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Abstract  

The nonlinear behavior of fractured quasi-brittle materials is conventionally modeled with a fictitious crack model, 

which relates stresses on the crack surfaces to the corresponding crack widths. Its definition for fiber reinforced con-

crete is only possible by introducing a cohesive model for the matrix, and by modeling the pullout of randomly oriented 

fibers. To this aim, a new cohesive interface model, able to predict effectively the pullout response of inclined fiber, is 

presented in this paper. Based on the nonlinear behavior of steel fibers and cementitious matrixes, the proposed ap-

proach also takes into account the bond-slip relationship between the materials. By means of an iterative procedure, 

numerical results similar to experimental data can be obtained. In particular, maximum pullout forces at given inclina-

tion angles, as well as the complete pullout load vs. displacement diagrams, can be correctly predicted. Moreover, ac-

cording to test results, the proposed approach shows, from the first pullout stage, the dependence of the response both 

on crushing of cementitious matrix and on yield strength of steel fibers. 
 

 

1. Introduction 

Fracture energy of Fiber Reinforced Cementitious Com-

posites (FRC) can be higher than that released by tradi-

tional cement-based concretes. Practically, in the cohe-

sive relationship, at a given crack width, higher tensile 

stresses can be detected on the crack surfaces of FRC, 

because of the bridging effect produced by fibers. To 

better define this phenomenon, the pullout response of a 

single fiber in a cementitious matrix needs to be investi-

gated (Hillerborg, 1980).  

Pullout involves fibers inclined with respect to crack 

surfaces, as they are randomly positioned within the 

matrix. This has been investigated both theoretically and 

experimentally (see e.g., Shah et al., 2004). In a huge 

number of tests, fibers made of different materials and 

shapes have been pulled out from cement-based or plas-

tic specimens. For the sake of simplicity, only pullout of 

straight steel fibers in a cementitious matrix is consid-

ered in the present paper.  

In the first tests by Naaman and Shah (1976), the 

maximum pullout load of inclined fibers appeared 

higher than that measured in specimens with aligned 

fibers (fibers direction orthogonal to crack surfaces). 

Moreover, if the pullout diagram (that is, load P vs. dis-

placement w ) of an aligned fiber ends approximately 

with zero loads, in case of inclined fibers a significant 

load persists up to the complete slippage. In other words, 

due to the nonlinear behavior of materials, the area un-

der a P - w curve, usually called pullout work, generally 

increases with fiber inclination. For these reasons, ac-

cording to the results of Leung and Shapiro (1999), in 

specimens having the same cementitious matrix, the 

yield strength of steel fibers plays a fundamental role on 

the crack-bridging efficiency. In fact, at the same incli-

nation angle, both the maximum load and the pullout 

work seem to increase with the yield strength of steel 

fibers (Leung and Shapiro, 1999).  

It must be remarked that bond properties and yield 

strengths are strictly connected to fiber production (e.g. 

hot rolled or cold drawn, see CEB, 1991). Thus, to 

model the pullout of inclined fibers, the bond-slip 

mechanism between fiber and matrix cannot be ne-

glected. This is also confirmed by the pullout tests con-

ducted on unbonded fibers (Kohno and Mihashi, 2005). 

Although their pullout work is nearly equal to zero 

when fibers are orthogonal to crack surfaces, significant 

values of the maximum load and of the pullout work can 

be equally observed in the case of inclined fibers. De-

pending on the way this mechanism is taken into con-

sideration, the models reported in the current literature 

can be classified into different groups (Shah and Ouy-

ang, 1991).  

Classical approaches assume that the condition of 

perfect bond persists till either stress or energy criterion 

is exceeded on the interface of fiber and matrix. In 

models founded on stress criterion, debonding begins 

and slip between fiber and matrix takes place after the 

maximum admissible value of bond stress is reached 

(Stang et al., 1990). Constant bond stresses are assumed 

to be present in the debonded zone (pure frictional 

model), while in the remaining part of the fiber the con-

dition of perfect bond (zero slips) is assumed. Several 

pullout models have been founded on this criterion, like 

the analytical solution proposed by Morton and Groves 

(1974), and the most recent numerical approach intro-
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duced by Katz and Li (1995). In addition to the debond-

ing phenomenon, the last model is able to take into ac-

count the stiffness contribution of the fiber portion 

which protrudes from the matrix (assumed to be in the 

linear elastic regime), while the embedded part of fiber 

interacts with the matrix similar to a beam on elastic 

foundation (Leung and Li, 1992). 

