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Abstract

The cohesin complex is crucial for chromosome segregation during mitosis and has recently also been implicated in
transcriptional regulation and chromatin architecture. The NIPBL protein is required for the loading of cohesin onto
chromatin, but how and where cohesin is loaded in vertebrate cells is unclear. Heterozygous mutations of NIPBL were found
in 50% of the cases of Cornelia de Lange Syndrome (CdLS), a human developmental syndrome with a complex phenotype.
However, no defects in the mitotic function of cohesin have been observed so far and the links between NIPBL mutations
and the observed developmental defects are unclear. We show that NIPBL binds to chromatin in somatic cells with a
different timing than cohesin. Further, we observe that high-affinity NIPBL binding sites localize to different regions than
cohesin and almost exclusively to the promoters of active genes. NIPBL or cohesin knockdown reduce transcription of these
genes differently, suggesting a cohesin-independent role of NIPBL for transcription. Motif analysis and comparison to
published data show that NIPBL co-localizes with a specific set of other transcription factors. In cells derived from CdLS
patients NIPBL binding levels are reduced and several of the NIPBL-bound genes have previously been observed to be mis-
expressed in CdLS. In summary, our observations indicate that NIPBL mutations might cause developmental defects in
different ways. First, defects of NIPBL might lead to cohesin-loading defects and thereby alter gene expression and second,
NIPBL deficiency might affect genes directly via its role at the respective promoters.
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Introduction

Genomes need to be stably inherited over numerous cell

generations. For each cell division the genetic information has to

be replicated, the copies identified and then equally distributed

between daughter cells. This process crucially depends on the

cohesin complex, consisting of the core subunits SMC3, SMC1A,

RAD21, SA1/STAG1 or SA2/STAG2 and several transiently

associated regulatory proteins (reviewed in [1]). Cohesin tethers two

sister chromatids together from S-phase on, allowing for their

proper segregation in mitosis. Furthermore, cohesin is important for

DNA damage repair (for review see [2]), for chromatin insulation in

cooperation with the chromatin insulator protein CCCTC-binding

factor (CTCF) [3–5], for chromosomal long-range interactions [6–

8], and for development [9–12]. The latter functions implicate

cohesin in regulating gene expression; indeed, a large number of

genes are misregulated after cohesin depletion [3,13].

How exactly cohesin associates with DNA is not understood,

since none of the subunits binds directly to DNA. Rather, cohesin

is hypothesized to bind to DNA by embracing the DNA strands

with a ‘‘protein ring’’ formed by the core subunits [14,15].

Cohesin’s binding to chromatin is tightly regulated throughout

the cell cycle. To enable chromosome segregation it is removed

from chromosomes during mitosis. A prophase pathway depend-

ing on WAPL and specific phosphorylation of cohesin subunits

dissociates cohesin from chromosome arms. The remaining

cohesin is removed by proteolytic cleavage of the RAD21 subunit

at anaphase onset (reviewed in [1]). Cohesin re-associates with

chromatin at the G1-S-phase transition in yeast but in vertebrates

already earlier during G1 phase.
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The chromosomal localization of cohesin is determined by

several factors. First, the cohesin loading factors NIPBL (also

known as IDN3 or Delangin; Nipped-B, Drosophila melanogaster;

Scc2, Saccharomyces cerevisiae) and MAU2 (also KIAA0892; Scc4 in

Saccharomyces cerevisiae) are crucial for the re-loading of cohesin in

G1-phase after its complete dissociation from chromatin during

mitosis (reviewed in [1]). In yeast, it has been shown that cohesin

associates first with Scc2 binding sites and then relocalizes to

different positions [16,17]. In Drosophila melanogaster cohesin

colocalizes with NIPBL to actively transcribed genes [18] and in

mouse ES cells a subset of cohesin binding sites was described to

colocalize with NIPBL and the mediator complex [13]. Second,

factors co-localizing with cohesin on chromatin such as CTCF [3]

and Estrogen receptor [19] determine where cohesin is positioned.

Mutations in NIPBL and cohesin subunits, have been linked to

the ‘‘Cohesinopathy’’ Cornelia de Lange syndrome (CdLS,

OMIM #122470, #300590 and #610759). This dominant,

genetically heterogeneous developmental disorder has a high

degree of variability in its clinical presentation with multiple organ

systems affected. It is estimated to occur in 1:60000 to 1:45000 live

births. Characteristic features include craniofacial anomalies,

growth retardation, intellectual disability, upper limb defects,

hirsutism, and involvement of the gastrointestinal and other

visceral organ systems [16]. Clinically, CdLS phenotypes can

range from very mildly affected (no structural abnormalities,

minor intellectual disability) to severely affected (upper limb

defects, severe intellectual disability). Heterozygous mutations of

NIPBL, ranging from nonsense and frameshift mutations to

truncation mutations, have been found in 50% of CdLS patients

and mutations of the cohesin subunits SMC1A, and SMC3 were

found in another 5% (reviewed in [17]). Observations in patients

and mouse models show that in cells with heterozygous NIPBL

mutations the NIPBL transcript levels are only reduced by ,30%

due to an increased expression from the intact allele [18,19]. A

clinical phenotype is observed with a modest 15% reduction in

expression [20]. This indicates that NIPBL expression levels are

tightly regulated and are critical for cells. Defects in cohesin-

dependent chromosome cohesion were not observed at this level of

NIPBL reduction in CdLS patients or any model systems [19,21].

However, a reduction of cohesin binding sites was observed in cells

derived from CdLS patients, which was most obvious in close

proximity to genes [18]. This suggested that the clinical features of

CdLS are the collective outcomes of changes in the expression

level of multiple genes during development.

NIPBL has already been linked to gene regulation. In

Drosophila, NIPBL was found to facilitate the activation of the

cut and Ultrabithorax genes by remote enhancers. In the case of the

cut gene, NIPBL facilitates its long-range activation while cohesin

has an inhibitory effect on cut expression [22]. Further, human

NIPBL was already shown to bind histone deacetylases (HDAC1,

HDAC3) [23] and heterochromatin protein 1 (HP1) [24].

These observations implied a ‘‘dual role’’ for NIPBL, in loading

cohesin and in gene regulation. It is not known whether these two

functions are independent of each other, or if NIPBL mediates

gene regulation via loading of cohesin onto DNA.

In this study we have aimed to determine when and where

NIPBL binds to chromatin to determine where cohesin is initially

loaded. Furthermore we wanted to elucidate whether the position

of NIPBL binding in the genome accounts for the altered gene

expression patterns observed in CdLS patients carrying NIPBL

mutations [18].

Results

Consecutive loading of NIPBL, CTCF and cohesin
To gain insight into the cohesin loading mechanism it is crucial

to understand when cohesin interacts with these factors during the

loading process. We have therefore compared the timing of the

chromatin-localization of cohesin with that of NIPBL and CTCF.

Mitotic HeLa cells were fixed with paraformaldehyde (PFA) and

immunostained with antibodies specific for CTCF, NIPBL and the

cohesin subunits RAD21 and SA2/STAG2 (Fig. 1; Suppl. Fig.

S1B, C). Specificity of the antibodies was demonstrated by

immunostaining of siRNA-depleted cells (Suppl. Fig. S1A). It

was then determined at which stage the signals of these proteins

appeared on chromatin during the exit from mitosis (Fig. 1). These

results were also correlated with the reassembly of the nuclear

envelope in HeLa cells expressing Lamin B-EGFP. Similar to

cohesin we find the signals of NIPBL and CTCF to be largely

excluded from metaphase chromosomes. However to our surprise

both NIPBL and CTCF signals appear on chromatin at an earlier

stage of the mitotic exit than cohesin (Fig. 1), actually before the

nuclear envelope is reassembled as shown by comparison to Lamin

B signals (Suppl. Fig. S1B). Therefore NIPBL and CTCF are

already present on chromatin, before the cohesin complex begins

to re-associate with chromatin. This suggests that NIPBL binds

first to chromatin and subsequently recruits cohesin. The fact that

CTCF associates with chromatin before cohesin enforces our

earlier observation that cohesin is dispensable for CTCF

localization on chromatin [3].

