dimensional model of the mesoscopic RC circuit.
The QD is tunnel coupled (transmission T ) to a 2DEG through a
QPC. An electronic wave acquires the phase φ in a single roundtrip
in the QD. The transmission T is voltage-controlled by a gate
voltage Vg, while dc and ac voltages (Vdc and Vac) can be applied to
the top gate. (b) Energy levels in the QD are quantized at small
transmission T . The width h̄Ŵ of the energy level is
transmission-dependent, whereas the level spacing � depends on
the geometry of the QD.

For a micrometer-sized cavity, τ0 typically equals a few tens

of picoseconds.

As shown in section 2, the dynamic properties of the

circuit are encoded in the scattering matrix s(ǫ) describing

the scattering of an electronic wave at energy ǫ by the QD.

More precisely, using equation (3), the ac conductance of the

coherent part of the circuit can be fully characterized knowing

its scattering properties s(ǫ). In the geometry considered

here, the QD acts as the electronic analog to a Fabry–Pérot

cavity. An electronic wave of energy ǫ acquires the phase

φ(ǫ) = (ǫ−eUdc)τ0/h̄ in a single round trip in the cavity, with

Udc being the static potential of the dot. The scattering matrix

s(ǫ) can then be easily computed as the sum of the amplitudes

for all the processes required to generate an arbitrary number

of round trips inside the cavity:

s(ǫ) = r − T eiφ(ǫ)

∞
∑

q=0

rqeiqφ(ǫ) (11)

s(ǫ) =
r − eiφ(ǫ)

1 − r iφ(ǫ)
= ei�(ǫ). (12)

As expected, the scattering matrix is a pure phase, as the

electrons entering the cavity leave it with unit probability. The

density of states of the cavity can be immediately deduced,

N(ǫ) = 1
2iπ

s∗ ds
dǫ

= 1
2π

d�
dǫ

:

N(ǫ) =
τ0

h

1 − r2

1 − 2r cos
(

2π
h

(ǫ − eUdc)τ0

)

+ r2
. (13)

6
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As expected, at unit transmission (r = 0), the density of states

in the dot is uniform and related to the time spent in the cavity

in a single round trip, N(ǫ) = τ0/h. When the transmission is

decreased, the density of states exhibits a periodic structure

with period � = h/τ0 that reflects the resonant tunneling

inside the cavity (where �/kB typically equals a few kelvin).

In the limit of small transmissions (T ≪ 1, r ≈ 1), the density

of states is a sum of Lorentzian peaks of width h̄Ŵ, Ŵ = T /τ0

(see figure 5(b)):

N(ǫ) ≈
2

πh̄Ŵ

∑

n

1

1 +
(

ǫ−eUdc−n�

h̄Ŵ/2

)2
. (14)

In this limit where the dot is weakly coupled to the one-

dimensional edge channel, these peaks can be viewed as the

discrete spectrum of the dot energy levels. By increasing the

transmission, the width of the levels increases up to the point

where the peaks fully overlap, thereby forming a continuous

spectrum. Note that by tuning the dot static potential Udc,

the dot spectrum can be shifted with respect to the Fermi

energy of the edge channel ǫF (see figure 5(b)). As shown by

equation (6) in section 2, the circuit can be represented at low

frequency by the serial addition of the geometric capacitance

C, a quantum capacitance Cq (for a total capacitance Cµ) and

a charge-relaxation resistance Rq . The quantum capacitance

and charge-relaxation resistance are directly related to the

scattering properties of the conductor by

Cq = e2

∫

dǫN(ǫ)

(

−
df

dǫ

)

(15)

Rq =
h

2e2

∫

dǫN(ǫ)2
(

− df

dǫ

)

(

∫

dǫN(ǫ)
(

− df

dǫ

))2
. (16)

When the density of states varies smoothly on the scale of the

electronic temperature kBT , the effects of temperature can be

ignored. We then recover the zero temperature expressions

of equations (8) and (10) of the quantum capacitance Cq =
e2N(ǫF) and the charge-relaxation resistance Rq = h/(2e2).

The expression of the capacitance can be easily understood.

When the dot potential is varied by dU , due to the finite

density of states, the number of charges that can enter the

dot is dQ = e2N(ǫF)dU . The quantum capacitance thus

provides a direct spectroscopy of the discrete energy levels

of the dot. As such, it is sensitive to all the dot parameters, the

dot potential Udc, and in particular the transmission T . The

most striking effect of phase coherence appears on the charge-

relaxation resistance, which is quantized to the universal value

of Rq = h/(2e2) and does not depend on the dot transmission

T . The relaxation resistance that appears in the dynamics

of charge transfer strongly differs from the dc resistance Rdc

of a conductor transmitting with transmission T a single

spinless channel between two electronic reservoirs. In the

latter case, the resistance depends on the transmission through

the Landauer formula Rdc = h/(T e2). Moreover, at unit

transmission, it is quantized to the value h/e2, which is twice

the value of the charge-relaxation resistance. This factor of two

0.3

0.2

0.1

0.0

-0.1

-0.86 -0.85 -0.84 -0.83

Figure 6. Real and imaginary parts of the conductance G in sample
S3 measured at a frequency of ω/2π = 1.24 GHz.

can be explained by the presence of two electronic reservoirs

instead of only one for the charge-relaxation resistance.