Very few models have been based on the energy crite-

rion. In this case, only when the energy release rate of 

debonding reaches its critical value, does slip between 

materials begin (Shah and Ouyang, 1991). Because of 

difficulties in measuring the critical interface debonding 

energy, these approaches cannot be applied to real cases, 

with the exception of the model proposed by Brandt 

(1985) to define the optimal inclination angle.  

Besides stress and energy criteria, the pullout of in-

clined fibers can be investigated by means of the so-

called cohesive interface models, in which bond stresses 

are only due to slip between steel and cement-based 

matrix (Shah and Ouyang, 1991). Such models, as well 

as the tension stiffening investigation of reinforced con-

crete structures, consist of the classical equilibrium and 

compatibility equations (Fantilli et al., 1998). Cohesive 

interface models are seldom used in the case of fiber 

pullout, because bond properties of fiber and matrix 

cannot be generalized, but have to be measured in each 

single case (Shah and Ouyang, 1991). Moreover, the 

mathematical solution of the problem does not generally 

carry out analytical formulae, and therefore numerical 

iterative procedures are needed. This has been done by 

Fantilli and Vallini (2003a) to model the complete pull-

out response of aligned steel fibers in cementitious ma-

trixes. Such a model, based on the definition of a suit-

able bond-slip relationship (Fantilli and Vallini, 2003b), 

is here extended to the analysis of fibers inclined with 

respect to crack surfaces.  

 

2. Equilibrium and compatibility equations 
of a cohesive interface model  

The bridging action of a fiber, initially inclined of α 

respect to the crack surfaces of a cementitious matrix, is 

shown in Fig. 1. The crack width 2w is produced by a 

horizontal displacement (w = pullout displacement) im-

posed to the whole composite (Fig. 1b). The final posi-

tion of the fiber is illustrated in Fig. 1c, where, due to 

symmetry, only half fiber is shown.  

When w > 0, the points named A, A’ and A”, which 

coincide for w = 0, will be separated as a consequence 

of a slip s between fiber and matrix, and of matrix 

spalling failure that affects the length d (measured on 

the original position of the fiber). According to Leung 

and Li (1992), the pullout load P, which has to be ap-

plied in order to produce the displacement w, can be 

computed by splitting the fiber into two parts (Fig. 1c): 

the block delimited by the points A” and B” (named 

block A”-B”), which protrudes from the matrix, and the 

block delimited by the points B” and C’(named block 

B”-C’), which is embedded in the matrix. C and C’ are 

the position of fiber’s end before and after the applica-

tion of w, respectively. 

 

Fig. 1 Pullout of an inclined fiber: a) undeformed state (w = 0); b) deformed state (w ≠ 0); c) position of the fiber at a given 

displacement w (or load P ). 
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2.1 The block A”-B” 
The initial position of the fiber, defined in Fig. 1c by the 

points A and B and by the angle  α, changes in conse-

quence of the displacement w. The new position, de-

fined by the point A” and B” in Fig. 2, is univocally 

defined by the kinematical variables α, d, and w, and by 

the effects of matrix deformation (i.e. the rotation 

θB and the displacement ηB of the point B”). Therefore, 

the real length l0 of the block A”-B” and the complete 

rotation δ of the fiber can be respectively computed 

with the following equations:  

( ) ( )22
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where π = 3.1426. The angle δ can be considered as the 

sum of three different rotations:  

tiB θθθδ ++=  (3) 

where θt = rotation produced by shear actions; 

θi = rotation produced by bending moment. Both elastic 

and plastic components (named θe and θp ) have to be 

included in the last rotation: 

pei θθθ +=  (4) 

When all these contributions are known, the apparent 

length lt of the block A”-B” (Fig. 2) and the slip s are 

obtained as follows: 
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The apparent length reduction Δz , which appears in 

the Eq. (5), is a function of the deflection ηi(z) of the 

fiber. If a sinusoidal function is assumed for ηi(z), the 

apparent shortening has the following form: 
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where lz = l0 cos θi = z component of l0 (Fig. 2); ly = l0 

sin θi = maximum deflection of the fiber (y component 

of l0).  