NIPBL localizes in somatic cells independently of cohesin
To analyze the genomic localization of NIPBL binding sites

relative to cohesin and CTCF, we selected the NIPBL antibody

(referred to as NIPBL#1) that performs best in human cells

(Suppl. Fig. S2) and performed ChIP-sequencing for NIPBL,

cohesin and CTCF using HB2 cells (1-7HB2) [25] enriched in G1

phase (Suppl. Fig. S3A) and for NIPBL in lymphoblastoid cells

(LCL; B-cell population immortalised by EBV-transformation)

derived from a normal control (N5) and CdLS patients (PT1,

PT9).

Furthermore, we have determined the transcriptional activity by

RNA-sequencing, and identified active transcription start sites in

Author Summary

The cohesin complex is crucial for chromosome segrega-
tion during cell divisions but was recently also implicated
in transcriptional regulation and chromatin architecture.
Cohesin’s binding to chromatin depends on NIPBL, a factor
that was found to be mutated in 50% of the cases of the
human developmental disorder Cornelia de Lange Syn-
drome (CdLS). To understand the role of NIPBL for cohesin,
we need to know when and where the cohesin is loaded
onto DNA. Our experiments have identified high-affinity
NIPBL binding sites in different cells lines which do not
overlap with cohesin-binding, but colocalize with specific
transcription factors at active promoters. The activity of the
respective genes depends on NIPBL but not cohesin. This
is in contrast with other published data showing
colocalization of NIPBL and cohesin, and we reveal the
existence of different types of NIPBL binding sites that are
detected differently by the antibodies used in the different
studies. Our observations reveal a dual role for NIPBL in
cohesin loading and as potential transcription co-factor,
which yields novel insights into how NIPBL defects could
cause Cornelia de Lange Syndrome since NIPBL mutations
might directly influence developmentally important genes.

NIPBL as Novel Transcription Co-factor
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HB2 cells by ChIP-sequencing of RNA Polymerase II (RNA Pol

II). ChIP for NIPBL, SMC3, CTCF and RNA Pol II was

performed as described [3], but for SMC1A ChIP a SDS-free

protocol was used to maximize the ChIP-efficiency [26].

To prove the specificity of the identified peaks for NIPBL we

have depleted NIPBL by RNAi and observed greatly reduced

ChIP-qPCR signals for the analysed sites (Suppl. Fig. S4 A–C).

Using the criteria described in the Materials and Methods

section, we identified 1138 NIPBL sites, 35668 CTCF sites, 22572

SMC3 sites and 29441 SMC1A sites in HB2 cells and between

1600 and 2000 NIPBL sites in lymphoblastoid cells (LCL). The

data from the different LCL’s and the conclusions for CdLS are

discussed in detail in a later section.

Surprisingly, in HB2 cells the NIPBL binding sites do not

overlap with cohesin or CTCF binding sites (Fig. 2A). Heatmaps

centred on NIPBL (Fig. 2B), cohesin or CTCF binding sites

(Fig. 2C, D), show no overlap of cohesin or CTCF signals with

NIPBL sites. As expected, there was a high correlation between

cohesin and CTCF signals. The absence of overlapping NIPBL

and cohesin sites was confirmed by qPCR analysis of several

NIPBL and cohesin binding sites in SMC3 and NIPBL ChIP

experiments, where we observe only background levels of NIPBL

binding on cohesin sites and vice versa (Fig. 2E).

Cohesin binding was previously observed on centromeric

repeats and Alu elements [27–29], therefore we also analysed

sequencing reads mapping uniquely to repeat sequences (Table

S8). NIPBL ChIP highly enriches rRNA repeats (13 fold), in

particular the large (LSU, 15 fold enriched) and small subunit

(SSU, 14 fold enriched) repeat families but not at the repeat classes

described for cohesin. rRNA repeats are pseudogenes of unknown

function distributed all over the human genome [30]. In total we

observe NIPBL at 20 out of 467 known LSU/SSU regions (Hg19

assembly of the human genome) and by ChIP-qPCR with primers

specific for LSU and SSU repeats we confirmed NIPBL-binding to

four of five LSU repeat regions and one of three SSU regions

(Suppl. Fig. S5A).

The missing colocalization between NIPBL and cohesin is in

contrast with observations in mouse embryonic stem cells (mESC)

[13]. To address this we critically reviewed the ChIP-sequencing

data analysis from Kagey et al., the ChIP protocols used and the

different antibodies, NIPBL#1 from our study and NIPBL#6

used by Kagey et al.. Our review of the ChIP-seq data analysis

from Kagey et al. confirmed their general finding that cohesin and

NIPBL ChIP signals overlap, although we did not find such a

colocalization of NIPBL and cohesin in our study. Further, we

compared the different ChIP protocols by performing ChIP from

mESC using both protocols and both antibodies (Suppl. Fig. S5B,

C). We observe a better ChIP/IgG-control ratio using our

protocol, which includes a more stringent washing of the beads

(Suppl. Fig. S5C). For three NIPBL sites at promoters (Nanog, Lefty,

Oct4), identified by Kagey et al. in mESC [13], both antibodies

perform weakly but equally well, independent of the ChIP

protocol (Suppl. Fig. S5B, C). To demonstrate once more the

specificity of both antibodies for NIPBL, we have performed ChIP

with both antibodies from control mESC and mESC derived from

a Nipbl+/2 mouse embryo (Suppl. Fig. S5D) (S. Goldberg, F.

Grosveld unpublished data) and observe with both antibodies a

20–40% decreased Nipbl binding at all sites (Suppl. Fig. S5E).

This is consistent with previous reports on Nipbl+/2 mESC that

heterozygous knockout cells still have 70% of wild-type Nipbl

mRNA levels [19].

However, on the NIPBL binding sites that we find to be

conserved between human HB2 cells and mES (Tiam1, Ankhd1,

Sp1), the ChIP is strikingly better enriched for NIPBL#1 than

NIPBL#6 in both cell types (Suppl. Fig. S5B, C, F). Therefore,

different chromatin morphologies between pluripotent and differ-

entiated cells do not account for the different binding patterns.

We conclude from these results that there are two different types

of NIPBL binding sites. The NIPBL#1 antibodies highly enrich

for a set of ‘‘major sites’’ that localize at promoters and do not

overlap with cohesin. The NIPBL#6 and NIPBL#1 antibodies

both detect a set of low-enriched sites (‘‘minor sites’’, low ChIP/

seq signals) which overlap with cohesin binding sites.

NIPBL binds to active promoters, together with a distinct
set of transcription factors
NIPBL ‘‘major binding sites’’ are distributed over the entire

genome (repetitive sequences were omitted during the mapping of

the reads to the genome) but localize very specifically to the

promoter area (+/21000 bp from transcription start sites)

(Fig. 3A). We observe such localization for 912 of 1138 (80%)

Figure 1. Chromatin association of NIPBL, cohesin and CTCF
during exit from mitosis. A To address the association of cohesin,
CTCF and NIPBL with chromatin during end of mitosis HeLa cells were
fixed with PFA and stained with antibodies against CTCF (CTCF#1), the
cohesin subunit RAD21 and NIPBL (NIPBL#2). Image stacks were taken
with a confocal microscope and a Z-projection generated with Image J.
Cells in interphase and different stages of mitosis are shown, from top
to bottom: interphase, metaphase, late anaphase, telophase, completed
cytokinesis together with a metaphase. B One image slice (100 mm) of
the telophase images in (A) is shown to highlight the lack of cohesin
signal on chromatin while NIPBL and CTCF are already present.
doi:10.1371/journal.pgen.1004153.g001
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NIPBL sites in HB2 cells, while only ,10% of the cohesin and

CTCF sites localize to promoters. About 89% of NIPBL-bound

promoters are CpG island promoters (Table S4). Analysis of RNA-

sequencing data from HB2 cells revealed that .98% of these

NIPBL-bound genes are actively transcribed (Fig. 3A and Table

S3), indicating a preferential binding of NIPBL to active

promoters. Comparison with RNA Pol II binding sites showed

that NIPBL preferentially binds 100–200 nucleotides upstream of

RNA Pol II (Fig. 3B). This correlation is also visible as bimodal

distribution of the RNA Pol II signal since orientation of

transcription was not considered in this plot (Fig. 2B).

