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Abstract A numerical method for crack growth is de-
scribed in which the crack is not regarded as a single
discontinuity that propagates continuously. Instead, the
crack is represented by a set of overlapping cohesive
segments. These cohesive segments are inserted into finite
elements as discontinuities in the displacement field by
exploiting the partition-of-unity property of shape func-
tions. The cohesive segments can be incorporated at ar-
bitrary locations and orientations and are not tied to any
particular mesh direction. The evolution of decohesion of
the segments is governed by a cohesive law. The inde-
pendent specification of bulk and cohesive constitutive
relations leads to a characteristic length being introduced
into the formulation. The formulation permits both crack
nucleation and discontinuous crack growth to be mod-
elled. The implementation is outlined and some numerical
examples are presented.

Keywords Crack growth, Fracture, Cohesive zones,
Partitions of unity

1
Introduction
In conventional engineering fracture mechanics, crack
growth is assumed to occur by the extension of a single
dominant crack. However, there are a wide variety of
circumstances where the fracture process involves the
nucleation and growth of multiple crack-like flaws. For
example, in heterogeneous materials, multiple cracks that
initiate and grow in one phase may link up by nucleating

cracks in another phase or by propagating across phase
boundaries, e.g. [1]. Another example is the transition
from subsonic to intersonic crack speeds via the nucle-
ation of a micro-crack ahead of the main crack, [2]. Also,
in quasi-brittle materials micro-cracking in front of the
main crack tip plays a key role in setting the fracture
toughness [3]. Hence, a need for analysing discontinuous
crack growth arises in a wide variety of contexts.

A cohesive surface methodology has emerged which
permits the analysis of fracture processes in which there is
no dominant flaw. In fact, an initial crack-like defect is not
required since crack nucleation can occur naturally during
the loading history. The basic assumption of the cohesive
surface framework is that the separation process is con-
fined to a set of discrete planes (or lines in a two-dimen-
sional context). A constitutive relation is then specified for
each cohesive surface that allows separation to occur.

The cohesive approach to fracture was pioneered by
Barenblatt [4], Dugdale [5] and Hillerborg et al. [6]. In
these formulations, a dominant flaw was assumed present
as in conventional engineering fracture mechanics, but a
cohesive zone was introduced ahead of the existing crack
tip. The relation between the work expended in this co-
hesive zone and that in the crack tip field is typically such
that the stress singularity is cancelled and the near tip
stresses are finite. The slip weakening model of Andrews
[7] introduced in the geophysics literature did not require
crack growth to be continuous. The cohesive framework
was extended to finite deformations and to situations
without an initial crack in [8]. Subsequently, a wide variety
of fracture phenomena have been analysed using the
cohesive surface methodology.

In a cohesive surface formulation, constitutive relations
are specified independently for the bulk material and for
one or more cohesive surfaces, see [8, 9]. The cohesive
constitutive relation embodies the failure characteristics of
the material and characterises the separation process. The
bulk and cohesive constitutive relations together with
appropriate balance laws and boundary (and initial) con-
ditions completely specify the problem. Fracture, if it takes
place, emerges as a natural outcome of the deformation
process without introducing any additional failure crite-
rion. The simplest cohesive constitutive relation is one
where the cohesive surface traction is a function of the
displacement jump across the cohesive surface. Such a
cohesive constitutive relation incorporates as parameters
the strength ft and the work of separation (or fracture
energy) Gc. From dimensional considerations, this intro-
duces a characteristic length.
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When fracture takes place along well-defined interfaces
as, for example, in a lamellar solid, the placement of co-
hesive surfaces is clear. Also when the crack path is known
in advance from experiments, accurate predictions can be
obtained, since interface elements can be placed along the
known crack path [10]. However, for a solid that is ho-
mogeneous on the scale modelled, the placement of cohe-
sive surfaces is problematic. In Xu and Needleman [9]
multiple cohesive surfaces were used and in their calcula-
tions cohesive interface elements were placed along all
finite element mesh boundaries. Although this approach
simplifies the simulation of complex crack phenomena
such as crack branching and crack initiation away from a
main crack tip, it is not mesh independent. In fact, since the
interface elements are aligned with the element boundaries,
the orientation of cracks is restricted to a limited number of
predefined angles. In addition, if, as in [9], the cohesive
surfaces are taken to have a nonzero initial compliance, the
presence of the cohesive surfaces contributes to the overall
compliance of the body. Then, if cohesive surfaces are
added between all elements as the computational mesh is
refined, the overall compliance depends on the mesh and
an ill-posed problem results. A well-posed problem is ob-
tained if a mesh-independent cohesive surface spacing is
used, but it is unclear how to set that spacing for homo-
geneous solids. To overcome limitations associated with
initially compliant cohesive surfaces, Camacho and Ortiz
[11] used initially rigid cohesive surfaces in conjunction
with adaptive mesh refinement. The use of initially rigid
cohesive surfaces introduces other difficulties, at least in
modelling dynamic crack growth [12, 13].