The static conditions of the block A”-B” is depicted 

in Fig. 3a. Due to symmetry, the bending moment MA=0, 

while both shear and normal forces, defined respectively 

in the y and z directions, are constant in each cross-

section of the fiber (TA=TB and NA=NB ). Therefore, by 

considering second order effects, the bending moment at 

the point B” results:  

iAiAB lNlTM θθ sincos 00 −=  (8) 

Under the hypothesis of linear elastic behavior, the 

rotations θt and θe of the fiber can be written as func-

tions of TB and MB, respectively: 

 
Fig. 2 The block of the fiber delimited by the points A” and B” (named block A”-B”).  
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where, ft = dimensionless shear constant (for a circular 

cross-section ft = 32/27); Gf = shear modulus of the fi-

ber; Ef = Young’s modulus of the fiber; Af =  area of the 

fiber cross-section; Jf = moment of inertia of the fiber 

cross-section. 

In the block A”-B” of length lz = n Φ ( Φ = diameter 

of the fiber cross-section; n = integer number), it can be 

of practical interest to evaluate the ratio qT between 

shear and flexural rotations:  

n
q

e

t
T

Φ
== 402.0

θ
θ

 (11) 

From Eq.(11) it is possible to observe the necessity of 

taking into account the shear contribution to rotation in 

case of narrow crack widths (that is lz < 10 Φ). 

 

2.2 The block B”-C’ 
For the embedded part of the fiber, modeled as a beam 

on elastic foundation (Leung and Li, 1992), it is possi-

ble to introduce a relationship between the kinematical 

variables (θB and ηB) and the static actions (TB and MB): 
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where the coefficients dij of the deformability matrix 

(that is, the inverse of the stiffness matrix) have to be 

evaluated as functions of the matrix foundation stiffness 

K. If the Young’s modulus Em and the Poisson’s ratio νm 

of the matrix are known, K is given by (see Fig. 3c and 

Appendix 2):  

( )
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According to the classical books on foundations 

(Hetenyi, 1946; Bowles, 1988), the differential equation 

for the deflection curve of a beam supported on an elas-

tic foundation is based on the factor β, whose inverse is 

usually called characteristic length. In the present case, 

it connects the flexural stiffness of the fiber ( Ef Jf ) and 

the matrix foundation stiffness previously computed:  
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If the length of the considered block lBC = li - d-

 s ≥ π/β (Fig. 3b), the embedded part of the fiber can be 

considered as a long beam and therefore the coefficients 

dij of Eq. (12) are those of a semi-infinite beam with 

free end (Hetenyi, 1946; Bowles, 1988): 
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On the contrary, if lBC ≤ 0.25 π/β , the supported part 

of the fiber can be considered absolutely rigid (like a 

short beam), thus dij can be determined by simple static 

considerations:  

BClK
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4
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12
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When the block B”-C’ is of medium length, 

0.25 π/β < lBC ≤ π/β , the coefficients dij of Eq. (12) are 

computed by means of a linear interpolation of Eq. (15) 

and Eq. (16).  

The axial load NB in the cross-section B” of the fiber 

can be considered as a function of the bond load Nbs and 

of the actions TB and MB : 

 

Fig. 3 Free body diagrams of the inclined fiber: a) ac-

tions in the block A”-B”; b) actions in the block B”-C’; c) 

stress-diffusion in the section F-F. 
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BTBMbsB TKMKNN ++=  (17) 

where the coefficients KT and KM are computed with the 

hypotheses that the embedded part of the fiber lies on an 

elastic matrix foundation and by assuming a suitable 

friction coefficient γ between materials. If lBC ≥ π/β (Fig. 

3b), the coefficients KT and KM are respectively 

(Hetenyi, 1946; Bowles, 1988): 
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In the case of short beam ( lBC ≤ 0.1 π/β) the previous 

coefficients can be written as: 
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For medium lengths, 0.25 π/β < lBC ≤ π/β , the coeffi-

cients KT and KM are computed by means of a linear 

interpolation of Eqs. (18) and Eqs. (19).  