To analyse the properties of NIPBL binding sites further, we

used the NIPBL binding sites observed in the control LCL’s (N5),

since a large number of data for histone modifications and

transcription factors is available for lymphoblastoid cells like

GM12878 from earlier publications [31] and ENCODE [32].

Comparing the pattern of different histone modifications

around NIPBL sites, we observed that the sites are flanked by

histone marks linked to active promoters and enhancers

(H3K4me3, H3K27ac and H3K9ac) (Fig. 3C). However, the

H3K4me1 mark, characteristic for enhancers, does not show

enrichment (Fig. 3C). NIPBL itself apparently resides in nucleo-

some-free areas.

The missing enhancer-specific histone mark is in contrast with

observations in mouse ES cells showing a colocalization of NIPBL

with enhancers and cohesin [13]. Therefore we also compared the

NIPBL binding with the enhancer marker p300 (Fig. 3D) and the

cohesin subunit RAD21 (Fig. 3E) and again observed no

correlation.

Motif analysis of NIPBL binding sites in HB2 cells and LCL’s

using MEME [33] reveals that the motifs for the transcription

factor NFYA (subunit of the NF-Y complex) are present at 80% of

NIPBL sites and for SP1 at 50% of the sites (Fig. 3F). NF-Y binds

the CCAAT box, which correlates well with the presence of CpG

islands at promoters; also, a connection between NF-Y and SP1

has often been reported with presence of both motifs at the same

promoter. To test whether the presence of the NFYA motif is

correlated to the CpG-island promoter or a genuine property of

the NIPBL-bound promoters we analyzed NIPBL-bound CpG

island promoters versus randomly selected CpG island promoters

and observe a statistical significant preference (Fisher test, p,

0.001) of NFYA for NIPBL-bound CpG island promoters. ChIP

with anti NFYB antibodies from HeLa cells confirms binding of

the NF-Y complex to NIPBL binding sites determined above

(Fig. 3G).

To investigate whether other transcription factors colocalize

specifically with NIPBL we compared the NIPBL sites in LCL’s

with available ChIP-sequencing data for transcription factors for

GM12878 cells collected by ENCODE [32]. Specifically, we

analyzed in total 66 binding profiles and generated heat maps

covering +/2500 bp around NIPBL binding sites conserved in

lymphoblastoid cells. By visual inspection of the maps we identified

five transcription factors present on NIPBL sites: NFYA/NFYB

and SP1, which is consistent with the presence of the motif, as well

as PBX3, C-FOS and IRF3 (Fig. 3H). The heatmaps displaying

the signals of the other transcription factors on NIPBL binding

sites show a very good correlation between all five factors. When

the signals are plotted respective to NFYB sites sorted according to

peak intensity, it shows that NIPBL and several other factors

overlap only with the strongest NFY peaks (Fig. 3I).

NIPBL is important for gene activity
NIPBL-bound genes in HB2 cells were analyzed using IPA

(Ingenuity Systems, www.ingenuity.com) and found to be linked to

diverse cellular functions, such as cell cycle control, gene

expression, cell death, RNA post-translational modification and

control of cellular growth and proliferation (Table S5). Out of

1118 NIPBL-bound protein-coding genes, 122 (11%) were

classified as transcription factors by Vaquerizas et al. 2009 [34],

which is not a statistically significant enrichment compared to the

number of transcription factors in lists with randomly selected

genes, but indicates that important developmental genes might

depend on NIPBL. Examples are SP1, SP2, SP3, BBX and STAT3,
all important transcription factors for development and NIPBL

binding at their promoters could be important for their

appropriate expression.

To address whether NIPBL is important for the active

transcription of the associated genes, we selected functionally

different genes with conserved NIPBL binding at the promoter,

but no cohesin binding site close to or on the gene, and asked

whether their transcription changes in HB2 cells after knockdown

of NIPBL, MAU2 or SMC3. To avoid problems in cell division

due to impaired sister chromatid cohesion, we synchronized cells

in G2 phase during the siRNA treatment (Suppl. Fig. S3B). Out of

the seven initially selected genes, five showed statistically

significant changes after NIPBL RNAi depletion: GLCCI1, a

glucocorticoid inducible transcript; TSPAN31, encoding a trans-

membrane protein involved in signal transduction and growth-

regulation; BBX, encoding a HMG-BOX transcription factor;

ZNF695, an uncharacterized zinc-finger protein and ARTS-1/

ERAP1, an endoplasmic reticulum aminopeptidase. Transcript

levels were analyzed by RT-PCR and qPCR and normalized

against the housekeeping gene NAD. Depletion of NIPBL and also

of MAU2 leads to a statistically significant (t-test, P-values,0.05)

decrease of gene expression levels of the candidate genes (Fig. 4),

indicating that NIPBL and MAU2 dosage are important for

maintaining expression levels. The depletion of SMC3 did not

significantly reduce the expression of these transcripts, although

the expression of the known cohesin-regulated MYC gene [35] was

reduced. This indicates that the changes in expression as a result of

NIPBL depletion are not the indirect result of reduced cohesin

binding and cohesin’s role for transcription.

Insights into Cornelia de Lange Syndrome (CdLS)
Mutations in the NIPBL gene have been identified in

approximately 50% of CdLS patients. Our discovery that NIPBL

Figure 2. Binding of NIPBL, cohesin and CTCF in the human genome. A Genomic binding of NIPBL, CTCF and the cohesin subunits SMC3
and SMC1A in the breast endothelial cell line HB2 at a selected region of chromosome 19 as determined by ChIP-sequencing. The RNA Pol II binding
profile, the control ChIP and the RNA-sequencing data from these cells are also shown. B–D Heatmaps showing the ChIP signal intensity of the
indicated ChIP-sequencing experiments in a window of +/2500 bp around all NIPBL peaks (B) as well as the top 10000 CTCF (C) and SMC3 (D) peaks.
Cohesin (SMC3, SMC1A) and CTCF binding does not correlate with NIPBL binding events. RNA Pol II signals are found near NIPBL, consistent with the
localization of NIPBL at promoters. Cohesin binding events correlate well between SMC3 and SMC1a and with CTCF. Peaks are ranked by size with the
strongest peaks at the bottom of the graph. E ChIP was performed with NIPBL#1, SMC3 and control antibodies from HB2 cells and analyzed by qPCR
with primers specific for cohesin, NIPBL and a negative (AMY) sites. NIPBL ChIP signals on cohesin sites are at background level (red horizontal line).
Only the DUSP10 site is higher than the background in the SMC3 ChIP, very likely due to a CTCF/cohesin site close to the NIPBL site. All experiments
were at least performed three times and one representative example is shown.
doi:10.1371/journal.pgen.1004153.g002
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Figure 3. NIPBL binds to active promoters together with other transcription factors. A Binding of NIPBL, CTCF and cohesin (SMC3) relative
to active genes in HB2 cells. The different regions were defined as follows; upstream: 25 kbp to 21 kbp from transcription start sites; promoter:
1 kbp upstream and downstream from TSS; gene body: +1 kbp from TSS until end of the coding sequence; downstream: end of the coding sequence
- +5 kbp (See also Table S2). B Bubble plot representation of NIPBL binding around RNA Pol II peaks in HB2 cells. The x-axis denotes the position of
NIPBL respective to the closest RNA Pol II peak and the y-axis the strength of the RNA Pol II peak. Bubble size indicates the strength of the NIPBL peak.
NIPBL binds 100–250 bp around RNA Pol II peaks, preferentially upstream, which is consistent with binding to active promoters. C NIPBL binding in
the control LCL’s (N5) was compared with localization of histone modifications and CTCF in the lymphoblastoid cell line GM12878 [31]. The plot is
centred on the NIPBL peaks and the y-axis displays the signal intensity of the respective histone modification and CTCF in GM12878 cells. D Heatmap
correlating the P300 ChIP signals +/2500 bp around P300 binding sites observed in GM12878 cells with the sequencing reads obtained for the
control and for NIPBL ChIP in control (N5) and patient cells (PT9). The plot is centred on the 10000 strongest P300 peaks clustered into different

NIPBL as Novel Transcription Co-factor
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binds to active promoters prompted us to identify the major

NIPBL binding sites in lymphoblastoid cells (LCL’s) derived from

blood samples of severely affected CdLS patients with NIPBL

truncation mutations and normal controls (Fig. 5A, B).