Using equation (6), the quantum capacitance Cq =
e2N(ǫF) and the charge-relaxation resistance Rq = h/(2e2)

can be directly probed by the measurement of the imaginary

and real parts of the conductance G. The low frequency

behavior described in equation (6) is valid for τRC =
RqCµω ≪ 1, which is satisfied when ωτd ≪ 1. However,

to get an accurate measurement of the charge-relaxation

resistance, the angular frequency ω has to be selected, such that

the real part of the conductance is not vanishingly small. For

τd of the order of a few tens of picoseconds, these conditions

are satisfied for GHz frequencies.

3.2. Experimental determination of the

conductance/impedance of a coherent RC circuit

Figure 6 presents both the imaginary and real parts of the

conductance of a first sample, labeled S3, as a function

of the gate voltage Vg, which is applied to the QPC. The

measurements are performed at the frequency of ω/2π =
1.2 GHz. Vg has two effects on the dot parameters. Firstly

and most apparently, it controls the transmission T (Vg) from

the cavity to the one-dimensional edge channel. By tuning

the gate voltage to negative values (starting from the right side

of figure 6), the full range of transmissions can be accessed

from a perfectly open cavity at T = 1 to a fully closed cavity

T = 0. The second effect is to linearly change the static

potential of the dot Udc = αVg by a capacitive coupling from

the QPC gate to the dot (the dot is also capacitively coupled to

the top gate, such that the general expression of the static dot

potential is Udc = αVg + βVdc, where Vdc is the static potential

applied to the gate). In the range of Vg � −0.845 V, which

corresponds to high transmissions, the imaginary part of the

conductance is much greater than the real part, in accordance

7
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Figure 7. Real and imaginary parts of the impedance Z in samples
S3 (left panel) and S1 (right panel). Measurements in sample S3
were performed at a frequency of ω/2π = 1.24 GHz, while
measurements in sample S1 were performed at ω/2π = 1.085 GHz.

with the low frequency description of the circuit: RqCµω ≪ 1.

The imaginary part presents pronounced oscillations with the

gate voltage, which are less visible on the real part. These

oscillations correspond to the modulation of the dot density of

states when the dot potential Udc is varied, see equation (13).

When a dot energy level is resonant with the Fermi energy, the

capacitance (and hence the imaginary part of the conductance)

exhibits maximum oscillations. However, when a dot energy

level is out of resonance with the Fermi energy, the capacitance

exhibits minimum oscillations.

When Vg is decreased, Vg � −0.845 V, the real part of

the conductance increases and becomes comparable with the

imaginary part (for Vg ≈ −0.855 V). By decreasing the gate

voltage further, the conductance eventually vanishes, as one

might expect in the pinched situation where the transmission

is close to zero. In this limit, Vg � −0.855 V, the signal is

mainly carried by the real part, Re(G) ≫ Im(G).

Keeping our focus on the regime of high transmissions

in figure 6, Vg � −0.845 V and Im(G) ≫ Re(G), we

also consider in figure 7 the real and imaginary parts of

the impedance Z = 1/G extracted from our conductance

measurements. The data presented on the left panel are

extracted from the measurements of figure 6, while the right

panel data have been obtained from another sample labeled

S1. In the lumped element description of an RC circuit, the

imaginary part is, up to the angular frequency, the inverse

capacitance, Im(Z) = 1/(Cµω) while the real part provides

a direct measurement of the charge-relaxation resistance

Re(Z) = Rq . As previously discussed, the oscillations of the

capacitance are related to the oscillations of the dot spectrum

with respect to the Fermi energy, when Vg is varied. When

the transmission T decreases, the oscillations become more

pronounced, as the width of single energy levels h̄Ŵ decreases.

However, the behavior of the real part of the impedance is

completely different. For both samples, the resistance is flat

for a wide range of Vg and its value is given (within error bars)

by the expected Rq = h
(2e2)

. In this regime, the resistance

is constant and independent of both the dot transmission T

and static potential Udc. These results provide an evidence of

the quantization of the charge-relaxation resistance of a single

mode conductor. However, at some point (Vg � −0.85 V

for sample S3, Vg � −0.74 V for sample S1), the resistance

deviates from its universal value and starts increasing rapidly.

This increased resistance corresponds to the increase of the

real part of the conductance in figure 6, which becomes

comparable with the imaginary part when RqCµω ≈ 1, and

finally dominates for RqCµω ≫ 1, when the conductance

reaches to zero. This sudden increased resistance, which

becomes transmission-dependent in this regime, cannot be

explained by equation (10), since this equation describes the

zero temperature behavior of the circuit. To explain this

dependence, temperature effects have to be considered in a

complete modeling of the circuit.