Since the bond force Nbs is a function of the slip 

sfm(ζ) between fiber and matrix within the block B”-C’ 

(Fig. 3b), it can be obtained by solving the classical 

tension-stiffening problem, which consists of the fol-

lowing system of equilibrium and compatibility equa-

tions (Fantilli and Vallini, 2003a): 
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where εf = axial strain in the fiber; σf = axial stress in 

the fiber; and τ(ζ) = bond stresses at fiber-matrix inter-

face. To solve Eqs. (20), the boundary conditions 

[N(ζ=0) = Nbs and N(ζ = lBC) = 0] and a suitable bond-

slip relationship τ(s) have to be introduced. In this way, 

all the possible bond mechanisms (e.g., slip softening or 

slip hardening) are taken into account in the computa-

tion of normal force Nbs. Thus, according to Shah and 

Ouyang (1991), the proposed approach can be classified 

in the family of cohesive interface models.  

When Nbs is known, Eq. (17) can be inserted into 

Eq. (8) (NA = NB and TA = TB ), in order to obtain a new 

equation for the shear force TB : 
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3. A possible solution of the problem 

From the equations written in the previous section, the 

complete pullout diagrams (load P vs. displacement w ) 

can be theoretically defined and compared with those 

measured experimentally. This is possible after defining 

the constitutive relationships of materials, their interac-

tion [that is, τ(s) function], and by introducing a nu-

merical procedure for the solution of the problem.  

 

3.1 The bond-slip relationship and the friction 
coefficient between fiber and matrix  
For smooth steel fibers in a cementitious matrix, the 

model proposed by Fantilli and Vallini (2003b) can be 

adopted. It consists of an improvement and an extension 

of the classical model proposed by Model Code 90 

(CEB, 1991) for smooth steel reinforcing bars. In par-

ticular, both for bars and fibers, the post peak softening 

is introduced in conjunction with the size effect pro-

duced by fiber diameter on bond strength. The ascend-

ing branch and the post-peak stage of the proposed 

bond-slip relationship (Fig. 4a) are respectively defined 

by the following equations: 
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where τmax = bond strength; s1 = slip at bond strength; 

τfin = asymptotic value of bond stress; k = coefficient. 

These parameters are defined in Fig. 4b as a function of 

bond conditions, of the type of smooth bar (hot rolled or 

cold drawn), and of the compressive strength fc of the 

matrix. 

The maximum bond stress is here considered as a 

function of the fiber diameter according to the Bazant’s 

size effect law (Bazant et al., 1995) for hot rolled bars 

and for cold drawn wires, respectively: 
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where τmax and fc are measured in MPa, while Φ is 

measured in mm. 

The bond-slip relationship previously defined cannot 

be used for all kind of fibers. Nevertheless, if a new τ-s 

has to be defined for other types of fiber (hooked, 

twisted, etc.), the procedure proposed in Fantilli and 

Vallini (2003b) can be adopted. In particular, after defin-

ing the shape of the relationship, the possible variation 

of its parameters should be measured, at different scales, 

by means of pullout tests on aligned fibers. 

The cold or hot manufacturing of reinforcement steel 

produces not only different bond stresses between bars 
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(or fibers) and matrixes, but also different friction coef-

ficients γ . Since no experimental campaign has been 

devoted to evaluate all the possible values of such coef-

ficient, it must be considered as a free parameter, which 

can vary within the range 0.1÷0.3 in case of steel fibers 

in cementitious matrixes. 

 

3.2 The mechanical behavior of steel fibers 
The pullout tests by Leung and Shapiro (1999) clearly 

show the importance of yield strength fy of inclined steel 

fibers in a cementitious matrix. For this reason, it is 

necessary to take into account the nonlinear response of 

fibers, which is here included in the bilinear stress-strain 

σf-εf relationship depicted in Fig. 5a. In this diagram, 

the linear elastic branch is univocally defined by the 

Young’s modulus Ef , whereas the non linear stage, as-

sumed to be perfectly plastic, is only defined by the 

yield strength fy . 

Yielding of an inclined steel fiber is generally reached 

around point B” (Fig. 2), where fiber cross-section is 

contemporarily subjected to normal, shear and bending 

actions (NB , TB and MB , respectively). At this stage, the 

plastic rotation θp [Eq. (4)], which is zero during the 

elastic stage, can be increased indefinitely. The defini-

tions of the yield surface of a fiber, having a circular 

cross-section and subjected to NB , TB and MB ,  is there-

fore of primary importance. For instance, this is possible 

by means of Hodge’s approach (Chen and Han, 1988). 