Using the NIPBL#1 antibody we detected 1612 major NIPBL

sites in the control (N5) and 2061/2009 sites in the patient-derived

lines (PT1/PT9), with 1295 sites overlapping between N5/PT1

and 1273 sites between N5/PT9. In summary 80% of the sites in

the control N5 are also found in PT1 and PT9 (Fig. 5C). The

majority (74%) of the sites observed in HB2 cells is consistent with

these conserved sites, indicating conservation between different

tissues. Consistent with our observations in HB2 cells, most NIPBL

binding sites in the LCL’s localize to the 59 ends of genes and are

enriched for the motifs of the transcription factors NF-Y and/or

SP1. Gene ontology analysis of the LCL NIPBL-bound genes

showed similar classes of genes as for HB2 cell, but no cell type-

specific functions such as immune response.

Although expected from patient-derived cell lines with NIPBL

haploinsufficiency, we did not observe significant differences in peak

number or peak intensity between controls and patient-derived

genomic regions as in (A). E Identical heatmaps generated for the RAD21 peaks observed in GM12878 cells. F Consensus motif derived de-novo from
NIPBL binding sites in HB2 cells. The region 650 bp around the peak maximum was used to determine motifs with MEME [33]. These motifs are
nearly identical to the respective motifs of the transcription factors NFYA and SP1, indicating that one or more transcription factors might colocalize
with NIPBL. G Binding of NFYB to NIPBL sites as discovered by the motif analysis in (D) and the comparison to binding sites of other transcription
factors in (E) was confirmed by ChIP-qPCR with anti-NFYB antibodies. H Heatmaps comparing +/2500 bp around NIPBL sites observed in LCL’s (N5)
with ChIP-sequencing data of various transcription factors (GM12878 cells) revealed a subset of transcription factors colocalizing with NIPBL. The
heatmaps reveal a strong correlation of PBX3, SP1, C-FOS, IRF3 and NFYA/B with NIPBL sites. I Heat maps showing the correlation of the factors in (H)
to NFYB sites at GpG island promoters (sites at CpG island promoters ranked according to strength with the strongest signals at the bottom). The
strongest correlation with the other factors is visible for the strongest NFYB peaks.
doi:10.1371/journal.pgen.1004153.g003

Figure 4. NIPBL is important to maintain gene activity. Transcript levels of genes with NIPBL-bound promoters and no cohesin sites close to
the gene (GLCCI1, BBX, TSPAN31, ARTS-1 and ZNF695) and the cohesin-regulated MYC gene were analyzed by RT-PCR/qPCR after RNAi depletion of
NIPBL, MAU2 or SMC3 in HB2 cells. The cells were synchronized in G2 phase and the transcript levels are normalized against the housekeeping gene
NAD. Transcripts of NIPBL, MAU2 and SMC3 were also analyzed to exclude that NIPBL affects transcription of MAU2 and SMC3 and vice versa. All three
genes serve also as negative control genes without NIPBL binding site at the promoter, although MAU2 and SMC3 have intronic cohesin binding
sites. P-values were determined using Students test using between 3 and 9 independent biological replicates. The p-value and number of replicates is
indicated for each graph. Values that are significantly different (P-value,0.05) from control RNAi are highlighted in red. (error bars 6 s.d.).
doi:10.1371/journal.pgen.1004153.g004

NIPBL as Novel Transcription Co-factor

PLOS Genetics | www.plosgenetics.org 7 February 2014 | Volume 10 | Issue 2 | e1004153



LCL’s. This is explained by the rather small differences of NIPBL

protein levels between CdLS patients and controls [22] due to

increased transcription from the intact allele. The ChIP-sequencing

method is not quantitative and therefore small changes of NIPBL

levels might not be reflected by peak intensity. To address this we

performed NIPBL ChIP-qPCR from four control cell lines and four

CdLS patient cell lines with primers for seven NIPBL binding sites

and one cohesin binding site (negative control). QPCR revealed a

reduction of the NIPBL signal between the control and patient-

derived cell lines (Fig. 5D; Suppl. Fig. S6), but also variations among

individual control- and patient-derived cell lines. In general, strong

NIPBL binding sites (OSBP, GPR108) seem to be more reduced than

weaker binding sites.

The position of NIPBL at promoters could be important for the

emergence of the developmental defects seen in CdLS cases.

Therefore we compared NIPBL binding sites with a list of genes

Figure 5. Position of NIPBL sites is conserved but the occupancy is reduced in CdLS. A NIPBL ChIP-sequencing data of a region of
chromosome 19 showing that NIPBL sites are conserved between CdLS patient cells and the control (M – Megabases). B CdLS patient and control cell
lines used in this study. The cell lines highlighted were used for ChIP-sequencing. The tables were derived from [18]. Nucleotide numbering refers to
the NIPBL B isoform cDNA sequence with GeneBank accession number NM_015384 and starting at the +1 position of the translation initiation codon.
C Venn diagrams indicating the number of NIPBL binding sites observed in the different LCL’s and also the sites consistently called in all three lines.
The majority of binding sites is conserved, although each cell line displays cell-line specific sites. D NIPBL binding is reduced in LCL’s derived from
CdLS patients. NIPBL ChIP was performed for four patient-derived cell lines and four age and gender-matched controls and qPCR analysis was
performed for seven NIPBL binding sites and one cohesin site. The enrichment compared to control IgG ChIP was calculated. The data for the
individual cell lines are displayed in Suppl. Fig. S6. Here we present the average relative enrichment for all control and patient-derived lines, p-values
derived with a Student test are indicated above the respective columns.
doi:10.1371/journal.pgen.1004153.g005
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found to be differentially expressed between LCL’s from CdLS

patients and controls [22]. We compared the list of 1501 unique

genes (FDR,0.05) found to be differentially expressed between

controls and CdLS patients [22] with our list of 1671 genes

neighbouring a NIPBL site (+/22 kb) in the patient-derived

LCL’s (PT1) and found that 155 (10%) of these genes are

differentially expressed (Table S7), a statistically significant

number when compared to a random list of genes (Fisher test,

p,0.001).

Discussion

In its best-studied function NIPBL promotes the initial

deposition of the cohesin complex onto chromatin, but is

dispensable for maintaining the subsequent association of cohesin

and chromatin. Rules that regulate the place and time of cohesin

loading and targeting to its various functions (sister chromatid

cohesion, transcriptional regulation, mediating long-range chro-

matin interactions and DNA damage repair) are only partly

understood. Factors interacting with chromatin-bound cohesin

such as the chromatin insulator CTCF [3,4,36] and to a smaller

extend estrogen receptor alpha (ERa) [37] determine the

localization of cohesin, but not its general chromatin binding

[3]. They might either direct NIPBL-dependent cohesin loading to

their binding sites or capture cohesin complexes that slide along

the DNA fibre.

First, we have addressed when cohesin, CTCF and NIPBL

associate with chromatin. So far, only very weak and probably

transient interactions have been reported between cohesin and

NIPBL in the non-chromatin-bound pool of nuclear proteins [38].

If these transient interactions are sufficient for NIPBL to bind

cohesin and recruit it onto chromatin, we would expect the

proteins to appear on chromatin at the same time after mitosis.

The same is true for CTCF. Analysis of cells exiting mitosis by

immunofluorescence staining showed that NIPBL, CTCF and

cohesin are largely excluded from metaphase chromosomes, as

seen before [3]. The signals of NIPBL and CTCF reappear on

DNA before the nuclear envelope reassembles; however, cohesin

overlaps with chromatin only during or after the nuclear envelope

reformation, reinforcing what was previously described by Gerlich

et al. [39]. NIPBL and CTCF are therefore already present when

cohesin starts to associate with chromatin. This is consistent with

cohesin being dispensable for CTCF localization [3]. NIPBL very

likely associates first with chromatin and then recruits’ cohesin

which is subsequently localized by CTCF to the co-occupied

binding sites.