3.3. Modeling of the quantum RC circuit at finite temperature

From equation (15), the quantum capacitance at finite

temperature can be written as Cq = e2Ñ(ǫF), where Ñ(ǫF)

is an effective density of states resulting from the convolution

between the zero temperature density of states N(ǫ) and

the derivative of the Fermi distribution (−df/dǫ). At fixed

transmission T , the density of states varies on the typical scale

hŴ = T � that has to be compared with kBT (T ≈ 100 mK).

In large transmissions, T ≈ 1, hŴ ≈ � ≫ kBT and the

zero temperature description of equation (8) apply. When T

is decreased however, deviations from the zero temperature

expression are expected when h̄Ŵ ≈ kBT . An analytical

expression for the resistance and capacitance can be obtained

in the limit of h̄Ŵ ≪ kBT :

Cq =
e2

4kBT ch2
(

ǫn−ǫF

2kBT

) (17)

Rq =
h

T e2

4kBT

�
ch2

(

ǫn − ǫF

2kBT

)

. (18)

This limit corresponds to the sequential tunneling regime

where the QD is weakly coupled to the reservoir. In this

regime, the tunneling process permits many oscillations in

the well, i.e. a long dwell time, but is dominated by thermal

broadening. Then, the charge-relaxation resistance is no

longer independent of the transmission. Rather, it diverges as

1/T when T is decreased. Thus, the resistance in figure 7

suddenly increases when the gate voltage Vg is decreased.

When the resistance increases, such that RqCµω ≈ 1, the

low frequency expansion of the conductance (equation (6))

becomes invalid. As a result, it has to be replaced by the general

expressions relating G(ω) to gac(ω) (equation (5)) and gac(ω)

to the scattering matrix s(ǫ) (equation (3)). Note that, by using

our experimental parameters, the general expression of the

ac conductance G(ω) still conforms (up to our experimental

resolution) with the conductance of the RC circuit, G =
−iCµω/(1 + iRqCµω), whose capacitance Cµ and Rq are still

8
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given by their expression deduced from the low frequency

behavior in equations (15) and (16). For a quantitative analysis,

we rely on the exact expressions of G(ω), whereby the RC

circuit picture has proven extremely useful in providing a

qualitative understanding of our conductance trace shown

in figure 6. In large transmissions, the zero temperature

description remains. When T is decreased, such that h̄Ŵ ≈
kBT , the real part of the conductance increases, while the

imaginary part starts to decrease and the resistance increases.

For RqCµω ≈ 1, the real part of the conductance reaches

a maximum, whereby as a result, Re(G) ≈ Im(G), which

is expected for an RC circuit. Finally, for the lower values

of T (Vg), the conductance eventually goes to zero and the

signal is essentially carried by the real part of the conductance,

Re(G) ≫ Im(G) (RqCµω ≫ 1).

To support this qualitative analysis, a more quantitative

description can be performed that relies on equations (5), (3)

and (12) as well as on modeling the effect of Vg on both the

transmission T (Vg) and the static dot potential Udc(Vg). The

gate voltage dependence of the transmission depends typically

on two parameters: the width δV , on which the transmission

goes from 0 to 1, and the gate voltage V0, for which the

transmission equals 0.5. The exact dependence T (Vg) is taken

as the two-parameter Fermi distribution:

T (Vg) =
1

1 + e− Vg−V0
δV

. (19)

The gate voltage Vg also leads to a shift of the dot potential

Udc, which we assume to be linear with the gate voltage

Udc = αVg as expected for a capacitive coupling. Using T (Vg)

and Udc(Vg) in equation (12), our results can be quantitatively

compared with our experimental data with four adjustable

parameters, δV , V0, α and the geometrical capacitance C

(� and T being calibrated independently; see section 4).

Comparisons can be seen in figure 8, which presents the

conductance of another sample labeled S3⋆ measured at three

different frequencies: ω/2π = 1.5 GHz, 515 MHz and

180 MHz (left panel). Although the global shape of the

conductance traces is not affected when the frequency is

decreased, some differences are still noticeable. The maximum

of the real part that corresponds to RqCµω ≈ 1 is, as expected,

shifted to lower values of Vg that correspond to lower values

of T . One also notices that in the high transmission regimes,

the real part of the conductance becomes hardly measurable

at the lowest frequency, thereby emphasizing the need of GHz

frequencies to measure the quantization of charge-relaxation

resistance, Rq = h/(2e2). As can also be seen in figure 8,

the data model agreement is excellent, as it uses a single

set of parameters for all frequencies. When the frequency

is decreased, the shift of the signal to decreased values of the

gate voltage as well as the amplitude and positions of the signal

oscillations are well captured.