For a certain class of problems, an alternative is to adopt
a smeared crack approach, in which the separation energy
Gc is distributed over the element width, e.g. [10, 14–16].
Finite element methods with embedded discontinuities
provide a means of implementing smeared cohesive models
[17, 18]. The embedded discontinuity approaches enhance
the deformational capabilities of the elements, especially
when the standard Bubnov-Galerkin approach is replaced
by a Petrov-Galerkin method, which properly incorporates
the discontinuity kinematics [19]. The high local strain
gradients inside localisation bands are captured more ac-
curately at the expense of obtaining a nonsymmetric stiff-
ness matrix. However, a true discontinuity is not obtained
because the kinematics of the embedded localisation band
are diffused over the element when the governing equations
are cast in a weak format, either via a Bubnov-Galerkin or
via a Petrov-Galerkin procedure. Several authors [20, 21]
have proved the equivalence between embedded disconti-
nuity approaches and classical smeared-crack models in
which the separation energy is smeared out over the ele-
ment width. Accordingly, the embedded discontinuity ap-
proaches inherit many of the disadvantages of conventional
smeared-crack models, including the sensitivity of crack
propagation to the direction of the mesh lines.

There are advantages to incorporating the cohesive
surfaces (or zones) into continuum finite elements by
using the partition-of-unity property of finite element
shape functions [22] in conjunction with a discontinuous
mode incorporated at the element level [23]. The cohesive
zone is then modelled as a jump in the displacement field

of the continuum element [20, 24–27]. The magnitude of
the displacement jump is determined by additional de-
grees of freedom which are added at the existing nodes. A
key feature of the method is the possibility of extending
the cohesive crack during the calculation in an arbitrary
direction, independent of the structure of the underlying
finite element mesh. When cohesive surfaces are added
during the calculation, there is no need for a high initial
stiffness to minimise the effect of increasing the initial
compliance of the medium due to the presence of cohesive
surface elements. As a consequence, numerical anomalies,
such as stress oscillations at the interface [28] or spurious
stress wave reflections are avoided, but other anomalies
may be introduced in dynamic problems [12, 13].

A drawback of the current version of partition-of-unity
based cohesive zone numerical methods is that the crack is
regarded as a single entity. Crack propagation is modelled
by extending the current displacement jump. Thus, con-
tinuous growth of a crack as in the original cohesive zone
formulations of Barenblatt [4], Dugdale [5] and Hillerborg
et al. [6] can be modelled, but not discontinuous crack
growth involving crack initiation at multiple locations and
the subsequent growth and coalescence of the nucleated
cracks.

Here, we develop a cohesive finite element method
based on incorporating segments of cohesive surfaces into
continuum finite elements that is applicable when crack
growth is discontinuous. The crack is not regarded as a
single entity. Instead, it is modelled as a collection of
overlapping cohesive segments, which are added as dis-
placement jumps by using the partition-of-unity property
of finite element shape functions. A combination of
overlapping crack segments can behave as a continuous
crack. In addition, since crack segments can be added at
arbitrary positions and with arbitrary orientations, the
method allows for complex crack patterns including the
simulation of crack nucleation at multiple locations, fol-
lowed by growth and coalescence. Branching of an existing
crack is also allowed for.

We begin with a short description of the approach.
Then, the underlying kinematic relations for a domain
with multiple displacement jumps is discussed with
attention restricted to a small deformation formulation.
Next, some details regarding the implementation are giv-
en. The paper concludes with some numerical examples.