Second, we determined the genomic localization of NIPBL by

ChIP using a NIPBL-specific antibody (NIPBL#1) form HB2 cells

enriched in G1 phase. We observed about 1100 highly enriched

NIPBL sites, mostly at active CpG-island promoters but also at

several LSU and SSU rRNA repeat regions. However, we do not

observe colocalization with cohesin or CTCF. Missing overlap

between NIPBL and cohesin was observed before. In yeast, non-

overlapping foci were observed for Scc2 (NIPBL ortholog in S.

cerevisiae) and Scc1 (RAD21 ortholog in S. cerevisiae) by immuno-

fluorescence microscopy on spread chromatin [40]. Further, a

ChIP-microarray study in budding and fission yeast observed a

transient overlap between cohesin and Scc2 in G1 phase cells and

a subsequent relocalization of cohesin to more permanent

positions between convergently transcribed genes [41]. Another

study in yeast confirmed this property of cohesin [42] while a third

study observed that colocalization of Scc2 with cohesin persists

also after cohesin loading [43]. In D. melanogaster the NIPBL

ortholog, Nipped-b, was found to colocalize with cohesin and

often overlap with RNA polymerase II, decorating entire active

transcriptional units [44]. Remarkably, cohesin does not colocalize

with CTCF in the fruit fly.

However, a study in mouse embryonic stem cells (mESC) used a

different NIPBL antibody (NIPBL#6) and reported that NIPBL

occupies enhancers and core promoter regions of transcriptionally

active genes which are also bound by cohesin and Mediator, a

huge transcriptional co-activator complex [13] (for review see

[45]).

Although we observe a similar localization of NIPBL, we did not

detect cohesin binding at NIPBL sites, even with relaxed

parameters for peak calling and using different ChIP protocols.

We have considered that the apparent discrepancies in the binding

patterns might arise due to the different ChIP protocols or

differences between pluripotent and differentiated cells, but have

disproved these hypotheses by ChIP-qPCR experiments using

both antibodies (Suppl. Fig. S5). Importantly, we do observe

significant differences between the performances of both antibod-

ies. Immunoprecipitation experiments showed that the NIPBL#1

antibodies recognize more bands originating from NIPBL than

NIPBL#6 antibodies (Suppl. Fig. S2). The NIPBL#1 antibodies

we use show a similar weak enrichment in ChIP-qPCR

experiments as observed for the NIPBL#6 antibodies in mESC

(Suppl. Fig. S5C). However, the NIPBL sites identified by our

study are highly enriched only by the NIPBL#1 antibodies, not by

NIPBL#6. We therefore conclude that the NIPBL#1 antibodies

very specifically recognize a number of ‘‘major’’ NIPBL binding

sites at active promoters where NIPBL localizes independently

from cohesin. The striking localization of NIPBL to promoter of

active genes suggested that NIPBL may have a direct role for the

transcription of the associated genes. We observe that the

transcript levels of several NIPBL-bound genes decrease after

RNAi depletion of NIPBL and MAU2. An effect on the transcripts

by impaired cohesin loading cannot be entirely excluded but we

observe that depletion of SMC3 does not have the same effect on

the transcripts. Therefore we hypothesize that NIPBL could have

a role as transcription factor, independent from its function for

cohesin. A differential effect of NIPBL and cohesin has already

been observed in the fly. Nipped-b facilitates activation of the cut

gene, but stromalin/Scc3, the fly orthologs of the SA1/SA2

cohesin subunit, inhibits its activation. A recent study in zebrafish

using morpholino knockdown observed a reduced transcription of

several genes, including the transcription factors sox17, foxa2 and

sox32, after NIPBL knockdown but not in smc3 and rad21

morphants [46].

We found that 11% of NIPBL-bound genes are transcription

factors according to Vaquerizas et al. 2009 [34]. A number of

them are very important during development and can also be

found on the list of genes differentially expressed in CdLS, for

example STAT3 and YBX1 (Table S7). Studies using mouse

models show that the absence of some of these factors (STAT3,

YBX1) leads to severe developmental defects and embryonic

lethality [47–49]. NIPBL deficiency could therefore interfere with

the proper timing and expression of transcription factors during

development.

The observation that NIPBL might be important for gene

expression lead us to ask whether NIPBL haploinsufficiency in

CdLS can be linked to transcriptional changes observed in these

patients. We have determined NIPBL sites in unsynchronized

LCL’s derived from CdLS patients with NIPBL haploinsufficiency

and normal controls. These binding sites are again mostly located

at CpG island promoters, not overlapping cohesin or CTCF. The

sites are in part conserved between different tissues, indicating that

there are constitutive and cell-type specific sites. The positions of
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the NIPBL binding sites are conserved between the LCL’s from

patients and controls, but the actual levels of NIPBL binding are

reduced in patients with a hypomorphic NIPBL truncation. To

link NIPBL sites to differential gene expression we compared

NIPBL-bound genes identified in a patient cell line (PT1) with

candidate CdLS target genes identified by Liu et al. [18] and

observed that a significant percentage (11%, Fischer test p,0.001)

of these genes have a NIPBL binding site. When we asked whether

NIPBL RNAi affects gene expression (Fig. 4) a subset of these

genes was tested and found to be sensitive for NIPBL knockdown.

This lead us to the conclusion that a part of the differentially

expressed genes in CdLS could be direct targets of NIPBL, and the

observed CdLS phenotype could be a cumulative effect of small

changes in the transcriptional program of a larger number of

genes.

Comparison of NIPBL sites in LCL’s with published binding

profiles of transcription factors in the lymphoblastoid cell line

GM12878 revealed that NIPBL colocalizes with several transcrip-

tion factors (SP1, NFY, PBX3, c-FOS, IRF3). Pbx3 belongs to the

Pbx family of TALE (three amino acid loop extension) class of

homeodomain transcription factors, which are implicated in

developmental and transcriptional gene regulation in numerous

cell types. Pbx3-deficient mice die after birth due to neuronal

malfunctions [50]. The factor is important for facial development

in mice [51] together with Pbx1 and Pbx2, and a human Pbx3

mutation was linked to heart defects [52]. IRF3 (interferon

regulatory factor 3) is an IRF family transcription factor which

translocates from the cytoplasm to the nucleus upon activation,

where it acts together with CBP/p300 to activate transcription of

interferons alpha and beta, as well as other interferon-induced

genes (for review see [53]). C-FOS is part of the AP-1 (activator

protein 1) transcription factor complex, which also contains the

JUN, ATF and MAF proteins. The complex regulates genes

involved in cell proliferation, differentiation, apoptosis, angiogen-

esis and tumour invasion and can have oncogenic but also anti-

oncogenic properties depending on cell type or differentiation state

[54]. How these factors functionally interact with NIPBL remains

to be investigated.

In summary, in this study we have addressed when and where

NIPBL binds to the human genome. We have discovered that a

subset of very strong ‘‘major’’ NIPBL binding sites preferentially

localizes to active promoters, together with a specific set of other

transcription factors. NIPBL is important for the activity of the

bound genes, suggesting that NIPBL influences transcription in

two ways; directly due to its binding to the promoters and

indirectly by loading of cohesin complexes which then regulate

genes by chromatin insulation and chromosomal long-range

interactions. The possibility that NIPBL directly affects expression

suggests that NIPBL-deficiency also directly contributes to the

complex CdLS phenotype by altering the transcriptional program

of developmentally important genes.

Materials and Methods

Antibodies
If different antibodies for the same protein were used the

antibodies were numbered to clearly identify them in the different

experiments.

NIPBL#1 - polyclonal rabbit anti-NIPBL antibody raised

against residues 2598–2825 of the X. laevis Scc2-1B, purified using

the epitope used for immunization (133M).

NIPBL#2 – polyclonal rabbit anti-NIPBL antibody raised

against residues 787–1164 of X. laevis Scc-1B, purified using

the epitope used for immunization (114M). Generation and

characterisation of the NIPBL #1 and NIPBL #2 antibodies have

been published already [38].

NIPPBL#3 – monoclonal rat anti-NIPBL, isoform A (long

isoform) NP_597677 (Absea, China, 010702F01 clone KT54)

NIPPBL#4 – monoclonal rat anti-NIPBL, isoform B (short

isoform) NP_056199 (Absea, China, 010516H10 clone KT55)

NIPPBL#5 - polyclonal rabbit anti-NIPBL antibody raised

against a region between amino acid residues 550 and 600 of

human NIPBL (Bethyl Laboratories A301-778A)

NIPPBL#6 - polyclonal rabbit anti-NIPBL antibody raised

against a region between amino acid residues 1025 and 1075 of

human NIPBL (Bethyl Laboratories A301-779A)

CTCF#1 –monoclonal mouse anti-CTCF (BD 612149)

CTCF#2 – polyclonal rabbit anti-CTCF antiserum (Millipore

07-729)

SA2 – monoclonal rat anti-SA2(STAG2) antibody (Frank

Sleutels and Niels Galjart)

SMC1A#1 - polyclonal rabbit anti-SMC3 antibodies (Bethyl

Laboratories A300-055A)

SMC3 – polyclonal rabbit anti-SMC3 antibodies obtained from

Jan-Michael Peters, described for immunoprecipitation and ChIP

in [55] and [3].