The right panel presents the evolution of the conductance

with the temperature at fixed frequency (measurements

performed on another sample labeled S4) for three different

temperatures: T = 70, 230 and 520 mK. At the lowest

temperature, the oscillations of the capacitance are extremely

sharp. These oscillations are strongly affected by the

temperature. While the capacitance at transmission T =
1 is not affected, the maxima of the capacitance are

strongly reduced and the peak width increases, conformably

to expectations. This effect, which directly reflects the

dependence of the effective density of states Ñ(ǫ) on the

temperature, is perfectly captured by our model for all

three temperatures; except for the low-transmission part of

the 520 mK trace. This small disagreement might result

from a small dependence of transmission on energy that

starts affecting our measurements at high temperatures. An

exhaustive study of the temperature dependence of the

capacitance oscillation in large transmissions was conducted

in sample S1 (see figure 9), where experimental points fall

again on the theoretical curve deduced from the scattering

model:

C ≡
Im (Zmax) − Im (Zmin)

Im (Zmax) + Im (Zmin)
=

2r�Cµ

e

T /T ⋆

sinh T/T ⋆
(20)

with kBT ⋆ = �/(2π2). This measurement gives an alternative

approach for calibrating the level spacing � = 18±3 GHz for

this sample.

This excellent agreement with theoretical predictions,

when all parameters are varied (frequency, temperature, dot

potential, dot transmission), shows that the quantum RC circuit

is an optimal model system for studying the dynamic properties

of a quantum conductor, whereby these properties can be

quantitatively understood.

3.4. Coulomb interactions and charge relaxation

So far, Coulomb interactions have been treated in a very simple

manner. Their effects have been disregarded in the calculation

of the particle current circulating in the conductor, i.e. the

calculation of gac(ω), which determines the conductance of

the coherent part of the circuit. Coulomb interactions are

only considered when introducing the geometric capacitance

C of the mesoscopic capacitor, which connects the current

to the voltage drop between the gate and the mesoscopic

cavity: I (ω) = iCω(Vac − U). As a consequence, the

quantum capacitance Cq, related to gac(ω), exhibits periodic

peaks that are only related to the single particle level spacing

of the dot �. However, this description still disregards an

important effect of electronic transport in small structures,

such as QDs, which is also referred to as the ‘Coulomb

blockade’. Due to the Coulomb interaction, in order to add one

electron inside a QD, one has to pay an energetic cost, which

is the sum of the orbital level spacing � and the charging

energy e2/C in order to place a charge e on a capacitor

plate C [36, 37]. This total energetic cost, which defines

a renormalized level spacing �⋆, is precisely related to the

electrochemical capacitance, �⋆ = e2/C + � = e2/Cµ.

Clearly, a proper account of Coulomb-blockade effects in

the calculation of gac(ω) would modify the dot density of

states (and hence the quantum capacitance Cq) by introducing

the new scale �⋆. Additionally, one might also wonder if

this proper account of Coulomb interactions might break the

quantization of the charge-relaxation resistance Rq = h/2e2.

This question has given rise to considerable theoretical works,
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Figure 8. Left panel: comparison between measurements (dots) and modeling (traces) of the conductance in sample S3⋆ at various
frequencies of ω/2π = 1.5 GHz, 515 and 180 MHz. Upper curves correspond to the imaginary part of the conductance G whereas lower
ones correspond to the real part. Parameters of the model are T = 150 mK, Cµ = 0.75 fF (measured independently), C = 3.5 fF,

V0 = −896 mV, δV = 2.9 mV, and eα/kB = 1.2 K mV−1. Right panel: comparison between measurements (dots) and modeling (traces) of
the conductance in sample S4 at various temperatures T = 70, 250 and 520 mK and at frequency ω/2π = 1.5 GHz. Parameters of the
model are Cµ = 0.44 fF (measured independently), V0 = −329.8 mV, δV = 4.4 mV and eα/kB = 1.65 K mV−1.

starting with the contributions of Nigg et al [38, 39] followed
by Zohar et al [40]. In these works, Coulomb-blockade effects
inside the mesoscopic capacitor are treated within the Hartree–
Fock approximation. As a result, the dot density of states is
modified by the Coulomb interaction. Moreover, a Coulomb
gap, which equals the charging energy e2/C, appears. Along
with the density of states, the quantum capacitance is still
periodic. Nevertheless, the periodicity is modified from the
single particle level spacing � to the renormalized one �∗. The
value of the charge-relaxation resistance is not affected, as it
is still quantized to h/(2e2), and independent of transmission

at low temperature. Basically, equations (15) and (16) still
hold, but the non-interacting density of states N(ǫ) has to be
replaced by the one calculated with Coulomb interactions at
the Hartree–Fock level. If interactions are not too strong, i.e.
e2/C ≈ �, the change is small and can still be taken into
account, by simply replacing � by �⋆ in the non-interacting
calculation. Therefore, our results can be well explained by
a simple non-interacting theory. Essentially, the quantization
of the charge-relaxation resistance has recently been proven
to be robust to Coulomb interactions beyond the Hartree–
Fock approximation [21, 41]. Regarding the limit of weak
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Figure 9. Temperature dependence of the amplitude of the
capacitance oscillation in sample S1 at B = 1.3 T and
ω/2π = 1.085 GHz. The dashed line corresponds to the curve
fitting with equation C(T ) = A (T/T ⋆)/ sinh(T /T ⋆). Inset:
normalized imaginary part of the impedance Im(Z) for
−0.74 � Vg � −0.68 V. The dashed rectangle defines the
capacitance oscillations, whose temperature dependence is plotted
in the main figure.