However, in the case of a circular cross-section made of 

an elastic-plastic material (Fig. 5a), it provides a yield-

ing surface which can be adequately modelled by the 

following ellipsoidal equation: 
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where M0 , T0 and N0 are, respectively, the limiting yield 

values of bending moment, shear and normal forces of a 

circular cross-section (Chen and Han, 1988). If the val-

ues of NB , TB and MB  give λ > 1, yield conditions are 

violated, thus there must be an increase of θp until 

Eq. (24) gives λ = 1.  

 

3.3 The mechanical behavior of damaged ma-
trix 
Undamaged matrix generally behaves linearly. When 

failure conditions are reached, damage occurs and 

pieces of matrix are progressively broken away from the 

fiber. As Fig. 1c shows, the damaged zone progressively 

increases its length d with the increase of w. To be more 

precise, the position of point B” should be closer to the 

point C’, if the resultant of the applied loads exceed 

matrix strength. Referring to the beam on elastic foun-

dation depicted in Fig. 3b, the normal force Hy trans-

ferred by the fiber to the matrix is (Hetenyi, 1946; 

Bowles, 1988): 

( ) ( ) BBBBy TMdzTyKdzMyKH
24

/4

0

/8

0

ππβββ

+==+= ∫∫  (25) 

The resultant of applied loads can be obtained by 

combining Hy and the friction forces Hz of Eq. (17), 

which are supposed to be applied at point B” (Fig. 3b):  

BTBMz TKMKH +=  (26) 

If the linear Mohr-Coulomb failure criterion is as-

sumed for the cementitious matrix (Fig. 5b), the frac-

tured cone surface has its axis parallel to y under pure 

compression (Fig. 5c); whereas, in pure tension, the axis 

is parallel to z (Fig. 5d). In these cases, matrix resis-

tances are given respectively by:  

( )
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d
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2
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( ) ctz ftgdR
2

sin ψαπ=  (27b) 

Fig. 4 Bond properties of smooth steel fiber: a) the bond-slip relationship τ(s); b) parameters of τ(s) defined in the cases 

of cold drawn wires and hot rolled bars (Fantilli and Vallini, 2003b). 
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where fct = tensile strength of the matrix; ψ = angle de-

fined by principal directions in the linear Mohr-

Coulomb failure criterion (Fig. 5b). If a cementitious 

matrix is considered, then fct = 0.1 fc and ψ ≅ 72°. 

In the case of combined stresses, the following failure 

surface can be assumed for the matrix: 

y

y

z

z

R

H

R

H
+=λ  (28) 

Equation (28) needs to be introduced because of the 

biaxial state of stress that affects the cohesive response 

of the matrix. In particular, the post peak response in the 

y direction is affected, and reduced, by the stresses and 

the damage produced in the z direction, and vice versa. 

If the values of Hz and Hy give λ > 1, the failure condi-

tion of the matrix is violated, thus d must be increased 

until Eq. (28) provides λ ≤ 1. 

 

3.4 A numerical procedure to obtain the pullout 
diagram  
Due to nonlinear behavior of materials and to their mu-

tual interaction (i.e. the bond-slip relationship), the P-w 

diagram of a pullout test can be numerically obtained by 

solving the equations previously introduced, with the 

following iterative procedure: 

(1) Select a pullout displacement w ; 

(2) Assume trial values for the plastic rotation θp and 

for the damaged length d (for instance those com-

puted for the lower values of w); 

(3) Assume trial values for θB , ηB and for the coeffi-

cients dij (for instance those computed for the 

lower values of w); 

(4) Compute the actions MB and TB through Eq. (12);  

(5) Compute the final position of the fiber by evaluat-

ing l0 [Eq.(1)], δ [Eq.(2)], θt [Eq.(9)], θi [Eq.(3)], 

Δz [Eq.(7)], lt [Eq.(5)], s [Eq.(6)] and the embed-

ded length lBC = li - d- s ; 

(6) Compute the bond force Nbs by solving the ten-

sion-stiffening problem [Eqs.(20)];  