MAU2 – polyclonal rabbit anti-MAU2(Scc4), described in [38].

RNA Pol II – polyclonal rabbit antibody (N-20) (Santa Cruz sc-

899)

Tubulin – mouse anti-tubulin (Sigma)

Control IgG – rabbit whole serum

Rad21 – polyclonal rabbit anti-RAD21 (Jan-Michael Peters),

described in [29]

Cell culture
HeLa cells were cultured in DMEM supplemented with

0.2 mM L-glutamine, 100 units/ml penicillin, 100 mg/ml strep-

tomycin and 10% FCS.

HB2 cells (1-7HB2, a clonal derivative of the human mammary

luminal epithelial cell line MTSV1-7, [25]) were cultured in

DMEM supplemented with 0.2 mM L-glutamine, 100 units/ml

penicillin, 100 mg/ml streptomycin, 10% FCS, 5 mg/ml hydro-

xycortisone and 10 mg/ml human insulin.

Lymphoblastoid cell lines derived from controls and Cornelia de

Lange syndrome patients (Fig. 5B) were obtained from Ian Krantz

(The Children’s Hospital of Philadelphia, Philadelphia, Pennsyl-

vania, United States of America) and cultured in RPMI medium

supplemented with 0.2 mM L-glutamine, 100 units per ml

penicillin, 100 mg per ml streptomycin, 20% FCS.

SMC-LAP and Lamin-LAP Hela cells were were cultured in

DMEM supplemented with 0.2 mM L-glutamine, 100 units/ml

penicillin, 100 mg/ml streptomycin and 10% FCS and 0.2 mg/ml

G418.

RNAi depletion
The following siRNA oligos purchased form AMBION were

used to deplete the respective proteins for ChIP-analysis and

analysis of transcription

GL2

sense CGUACGCGGAAUACUUCGAtt

antisense UCGAAGUAUUCCGCGUACGtt

NIPBL

sense GCAUCGGUAUCAAGUCCCAtt

antisense UGGGACUUGAUACCGAUGCtt

MAU2

sense GCAUCGGUAUCAAGUCCCAtt

antisense UGGGACUUGAUACCGAUGCtt

SMC3
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sense AUCGAUAAAGAGGAAGUUUtt

antisense AAACUUCCUCUUUAUCGAUtg

The following hairpin siRNA constructs in the pLKO.1–puro

vector were obtained from the TRC Mission human library

(Sigma) and were used to deplete NIPBL demonstrate the

specificity of the NIPBL antibodies:

Control (clone SHC002) non-targeting sequence

NIPBL (clone TRCN0000129033) targeting sequence GCA-

GAGACAGAAGATGATGAA

The transfection of the siRNA oligos was performed with

Lipofectamine RNAiMAX (Invitrogen) according to the manu-

facturer’s instructions. The transfection of the hairpin siRNA

constructs was performed with Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s instructions. Cells were harvested

48 hours after transfection.

Immunofluorescence staining
HeLa cells were grown on 18-mm cover slips and fixed with 4%

PFA. After permeabelization with TX100 and blocking with 3%

BSA the slides were stained with the respective antibodies.

Images were taken on a Leica DMRBE microscope equipped

with a Hamatsu CCD (C4880) camera with a 1006 objective.

Images were processed with Image J, the colouring; overlay of the

images was done with Adobe Photoshop.

Cell cycle analysis
Cells were fixed with methanol and after RNAse treatment the

DNA was stained with propidium iodine. The cells were analyzed

with a BD FACS Aria Cell sorter and FlowJo software.

Primers
See Table S6.

Immunoprecipitation
To prepare nuclear extracts from HeLa cells the cells were first

lysed by gentle resuspension in hypotonic buffer (20 mM Hepes-

KOH pH 8.0, 5 mM KCl, 1.5 mM MgCl2, 0.1 mM DTT).

Nuclei were collected by centrifugation and extracted for 30 min

on ice with extraction buffer (15 mM Tris-HCl pH 7.5, 1 mM

EDTA, 0.4 M NaCl, 10% sucrose, 0.01%TX-100, 1 mM DTT

and 1 tablet Complete (Roche) per 50 ml buffer). Debris were

removed by centrifugation (14000 rpm, 30 min).

The nuclear extract was diluted to 50% with IP buffer (20 mM

Tris-HCl pH 7.5, 100 mM NaCl, 5 mM MgCl2, 0.2% NP40,

1 mM NaF, 0.5 mM DTT) and incubated for 1 h at 4uC with the

respective antibodies. Affi-Prep Protein A support beads (BioRad)

were added and incubated 1 h at 4uC. The beads were washed 3

times with IP buffer and eluted by boiling with SDS-page loading

buffer. Western blots were analyzed with ECL+ reagent and

Alliance imaging system.

Chromatin immunoprecipitation
Chromatin immunoprecipitation was performed as described

before [3]. In brief, cells at 70–80% confluence were crosslinked

with 1% formaldehyde for 10 min and quenched with 125 mM

glycine. After washing with PBS cells were resuspended in lysis

buffer (50 mM Tris-HCl pH 8.0, 1% SDS, 10 mM EDTA, 1 mM

PMSF and Complete protease inhibitor (Roche)) and chromatin

was sonicated (Diagenode Bioruptor) to around 500 bp DNA

fragments. Debris were removed by centrifugation, the lysate

diluted 1:4 with IP dilution buffer (20 mM Tris-HCl pH 8.0,

0.15 M NaCl, 2 mM EDTA, 1% TX-100, protease inhibitors)

and precleared with Affi-Prep Protein A support beads (BioRad).

The respective antibodies were incubated with the lysate for

14 h at 4uC, followed by 2 h incubation at 4uC with blocked

protein A Affiprep beads (Bio-Rad) (blocking solution: 0.1 mg/ml

BSA or 0.1 mg/ml fish skin gelatine). The beads were washed with

washing buffer I (20 mM Tris-HCl pH 8.0, 0.15 M NaCl, 2 mM

EDTA, 1% TX-100, 0.1% SDS, 1 mM PMSF), washing buffer II

(20 mM Tris-HCl pH 8.0, 0.5 M NaCl, 2 mM EDTA, 1% TX-

100, 0.1% SDS, 1 mM PMSF), washing buffer III (10 mM Tris-

HCl pH 8.0, 0.25 M LiCl, 1 mM EDTA, 0.5% NP-40, 0.5%

sodium desoxycholate) and TE-buffer (10 mM Tris-HCl pH 8.0,

1 mM EDTA). The beads were eluted twice (25 mM Tris-HCl

pH 7.5, 5 mM EDTA, 0.5% SDS) for 20 min at 65uC. The

eluates were treated with proteinase K and RNase for 1 h at 37uC

and decrosslinked 65uC over night. The samples were further

purified by phenol-chloroform extraction and ethanol-precipitat-

ed. The pellet was dissolved in 50 ml TE buffer.

This protocol was used to perform ChIP-qPCR or ChIP-

sequencing for CTCF, SMC3, NIPBL and RNA polymerase II.

For SMC1A a milder ChIP protocol from Duncan Odom’s group

was used [26].

For NIPBL ChIP sequencing HB2 cells were synchronized in

G1 phase by double thymidine block as described [8] (Suppl. Fig.

S3). All other preparations were done from unsynchronized cells.

For NIPBL ChIP after depletion of NIPBL or control by RNAi

the cells were synchronized in G1 phase by double thymidine

block, starting 6 hours after transfection of the siRNA oligos.

Details of the thymidine block to obtain HeLa cells in G1 phase

are described [3].

Samples were either submitted for genomic sequencing or

analyzed by qPCR using Platinium taq (Invitrogen) according to

the manufacturer’s instructions as described [3]. ChIP-qPCR

experiments at least three times and one representative example is

shown (SD was determined from qPCR replicates).