and large transparencies of the dot barrier, Mora et al and

Hamamoto et al performed analytical calculations [21, 41] and

numerical simulations [41], which applied an exact treatment

of Coulomb interactions. In their investigations, they have

shown that charge-relaxation resistance was indeed universal

and independent of the interaction strength.

3.5. Quantum versus classical RC circuit

Kirchhoff’s laws prescribe the addition of resistances in

series. Its failure has been a central issue in developing

our understanding of electronic transport in mesoscopic

conductors. Indeed, coherent multiple electronic reflections

between scatterers in the conductor were found to make the

conductance nonlocal [9]. In the case of the fully coherent

quantum RC circuit at GHz frequencies, we have shown that

a counterintuitive modification of the series resistance led to

a situation, in which the resistance is no longer described

by the Landauer formula and as such, does not depend

directly on transmission. When the resistor transmits a single

electronic mode, a constant resistance is found that is equal

to half of a resistance quantum, Rq = h/(2e2). This

resistance, which is modified by the presence of the coherent

capacitor, is then termed a ‘charge-relaxation resistance’, so

as to distinguish it from the usual dc resistance, which is

wedged between macroscopic reservoirs and described by the

Landauer formula. Essentially, it raises important questions

regarding the crossover between the fully coherent and fully

incoherent mesoscopic capacitor. For instance, in the case of

our experimental study, how do we recover the two terminal

resistance (h/e2)(1/T ) for the charge-relaxation resistance in

the fully incoherent case?

At finite temperature, the quantum capacitance and the

charge-relaxation resistance in equations (15) and (16) have

to be thermally averaged to take into account the finite energy

width of the electron source so that capacitance oscillations are

washed out by thermal broadening and the charge-relaxation

resistance becomes transmission-dependent. In particular, in

the regime kBT ≫ �, we find

Rq =
h

2e2
+

h

e2

1 − T

T
, (21)

which is the series association of a single interface resistance

Rc = h/(2e2) and the four point QPC resistance given by

the Landauer resistance (h/e2)(1 − T )/T [8, 9, 42]. This

means that the QD does not act like an additional reservoir.

The thermal broadening seems to act at high temperature as

decoherence although the circuit remains fully coherent. In a

more detailed theoretical investigation conducted by Nigg and

Büttiker [43], the loss of coherence in the QD is modeled by

attaching a fictitious dephasing or voltage probe thereto. The

probe draws no net current and an electron entering the probe

is replaced by an electron without any phase correlation. In

the case of a dephasing probe, the net current vanishes for each

energy. However, it vanishes on average for the voltage probe.

The coupling between the QD and the probe gives the strength

of the decoherence. As a result, dephasing and voltage probes

are indistinguishable for a single channel probe, such that in the

fully incoherent regime (coupling at unit transmission between

the QD and the probe), it yields the same result as in the thermal

broadening regime (see equation (21)).

Experimentally, it is difficult to perform a calibration

for all temperatures to compare theoretical models with the

experiment. Figure 10 shows the Nyquist representation

Re(G) versus Im(G) of the RC circuit at low (T = 295 mK)

and high (T = 4.2 K) temperatures. At low temperature, the

circuit is fully coherent and the relaxation resistance is h/2e2

for a single perfectly open channel and draws near to h/4e2

for two open channels. At high temperature when the circuit is

expected to be incoherent, the Nyquist representation exhibits a

classical behavior of an RC circuit with a tunable resistance and

a constant capacitance. For a single perfectly open channel,

this resistance approaches the resistance h/e2. It corresponds

to the resistance of the QPC at transmission T = 1, which

indicates that the QD acts like an additional reservoir that

can be understood by the presence of a dephasing mechanism

involving many coupled channels in the dot.