(7) Evaluate the coefficients dij [Eqs. (15)-(16)] and 

KM, KT [Eqs. (18)-(19)] in accordance with the last 

value of lBC ; 

(8) Compute new values for MB and TB  with Eq. (10) 

and Eq. (21), respectively; 

(9) If these values are different from those obtained at 

step 4, change θB and ηB and go back to step 4; 

(10) When the actions TB, MB and NB are known, a first 

value of λ can be computed by means of Eq. (22): 

if λ < 1, then θp = 0 and go to step 11; if λ > 1, 

then increase θp and go back to step 5; if λ = 1, 

then go to step 11; 

(11) Compute the actions Hy and Hz [Eqs.(25)-(26)] 

and the resistances Ry and Rz [Eqs.(27)]; 

(12) Compute a new value of λ with Eq. (28): if λ > 1 

then increase d and go back to step 5; if λ ≤ 1 then 

compute the value of pullout load P by means of 

the following equation (Fig. 3b):  

( ) ( )BBBB TNP θαθα +++= cossin  (29) 

By repeating this procedure for all the possible values 

of w, the whole P-w diagram can be evaluated.  

 

 
 

Fig. 5 Mechanical behavior of materials: a) stress-strain relationship for steel fibers; b) failure criterion adopted for the 

cementitious matrix; c) failure surface of matrix under compression; d) failure surface in tension. 
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4. Validation of the proposed approach  

To validate the effectiveness of the proposed cohesive 

interface model, pullout diagrams are compared with 

those experimentally measured for different inclination 

angles α. The tests performed by Leung and Shapiro 

(1999) on inclined fibers of different yield strengths is 

here taken into consideration. Fig. 6a shows the speci-

mens tested by the Authors. It consists of two blocks 

made of Plexiglas and cement mortar, respectively. Each 

fiber is initially locked to the Plexiglas block at three 

possible inclinations (α = 90°, α = 60° and α = 30°), 

then the mortar is cast in steel matching mold. During 

tests, the diagrams load P vs. displacement w (that is the 

distance between the two blocks) have been measured 

(Fig. 6b).  

From a total of five specimen groups tested by Leung 

and Shapiro (1999), only the four types reported in Ta-

ble 1 are here considered. In the same Table, the me-

chanical and geometrical properties, as well as the bond 

and friction properties of the specimens are summarized. 

Since the type of bond slip relationships and the values 

of friction angles γ are not reported in the original paper, 

they have to be estimated.  

Referring to the fiber type B, Fig. 7b shows the com-

parison between the theoretical and the experimental 

results. The specimen with aligned fiber (α = 90°) per-

mits to set up the bond-slip relationship. In particular, 

by assuming the τ(s) behavior of hot rolled bars, the 

numerical procedure provides a P-w curve that falls 

within the range experimentally measured (Fig. 7a). 

Regarding the friction coefficient γ, it can be indi-

rectly measured by comparing the results of the pro-

posed model and those of pullout tests on inclined fibers. 

In the case of the fiber type B, if γ = 0.25 is assumed in 

the proposed model, the pullout responses are correctly 

predicted when α = 60° (Fig. 7b) and α =30° (Fig. 7c). 

These interaction properties are kept for other two fi-

ber types reported in Tab. 1. In fact, they permit to re-

produce theoretically all the experimental pullout curves 

for fiber type C (Fig. 8) and fiber type D (Fig. 9). In 

other words, for these fibers, in all the inclinations taken 

into consideration, the proposed interface cohesive 

model evaluates pullout loads P which are in good 

agreement with the range of experimental data meas-

ured for all possible displacements (0 < w < li ). Regard-

 
Fig. 6 The pullout tests of Leung and Shapiro (1999): a) geometrical properties of the specimens; b) the curve pullout 

load P vs. displacement w experimentally measured. 

 

 

Table 1 mechanical and geometrical properties of the specimens tested by Leung and Shapiro (1999). 