ChIP sequencing and peak detection
The ChIP DNA library was prepared according to the Illumina

protocol (www.illumina.com). Briefly, 10 ng of ChIPped DNA was

end-repaired, ligated to adapters, size selected on gel (200625 bp

range) and PCR amplified using Phusion polymerase as follow:

30 sec at 98uC, 18 cycles of (10 sec at 98uC, 30 sec at 65uC, 30 sec

at 72uC), 5 min at 72uC final extension. Cluster generation was

performed using the Illumina Cluster Reagents preparation. The

libraries for NIPBL, CTCF, SMC3, RNA PolII and the respective

controls generated from HB2 cells were sequenced on the Illumina

Genome Analyzer II, the SMC1A ChIP samples from HB2 cells,

the NIPBL ChIP samples from LCLs and the respective controls

were sequenced with the Illumina HiSeq2000 system. Read

lengths of 36 bases were obtained. Images were recorded and

analyzed by the Illumina Genome Analyzer Pipeline (GAP 1.6.0.

and 1.7.0.). The resulting sequences were mapped against

Human_UCSChg18 using the Bowtie [56] alignment software,

with the following parameters: bowtie -m 1 -S -k 1 –n 1. Unique

reads were selected for further analysis.

Peak calling for the ChIP sequencing data was performed with

SWEMBL (URL: http://www.ebi.ac.uk/,swilder/SWEMBL/)

as described [37] with the respective parameters described in

Table S1.

Co-localization read density profiles were done by extending a

region around each peak summit by +/2200 bp. Regions from

each data set were chosen in succession as viewpoints, and the

position of 59ends of the reads in corresponding regions in all data

sets was plotted. The profiles were ordered by the significance

score determined by the Swembl peak caller.
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Peak annotation. Complete Ensembl hg18 gene dataset was

downloaded on 13.04.2011. The genome was separated into 4

regions: promoter (+/21 kb from the TSS), upstream (25000

from the TSS), downstream (+5000 from the gene end) and gene

body. A region of +/2150 bp was extended around each peak

and overlapped with the genomic annotation.

Peaks were designated into one category based on the following

order of preference: promoterRgene bodyRupstreamRdown-

stream.

Repeat analyses
To investigate the repeat enrichment pattern, we used both

uniquely- and multiply-aligned reads. Multiply-aligned reads were

divided equally amongst all locations (N-times matched reads were

weighted as 1/N reads). The reads which were aligned to

reference genome more than 10 times were discarded. We applied

RPKM measure (reads per kilobase per million reads) which was

utilized for RNA-seq analyses [56], but we used ‘‘per 10 million

reads’’ instead of ‘‘per million reads’’. We counted the reads which

were aligned to each repeat class and normalized the counts

against the total number of aligned reads (whole-genome) and the

total length of each repeat class.

RNA sequencing
HB2 cells were enriched in G1 phase by double thymidine block

as described [8]. The RNA was isolated using TRI reagent (Sigma)

according to the supplier’s protocol. Two microgram of total RNA

was converted into a library of template molecules suitable for

sequencing according to the Illumina mRNA Sequencing sample

prep protocol. Briefly, polyA containing mRNA molecules were

purified using poly-T oligo attached magnetic beads. Following

purification, the mRNA is fragmented into ,200 bp fragments

using divalent cations under elevated temperature. The cleaved

RNA fragments are copied into first strand cDNA using reverse

transcriptase and random primers. This is followed by second

strand synthesis using DNA polymerase I and RNaseH treatment.

These cDNA fragments are end repaired, a single A base is added

and Illumina adaptors are ligated. The products are purified and

size selected on gel and enriched by PCR. The PCR products are

purified by Qiaquick PCR purification and used for cluster

generation according to the Illumina cluster generation protocols

(www.illumina.com). The sample was sequenced for 36 bp and

raw data was processed using Narwhal [57].

RNA sequencing analysis
RNA Seq reads were mapped to the Human UCSChg18

genome with Bowtie using the same parameters as for the ChIP

seq analysis. The coverage vector was calculated from unique

reads and the expression value was determined for each gene by

taking the RPKM [58] of the most highly expressed isoform (the

sum of coverage over exons was used as the numerator of the

equation). All genes with RPKM.0.6 were designated as

expressed.

Motif analysis
Motif analysis was performed with the tools MEME and

MEME-ChIP [33]. Residues +/250 bp of NIPBL binding site

peaks were retrieved and submitted to MEME-ChIP using

standard parameters.

To analyse whether the presence of the NFYA motif at NIPBL

sites is due to the presence of CpG islands or is a genuine property

of NIPBL binding we selected NIPBL binding sites close to only

one CpG island promoter (692 sites) and selected the same

number of CpG island promoters at random. The presence of the

NFYA motif was detected and the counts statistically analyzed

using a Fischer-test.

Identification of colocalizing transcription factors
We obtained from ENCODE [32] ChIP-sequencing data tracks

for transcription factors generated from GM12878 cells and

deposited by the Myers lab (HudsonAlpha Institute for Biotech-

nology) and the Snyder lab (Yale University). When called peaks

were available they were used, else replicates were pooled and

peak calling performed with MACS [58]. Peaks were sorted for

intensity and for the 10000, 5000 and 1000 (in case of NIPBL)

strongest peaks heatmaps were generated centred on NIPBL

binding sites conserved in the different lymphoblastoid cell lines

and also centred on the peaks of the respective transcription

factors. Overlapping patterns were selected by visual inspection of

the maps.

Myers lab (Haib). ATF2, ATF3, BATF, BCL1, BCL3,

BCLAF, BHLH, BRCA1, CFOS, CHD2, CTCF, EBF1, EGR1,

ELF1, ETS1, FOXM1, GABP, GCN5, IRF3, IRF4, JUND,

MAX, MEF2, MTA3, MXI1, NFATC1, NFE2, NFIC, NFYA,

NFYB, NRF1, NRSF, p300, PAX5, PBX3, PML, Pol2, Pol3,

POU2, PU.1, RAD21, RFX, RUNX3, RXLCH, RXRA, SIX5,

SMC3, SP1, SPT, SRF, STAT1, STAT3, STAT5, TBP, TCF1,

TCF3, TR4, USF1, USF2, WHIP, YY1, ZBTB3, ZEB1, ZNF143,

ZNF274, ZZZ3

Snyder lab (SYDH). BHLH, BRCA1, CFOS, CHD2,

CTCF, EBF1, GCN5, IRF3, JUND, MAX, MXI1, NFE2,

NFYA, NFYB, NRF1, p300, RAD21, RFX, SMC3, SPT,

STAT1, STAT3, TBP, TR4, USF2, WHIP, YY1, ZNF143,

ZNF274, ZZZ3

Transcript analysis
HB2 cells were transfected with the respective siRNA oligos using

Lipofectamine 2000 and were harvested after 48 hours. The RNA

was prepared using TRI reagent (Sigma). Remaining DNA was

removed by DNAse treatment and cDNA synthesis was performed

with Superscript reverse Transcriptase (Invitrogen) using oligo-dT

primers. The qPCR analysis was performed as described [3].

Ethics statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The study was approved by the

Institutional Review Board of The Children’s Hospital of

Philadelphia. All patients provided written informed consent for

the collection of samples and subsequent analysis.

Supporting Information

Figure S1 Cohesin loading occurs after nuclear envelop

reformation. (A) To test and visualize the specificity of the

antibodies used for the immunostaining experiments HeLa cells

were treated with the respective siRNA for NIPBL, RAD21 and

CTCF and then seeded on cover slips in a mix with control

siRNA-treated cells to visualize the effect of the RNAi depletion

next to the control cells. The slides were stained with anti-NIPBL

#4, anti-RAD21 and anti-CTCF and for each secondary antibody

a control slide without primary antibody was included. The

undepleted cells are marked with white arrows in the antibody-

stained slides. (B, C) LaminA-LAP expressing HeLa cells (EGFP,

green) were stained with antibodies against (panel B) SA2/STAG2

(red) and (panel C) NIPBL (red). Images were taken from

interphase cells (I) and different stages during the exit from mitosis

(anaphase (A), late anaphase (LA), telophase (T) and early G1
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phase (EG1). In panel B the cohesin signal can only be observed

overlapping with chromatin when a nuclear envelop is visible

(white arrows in telophase and early G1 phase cells). In contrast

the NIPBL signal in panel C appears on chromatin already before

a nuclear envelop is visible (white arrows in late anaphase cells).