4. Experimental setup and calibration

4.1. Samples description

The RC mesoscopic circuit is made of the series association of

a QPC and a cavity realized in a 2DEG in a high-mobility

GaAs/GaAlAs heterojunction. We present results on three

samples (S1, S3 and S4) measured at low temperatures down to

30 mK. S1 and S3 have a nominal density ne = 1.7×1011 cm–2

and mobility µe = 2.6 × 106 V−1 m2 s−1, while S4 has
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Figure 10. Nyquist representation Re(G) versus Im(G) of the
conductance in sample S1 at B = 1.3 T and ω/2π = 1.085 GHz in
the fully coherent regime at T = 295 mK (blue line) and in the high
temperature regime at T = 4.2 K (red line). Black dashed lines
represent Nyquist representations of an RC circuit with a tunable
resistance and a constant capacitance (Cµ(T = 1) at T = 295 mK
and C at T = 4.2 K). The blue and red dashed lines correspond to
Nyquist representations of an RC circuit with a tunable capacitance
and a constant resistance Rq = h/2e2 (RK = h/e2).

ne = 1.9 × 1011 cm–2 and µe = 1.3 × 106 V−1 m2 s−1. S3⋆,

which is actually sample S3, has undergone several thermal

cycles resulting in a variation of several parameters like Cµ.

One of these samples is displayed in figure 4. A finite magnetic

field (B = 1.3 T) is applied, so as to work in the ballistic

integer quantum Hall regime with no spin degeneracy. The

mesoscopic cavity has a square shape (see figure 4(a)) and

is coupled to a top gate via a capacitance C. When the

QPC is closed, electronic states in the cavity are quantized

and a level spacing � can be defined. Transport in the

quantum Hall regime is well understood in terms of transport

through 1D channel, which allows to evaluate � by using an

estimated drift velocity vd ∼ 5 × 104 m s−1 at B = 1.3 T and

the size of the cavity, which is deduced from the geometric

capacitance C measured at unit transmission (see figure 8).

The value of capacitance Cµ is determined independently using

Coulomb-blockade spectroscopy in small transmissions, as

developed in section 4.3. All the characteristics are reported in

table 1.

4.2. Measurement of complex conductance in the microwave

regime

The experimental setup is represented in figure 11. The

mesoscopic circuit is cooled down to 30 mK in a dilution

refrigerator and inserted between two 50 	 coplanar (CPW)

transmission lines. The right-hand line is used for excitation,

while the left-hand line is used for detection. The excitation

Table 1. Samples characteristics. The capacitance C and the level
spacing � are estimated by measuring in unit transmissions
(r ≃ 0), while the level spacing �⋆ and the capacitance Cµ are
estimated from Coulomb blockade calibrated in small
transmissions (r ≃ 1).

Sample C (fF) � (GHz) �⋆ (GHz) Cµ (fF)

S1 ∼8 ∼17 17 ± 2 2.3 ± 0.3
S3 ∼4 ∼35 39 ± 4 1.0 ± 0.07
S3⋆ ∼3.5 ∼41 52 ± 4 0.75 ± 0.07
S4 <1 >60 88 ± 4 0.44 ± 0.03

Vac cos ωt is applied on the top gate of the mesoscopic RC

circuit while the response current Iac cos(ωt+ϕ) is measured on

the load resistor R0 = 50 	 of the detection line. The principle

of the measurement is based on the homodyne technique,

where the detected signal is multiplied, after amplification,

with the reference signal to provide access to the in-phase

response Iac cos ϕ and the out-of-phase response Iac sin ϕ of

the coherent circuit. Note that the impedance of the coherent

circuit is on the order of magnitude of the resistance quantum,

meaning that the perturbation induced by the circuit between

the CPW lines is small and allows for broadband measurement

between 0.1 and 2 GHz.

Essentially, our goal is to measure the linear response of

the coherent RC circuit when the first spin-polarized channel

is opened. According to section 2, this regime requires eVac ≪
h̄ω ≪ �7. Thus, the experimental setup aims at constraining

the frequency of the excitation (i) and its magnitude (ii).

Regarding (i), the estimated level spacing in the mesoscopic

capacitance � ∼ 15 GHz gives an upper limit of the working

frequency. The lower limit will be set by the sensitivity we need

to measure the RC time τRC = Rq × Cµ. It can be estimated

from the value of the geometric capacitance: C ∼ 5 fF. Thus, a

measuring frequency in the range of 0.1 ∼ 2 GHz will give the

necessary phase sensitivity to measure ϕ = arctan(ωτRC) ∼
0.1. Concerning (ii), at ω/2π = 1 GHz, the linear regime is

reached for excitation smaller than 4 µV. Then, it is necessary

to compare the magnitude of the excitation with the voltage

fluctuations due to thermal photons being brought back by

the broadband microwave lines. For a bandwidth �f ∼
2 GHz, the thermal noise at room temperature is estimated

at �VN =
√

4kBT R0�f ∼ 40 µV. The excitation line is

thus steadily attenuated by a set of attenuators reducing the

thermal fluctuations to �VN ∼ 0.9 µV after a total attenuation

of −80 dB. Similarly, the coherent conductor has to be isolated

from the noise coming from the amplifier. Since attenuators

cannot be used without signal loss, cryogenic isolators are

therefore used and provide −30 dB of isolation from radiation

emitted by the amplifier in the detection chain.