 Fiber Matrix Interaction (*) 

Type of 

specimens 
Φ 

(mm) 

fy 

(MPa) 

Ef 

(GPa) 

Gf 
 

(GPa)

fc 

(MPa) 

fct 

(MPa) 

Em 

(GPa)
νm γ Type of bond 

B 0.5 469 200 87 36.5 3.7 30 0.15 0.25 Hot rolled bar 

C 0.5 635 200 87 36.5 3.7 30 0.15 0.25 Hot rolled bar 

D 0.5 954 200 87 36.5 3.7 30 0.15 0.25 Hot rolled bar 

E 0.5 1171 200 87 36.5 3.7 30 0.15 0.15 Cold drawn wires 

(*) estimated  
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ing fiber type E, with a similar procedure, τ(s) behavior 

of cold drawn wires and γ = 0.15 have to be assumed in 

the proposed model to reproduce the experimental re-

sults.  

It is important to remark the capability of the pro-

posed model to predict the increase of applied load P 

before the complete slippage of the fiber, which is 

clearly evident in all the tests (Figs.7-9). Assuming the 

interaction between fiber and matrix within the block 

B”-C’ (Fig. 3b), it is possible to give an explanation to 

this phenomenon. When the displacement w increases, 

the length lBC of the embedded fiber becomes progres-

sively shorter. Thus, its mechanical response [Eq.(12)] 

is that of a short beam [dij computed with Eq.(15)], 

which is stiffer than a long beam on elastic foundation 

[dij computed with Eq.(16)]. This produces higher shear 

actions TB and, despite the decrement of NB in Eq. (29), 

the pullout load attains a maximum value just before 

complete slippage.  

Finally, Fig. 10 shows the maximum values of pullout 

load at each inclination angle for fiber type D and fiber 

type E. Both numerical and experimental results reveal 

a peak of maximum pullout load within the range 

954 MPa < fy <1171 MPa. In fact, the pullout of inclined 

high strength fibers produces a heavy damage of ma-

trixes having low values of fc and fct . 

 

5. Conclusions 

A cohesive interface model has been proposed to repro-

duce theoretically pullout of inclined steel fibers in ce-

ment-based matrix. Since a satisfactory agreement be-

tween numerical results and experimental data was 

found, the following conclusions can be drawn: 

• To model the action of a fiber that bridges a crack in a 

fiber reinforced composite, all the nonlinearities and 

the possible interactions of materials have to be taken 

into consideration. 

• Not only the mechanisms of a beam on elastic 

foundation have to be introduced in the model, but 

also the friction coefficient and the bond-slip 

relationships play a fundamental role in defining the 

pullout diagram. Since a general definition is not 

possible, interaction properties should be evaluated 

for each pair of fiber and matrix.  

• Failure criterion and yield surfaces need to be defined 

in order to reproduce, respectively, the progressive 

spalling of cementitious matrix and the nonlinear 

response of steel fibers. 

All these aspects (some of them were also measured 

by previous experimental campaigns) are collected for 

the first time in the proposed cohesive interface model. 

The capability of this model to define the complete pull-

out diagram of inclined fibers, having different yield 

stresses, seems to have a relevant value, in particular 

with the aim of designing FRC composites and to opti-

mize their mechanical properties.  

  

 

Fig. 7 Comparison between prediction and experimental 

data for fiber type B; a) pullout load P vs. displacement 

w in case of α = 90°; b) pullout load P vs. displacement 

w in case of α = 60°; c) pullout load P vs. displacement 

w in case of α = 30°. 



256 A. P. Fantilli and P. Vallini / Journal of Advanced Concrete Technology Vol. 5, No. 2, 247-258, 2007 

 

Fig. 9 Comparison between prediction and experimental 

data for fiber type D; a) pullout load P vs. displacement 

w in case of α = 90°; b) pullout load P vs. displacement 

w in case of α = 60°; c) pullout load P vs. displacement 

w in case of α = 30°. 

 

 
 

Fig. 8 Comparison between prediction and experimental 

data for fiber type C; a) pullout load P vs. displacement w

in case of α = 90°; b) pullout load P vs. displacement w 

in case of α = 60°; c) pullout load P vs. displacement w in 

case of α = 30°. 
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Appendix 1: Notations 
Af = Area of the fiber cross-section  