(PDF)

Figure S2 Characterization of NIPBL antibodies. We first

characterized different antibodies raised against NIPBL, a

320 kDa protein that is difficult to detect by immunoblotting

and immunofluorescense staining. For detection by western

blotting we used two rat monoclonal antibodies against the two

major isoforms of NIPBL, Isoform A (NP_597677, NIPBL#3) and

Isoform B (NP_056199, NIPBL#4). The isoforms are splice

variants of the last exon, residues 1–2683 are identical but isoform

A contains 121 and isoform B 14 unique C-terminal residues. (A)

Western blot showing that the band recognized by NIPBL#4 can

be depleted by NIPBL-specific siRNA in unsynchronized HeLa

cells while it remains well visible in two control siRNA

transfections. (B) Immunoprecipitations with the rabbit anti-

NIPBL antibodies NIPBL#1 and NIPBL#6 antibodies and

anti-SMC3 antibodies were performed from nuclear extract of

G1-phase enriched HeLa cells. Two identical western blots were

generated which were probed with rat monoclonal antibodies

against the two isoforms of NIPBL (NIPBL#3 for isoform A and

NIPBL#4 for isoform B) and one re-probed with anti-SMC1

(rabbit) after quenching of the rat antibody signal. Both isoform-

specific antibodies detected one major (.250 kDa) and minor

NIPBL bands in the G1-phase nuclear extracts (input lane).

Multiple bands for NIPBL could occur due to posttranslational

modifications of NIPBL. Significant difference between NIPBL#1

and #6 are visible in the immunoprecipitates. NIPBL#1, used by

us for ChIP-seq, immunoprecipitates all bands, while NIPBL#6,

used by Kagey et al. [13] for ChIP-seq from mouse ES cells,

precipitates only the lower bands. We concluded that the

NIPBL#1 antibody recognizes a wider spectrum of NIPBL

(posttranslationally modified) forms. Interestingly, the antibody

against the cohesin subunit (SMC3) did not precipitate any of the

NIPBL isoforms (Fig. 1C), consistent with previous observations of

very weak interactions between NIPBL and cohesin [38].

(PDF)

Figure S3 Determination of cell cycle stages by FACS analysis.

(A) HB2 cells growing logarithmically or enriched in G1 phase for

NIPBL ChIP were fixed with methanol, stained for the DNA

content with propidium iodine and analyzed by FACS. (B) HB2

cells treated with different siRNA’s were enriched in G2 phase.

Cells were fixed with methanol, stained for the DNA content with

propidium iodine and analyzed by FACS.

(PDF)

Figure S4 Specificity of the NIPBL antibody used for ChIP-

sequencing. (A) Genomic binding of NIPBL in a selected region on

chromosome 19 in comparison between HB2 cells and HeLa cells.

Both cell lines were enriched in G1 phase for the ChIP-sequencing

experiment. The position of the peaks is similar between HB2 and

HeLa cells, although the enrichment in HeLa was much weaker.

As controls the sequencing data from the respective input

materials are shown. (B) Western blot showing the depletion of

NIPBL in HeLa cells. Since MAU2 is also destabilized when

NIPBL is depleted it can be used as marker for NIPBL depletion

[38], which is rather difficult to blot. The band indicated with * is

an unspecific signal of the MAU2 antibodies and can be used as

loading control. (C) NIPBL and control ChIP was performed from

HeLa cells treated with NIPBL and control siRNA. QPCR

analysis with primers specific for several NIPBL binding sites

identified in HB2 cells shows that NIPBL RNAi dramatically

reduces the NIPBL ChIP signal. The experiment was performed

three times and one representative example is shown. (D) HeLa

cells were treated with control and NIPBL RNAi and stained with

different antibodies against NIPBL (green – NIPBL#1, rabbit

polyclonal; red - NIPBL#3, rat monoclonal) and with DAPI to

visualize DNA. Both antibodies show similar reduction of the

signal after NIPBL RNAi, indicating that both recognize the same

target protein. The images we selected to show also cells not

targeted by the siRNA to visualize the efficiency of the depletion.

(PDF)

Figure S5 Localization of NIPBL to repeats and comparison of

the NIPBL#1 and NIPBL#6 antibodies in mouse ES cells. (A)

ChIP/q-PCR validation of NIPBL-binding sites on repetitive

regions in HB2 cells. The experiment was performed in duplicate

and both samples are shown. Five primers for LSU repeats (LSU)

and three for SSU repeats (SSU) and one negative control region

(AMY) were analysed. (B, C) To compare both anti-NIPBL

antibodies we performed ChIP from mouse ES cells using the

protocol by Kagey et al. (upper panel) (B) and our protocol (C). We

tested several NIPBL sites at promoters that were identified by

Kagey et al. (Nanog, Lefty1, Oct4) and by our study (Tiam1, Ankhd1,

Sp1; initially identified in HB2 cells but found to be it conserved in

mouse ES cells). The left panel in (C) shows the full plot and the

right panel a zoom-in on the %IP of input values up to 0.05%IP of

input to visualize the ChIP performance at the ‘‘minor’’ low

affinity binding sites identified by Kagey et al.(mean n= 2, 6 s.d.).

(D) Immunostaining of mouse ES cells derived from Nipbl +/2

embryos for ES cell markers. (E) ChIP with NIPBL#1 (left panel)

and #6 antibodies (right panel) from control (IB10) and NIPBL +/

2 mouse ES cells (S. Goldberg, F. Grosveld unpublished data)

shows reduced Nipbl binding levels in Nipbl NIPBL +/2 cells

detected by both antibodies. (mean n= 2, 6 s.d.). (F) To compare

the ChIP efficiency of the NIPBL#6 antibodies with NIPBL#1 in

human cells we performed ChIP with NIPBL #6 from HB2 cells

(right panel) and compared it with the ChIP example also showed

in figure 2 E (left panel). (mean n= 2, 6 s.d.)

(PDF)

Figure S6 NIPBL-binding is reduced in LCL cells derived from

CdLS patients. NIPBL (NIPBL#1) and negative control ChIP

(IgG) was performed from lymphoblastoid cells derived from

CdLS patients and age-matched controls and analyzed by qPCR

with primers specific for seven NIPBL binding sites, one cohesin

binding site and a negative control site (AMY). The sites analysed

are indicated above the graph. The enrichment compared to the

control IgG ChIP was calculated. The experiment was performed

more than three times and a representative example is shown.

(PDF)

Table S1 Parameters used for peak calling with SWEMBL.

(PDF)

Table S2 Peaks identified with SWEMBL in the different

datasets.

(PDF)

Table S3 Position of the binding sites identified for the different

proteins relative to genes. Around each gene four regions were

considered to cluster the binding sites; upstream – 25000 to 2

1000 bp from the transcription start site (TSS); promoter – 21000

to +1000 bp from TSS; gene body – +1000 bp from TSS until the

end of the coding sequence; downstream – from the end of the

coding sequence to +5000 bp. Gene activity was scored based on

RPKM and genes with RPKM.0.6 were considered as expressed.

(PDF)
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Table S4 Classification of promoters and expression status of

genes bound by NIPBL, cohesin (SMC1A and SMC3), RNA Pol

II and CTCF. The region 21000 to + 1000 bp from TSS was

considered as promoter region.

(PDF)

Table S5 Functional annotation of genes with NIPBL binding

sites in HB2 cells by IPA analysis.

(PDF)

Table S6 Primers used for ChIP/qPCR and RT-PCR/qPCR.

(PDF)

Table S7 Genes with NIPBL binding sites in a patient-derived

lymphoblastoid cells (PT1) found to be differentially expressed in

CdLS patients with FDR,0.05 by Liu et al., 2009 (18).

(PDF)

Table S8 NIPBL ChIP signals in HB2 cells on different repeat

classes. RPKM measure (reads per kilobase per 10 million reads)

was calculated similar to the RNA-seq analyses (56) and an

enrichment compared to the input material (control) was calculated.

(PDF)
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