4.3. Calibration

Several quantities need to be determined in order to measure

the absolute value of charge-relaxation resistance. The raw

7 More precisely, the condition refers to the potential in the cavity:

eU ≪ h̄ω ≪ �. According to section 2, U/Vac =
√

1+1/(RqCqω)2

1+1/(RqCµω)2 =
√

1+1/(τdω)2

1+1/(τRCω)2 ∼ 1.
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Figure 11. Experimental setup for the measurement of the complex conductance G(ω) of the mesoscopic RC circuit.

in-phase and out-of-phase signals given by the homodyne

detection can be written as follows:

X = X0 + |G|I (ω) cos(ϕ − ϕ0) (22)

Y = Y0 + |G|I (ω) sin(ϕ − ϕ0), (23)

where G = |G|eiϕ is the complex conductance of the

sample and I (ω) the oscillating current imposed to the

sample. Calibration of the experimental setup thus requires

a background subtraction (X0, Y0) and a global phase rotation

ϕ0. Figure 12(a) shows the Nyquist representation of Y

versus X at the opening of the first conductance channel. The

background (X0, Y0) corresponds to a closed QPC (pinched

state). It is attributed to the cross-talk between the two CPW

transmission lines and can be easily subtracted. Note that

its magnitude is approximately 30 times greater than the RC

circuit signal in agreement with an isolation of−20 dB between

the two lines. Determining the global phase ϕ0 is a more

complicated issue that requires using the characteristics of

the coherent circuit. Indeed, at the opening of the QPC,

the Nyquist representation resembles a fingerprint of the

mesoscopic RC circuit. As can be seen from figure 6, starting

from the pinched state, peaks are observed in both Re(G) and

Im(G), but those in Re(G) quickly disappear while Im(G)

oscillates around a plateau. In the Nyquist representation of

figure 12(a), these data points fall on a circle centered on the

Re(G) axis, which characterizes a transmission independent

resistance ((ŴC) in figure 12(a)). More precisely, ϕ0 is adjusted

to minimize the oscillations of the real part of the complex

impedance. Figures 12(b) and (c) show the real part of the

complex impedance after numerical inversion with and without

phase reference correction.

The last step of the calibration procedure requires

calibrating the whole detection chain. However, at GHz

frequencies, direct calibration is hardly better than at 3 dB . For

this purpose, we will use an indirect, but absolute method often

used in Coulomb-blockade spectroscopy. The method is based

on comparing the gate voltage width of a thermally broadened

Coulomb peak (∼kBT ) and the Coulomb peak spacing (∼
e2/Cµ). As a result, an absolute value of Cµ can be obtained.

The real part of the admittance in samples S3, S3⋆ and S4

is shown as a function of the dc voltage Vdc at the counter-

electrode for a given low transmission (see figures 13(a)–(c)).

A series of peaks with periodicity �Vdc are observed, with the

peaks accurately fitted by using equation (18). Their width,

which is proportional to the electron temperature Tel, is plotted

against the refrigerator temperature T (see figures 13(e)–(g)).

When corrected for apparent electron heating arising from

Gaussian environmental charge noise, i.e. Tel =
√

T 2
0 + T 2,

the energy calibration of the gate voltage yields Cµ and the

amplitude 1/Cµω of the conductance plateau in figure 6. A

similar analysis was performed in figures 13(d) and (h), for

sample S1 using Vg to control the cavity potential. Here, peaks

are distorted due to a transmission-dependent background and

show a larger periodicity �Vg = 2 mV, which reflects the

weaker electrostatic coupling to the 2DEG.

Looking at the samples’ characteristics (see table 1), we

noticed that the estimated level spacing � (related to the cavity
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Figure 12. (a) Nyquist representation Y versus X of raw data performed on sample S2 for T = 100 mK, B = 1.3 T and ω/2π = 1.2 GHz.
Black dashed lines represent one part of the circle (ŴC) corresponding to the Nyquist representation of an RC circuit with a constant
resistance and a varying capacitance. (b) and (c) Real part of the complex impedance Re (e−iϕ/((X − X0) + i(Y − Y0))) numerically
computed for two different phase references ϕ = 0 and ϕ = ϕ0.

size) and the measured one �⋆ = e2/Cµ differs by a factor

of ∼1.2 for the different samples. From the data gathered, we

observed that the smaller the cavity is, the greater the difference

is. This difference is related to the charging energy e2/C,

which corresponds to the energetic cost (Coulomb interactions)

associated to the addition of one electron on the capacitor

C. As discussed in section 3.4, this effect can be considered

when replacing the bare single particle level spacing � by the

addition energy: �⋆ = � + e2/C.

5. Conclusion

To investigate the effect of quantum coherence on electronic

dynamics in quantum conductors, we studied a model quantum

conductor, i.e. the quantum RC circuit, which comprises

a single channel spin-polarized electronic cavity that is

capacitively coupled to a metallic top gate and tunnel coupled

to an electronic reservoir by a quantum point contact of tunable

transmission. This circuit realizes the quantum version of

the well-known RC circuit in electronics, where the dynamics

of charge transfer are encoded in the charge-relaxation time

τRC = RC. In a quantum conductor, where the phase

coherence is preserved along the electronic path, one cannot

analyze the various components of the conductor individually.