Ef = Young’s modulus of the fiber 

Em = Young’s modulus of the matrix 

Gf = Modulus of elasticity in shear 

Hy = y component of the loads transferred to the matrix  

Hz = z component of the loads transferred to the matrix 

Jf = Moment of inertia of the fiber cross-section 

K = Matrix foundation stiffness 

KM = Coefficient that computes the component of NB 

due to MB 

KT = Coefficient that computes the component of NB 

due to TB 

M = Bending moment in a fiber cross-section 

M0 = Limiting value of bending moment in a fiber 

cross-section  

N = Normal force in a fiber cross-section 

N0 = Limiting values of normal force in a fiber cross-

section 

Nbs = Normal force in a fiber cross-section produced by 

bond-slip 

P = Pullout load 

Q = Distributed load on the matrix  

Ry = y component of matrix resistance 

Rz = z component of matrix resistance 

T = Shear force in a fiber cross-section  

T0 = Limiting values of shear force in a fiber cross-

section  

d = Length of the zone where matrix spalling occurs 

dij = Coefficients of the deformability matrix Eq. (12)  

fc = Compressive strength of the matrix 

fct = Tensile strength of the matrix 

ft = Dimensionless shear constant 

fy = Yield strength of the fiber 

k = Coefficient in the bond-slip relationship [Eq. (22b)] 

lBC = Length of the embedded part of the fiber (block 

B”-C’) 

li = Initial length of the fiber 

l0 = Real length of the fiber outside the matrix (block 

A”-B”) 

lt = Apparent length of the fiber outside the matrix 

(block A”-B”) 

ly = Maximum deflection of the fiber (y component of 

l0) 

lz = z component of l0 

qT = Ratio between shear and flexural rotations 

s = Slip between fiber and matrix related to point A 

(Figs. 1-2) 

s1 = Slip at τmax 

sfm(ζ) = Function of slips along lBC 

w = Displacement of the pullout diagram (half of crack 

opening displacement)  

α = Angle between fiber and crack surfaces 

β = Inverse of the characteristic length of the beam on 

elastic foundation 

γ = Friction coefficient between fiber and matrix 

δ = Complete rotation of the fiber 

Δz = Apparent shortening of the fiber 

εf = Axial strain of the fiber 

Φ = Diameter of the fiber cross-section  

ηB = Displacement at point B” (Fig. 2) 

ηi(z) = Function of fiber deflections  

λ = Parameters of yield surface of fiber [Eq. (24)] and 

of failure surface of matrix [Eq. (28)] 

νm = Poisson’s ratio of the matrix 

θB = Rotation in the point B” (Fig. 2) 

θe = Elastic component of θi  

θi = Rotation produced by bending moment 

θp = Plastic component of θi 

θt = Rotation produced by shear forces  

σc = Axial stress of the matrix  

σf = Axial stress of the fiber 

τ(s) = Bond-slip relationship 

τmax = Maximum bond stress  

τfin = Asymptotic value of bond stress 

ψ = Angle of principal directions (Fig. 5b) 

y, z, ζ = Axis of reference systems 

 

Appendix 2: definition of matrix foundation 
stiffness K  
Unlike the FEM approach proposed by Leung and Li 

(1992), the matrix foundation stiffness is here computed 

by means of a simplified model, which is based on the 

hypotheses of stress-distribution shown in Fig. 3c. Un-

der the conditions of plane strain and linear elastic be-

Fig. 10 Maximum pullout load vs. inclination angle for 

fiber type D and fiber type E. 
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havior of the matrix (defined by the parameters Em and 

νm), it is possible to write:  

( )
y

Q
yy

2+Φ
=σ   and  ( ) ( )

( )21 mm

y

y
E

y
y

ν
σ

ε
−

=  (A1) 

where Q = distributed load on the matrix produced by 

the length lBC of the fiber.  

At depth t, the displacement η is equal to:  

( ) ( ) ( )

( )
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0 0

2

1 21

1 2
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Thus, the matrix foundation stiffness is:  

( )
⎟
⎠
⎞

⎜
⎝
⎛

Φ
+

−
==

t

EQ
K mm

21ln5.0

1 2ν
η

 (A3) 

To obtain K , it is necessary to introduce a suitable 

value of t , which is the thickness of the matrix around 

the fiber. Since the presence of nonlinearities implies 

reduced values of matrix foundation stiffness, like in the 

case of high values of t, K is here defined by assuming 

t = 100 Φ. In this case Eq. (A3) gives: 

( )
651.2

1 2
mmEQ

K
ν

η
−

==  (A4) 
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