Consequently, in the model circuit studied in this review, the

charge-relaxation time cannot be understood merely from the

serial association of the resistance of the quantum point contact

R = h/(e2
T ) measured in dc transport measurements and

the geometric capacitance C of the cavity. Rather, due to

quantum interferences, the circuit has to be considered as a

whole entity. Although the charge relaxation is still analogous

to that of an RC circuit, the capacitance is given by the serial

association of the geometric capacitance C and a quantum

capacitance Cq related to the density of states in the cavity

while the charge-relaxation resistance is quantized to Rq =
h/(2e2) and independent of the QPC transmission T . This

remarkable manifestation of quantum coherence in dynamic

transport, which was first theoretically predicted by Büttiker,

et al [14], is confirmed by our experimental study. Moreover,

the detailed behavior of this model circuit can be verified with

great accuracy within the context of the quantum scattering

theory of dynamic transport.

In recent years, many interesting developments in this

topic have emerged. However, many questions remain open.

For instance, the case of metallic boxes with many conducting

channels and a small dot level spacing has been theoretically

investigated in [44], where the authors show that a certain

average of the charge-relaxation resistance is still being

quantized. On the experimental side, other types of quantum

conductors have been considered, such as carbon nanotubes in

single dot [45] or double dot geometries [46]. The latter has a

significant impact in quantum information applications, where

the mesoscopic admittance of the double dot plays a crucial

role [47, 46]. The former addresses the fundamental question

of the dynamic properties of a quantum conductor in a different

regime, where the electronic correlations are strong, namely

the Kondo regime. Carbon nanotubes represent a distinct type

of one-dimensional conductors compared to the edge channels

of the quantum Hall regime. Two orbital channels carrying

two types of spin species participate in the transport. When the

spin degeneracy is taken into account, one should distinguish

the charge dynamics characterized by the charge susceptibility

from the spin dynamics related to the spin susceptibility.

In the Kondo regime, a single spin is trapped inside the

dot and behaves like the magnetic impurity coupled to the

electrons in the leads of the original Kondo problem. Due to

Coulomb interactions, when the charge inside the dot is frozen,

the charge susceptibility is small. However, the spin can

fluctuate due to the coupling to the electrons in the conductor

leads. These spin fluctuations lead to a resonant peak in the

density of states at the Fermi energy, which can be observed

through dc conductance measurements of the dot [48, 49].

However, recent theoretical works [50, 51] have predicted that
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Figure 13. Coulomb-blockade oscillations in the real part of the ac conductance in the low-transmission regime. The control voltage is
applied to the counter-electrode for sample S2 (b) and to the QPC gate for sample S1 (a). The temperature dependence is used for the
absolute calibration of our setup, as described in the text, where the peak width, shown in (c) and (d) as a function of temperature, is deduced
from theoretical fits (dashed lines) using equation (18), and taking a linear dependence of energy with the control voltage. Lines in (c) and

(d) are fits of the experimental results derived from using a
√

T 2
el + T 2 law to take into account a finite residual electronic temperature Tel.

the capacitance remains small in this regime, since it is related

to charge susceptibility. In this example and contrary to

the case considered in this review, where Kondo correlations

were absent, the capacitance should differ from the density

of states. Moreover, if the spin degeneracy were lifted by

applying a magnetic field, the Kondo state would be destroyed,

and a strong increase of the charge-relaxation resistance

would be expected for intermediate magnetic fields. In this

case, the charge-relaxation resistance would strongly deviate

from its quantized value. Another case where electronic

correlations play a crucial role is the fractional quantum Hall

effect. It has been predicted [41] that the universality of the

charge-relaxation resistance Rq = h/(2νe2), where ν < 1 is

the fractional filling factor, would break down for values of

ν < 1/2, thereby also resulting in a divergence of the charge-

relaxation resistance.

Finally, another case of interest is the dynamics of charge

transfer when the conductor is put out of equilibrium. In this

case, the current generated by a voltage excitation of the dot

should be computed beyond the linear response considered

in this review. In this regime, the mesoscopic cavity can act

as a single electron source that emits a quantized number of

charge [52, 53] in the conductor. Also here, in the presence

of Coulomb interactions, the interplay between the charge
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and spin degrees of freedom has to be considered in order

to understand the charge and spin dynamics of the dot [54, 55].

These issues are of prime importance when manipulating

single spins or single charges in quantum conductors.
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[15] Büttiker M, Prêtre A and Thomas H 1993 Phys. Rev. Lett.

70 4114
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[22] Büttiker M 1992 Phys. Rev. B 45 3807
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Lett. 100 086601

[54] Splettstoesser J, Governale M, König J and Büttiker M 2010
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