2
Cohesive segments model
The physics of crack initiation and crack growth in a
heterogeneous quasi-brittle material is illustrated in Fig. 1
[1] which shows a concrete specimen loaded in tension.
The heterogeneity of the material, i.e. the presence of
particles of different sizes and stiffnesses, leads to a
complex stress field in which new cracks nucleate (‘‘a’’ in
Fig. 1) and existing cracks branch (‘‘b’’ in Fig. 1). Smeared
(cohesive-zone) models are not able to capture these
processes of crack initiation, growth, coalescence and
branching properly, since essential characteristics are lost
in the averaging process.

The cohesive segments approach can, at least in prin-
ciple, describe the physical processes observed in Fig. 1.
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Although a wide variety of cohesive constitutive relations
can be incorporated into the cohesive segments frame-
work, in the computations here no cohesive segments are
present at the beginning of a calculation which means that
an initially rigid cohesive constitutive relation is assumed.
When decohesion initiates, a cohesive segment is inserted
through the integration point. The segment is taken to
extend throughout the element to which the integration
point belongs and into the neighbouring elements, see
Fig. 3. The evolution of the crack segment is governed by a
decohesion constitutive relation. Thus, we need to specify:
(i) a criterion for the initiation of decohesion; (ii) a cri-
terion for the orientation of the added cohesive segment;
and (iii) the decohesion constitutive relation.

In the illustrative examples here only normal (mode-I)
decohesion is considered. The initiation of decohesion is
taken to occur when the maximum principal stress at a
finite element integration point exceeds the cohesive
strength ft. The orientation of the cohesive surface is
specified as being normal to the maximum principal stress
direction. The decohesion constitutive relation is taken to
have the exponential form,

tn ¼ ft exp � ft

Gc
j

� �
; ð1Þ

where tn is the normal traction across the cohesive surface,
Gc is the work of separation and j, which has dimensions
of reciprocal length, is a specified cohesive parameter.
Since only mode-I separation is considered, the shear
traction across the cohesive surface vanishes. The cohesive
segments are inserted into existing finite elements by ex-
ploiting the partition-of-unity property of their shape
functions, thus ensuring that the discrete character of the
cohesive segment is preserved in the discretisation pro-
cess. Note that the orientation of the cohesive segments is
not tied to any direction associated with the discretisation.

3
Kinematic relations
The key feature of the cohesive segments approach is the
possible emergence of multiple cracks in a domain. Con-
sider the domain X with boundary C as shown in Fig. 2. It
contains m discontinuities Cd;j, where j ¼ 1;m. Each dis-
continuity splits the domain in two parts, which are de-
noted as X�

j and Xþ
j . For all discontinuities the following

relation must hold:

X�
j [ Xþ

j ¼ X 8 j ¼ 1;m : ð2Þ
The displacement field in the domain X consists of a
continuous regular displacement field ûu plus m additional
continuous displacement fields ~uuj, cf. [29]:

uðx; tÞ ¼ ûuðx; tÞ þ
Xm

j¼1

HCd;j
ðxÞ~uujðx; tÞ ; ð3Þ

where x denotes the position of a material point, t is time
and HCd;j

are Heaviside step functions, defined as:

HCd;j
ðxÞ ¼

0 if x 2 X�
j ,

1 if x 2 Xþ
j .

�
ð4Þ

The strain field in the bulk can be found by taking the
derivative of the displacement field, Eq. (3):

�ðx; tÞ ¼ rsûuðx; tÞ þ
Xm

j¼1

HCd;j
ðxÞrs~uujðx; tÞ ; ð5Þ

where a superscript s denotes the symmetric part of a
differential operator. Note that at the discontinuities Cd;j,
the strains are not defined. There, the magnitude of the
displacement jump

vjðx; tÞ ¼ ~uujðx; tÞ x on Cd;j ; ð6Þ
is the relevant kinematic quantity. Although the formula-
tion can be applied to finite deformations [25, 26], we
restrict attention to small displacement gradients.

4
Equilibrium equations
Consider the quasi-static equilibrium equations without
body forces and the corresponding boundary conditions:

r � r ¼ 0 x 2 X ; ð7Þ
nt � r ¼ �tt x 2 Ct ; ð8Þ

u ¼ �uu x 2 Cu ; ð9Þ
nd;j � r ¼ tj x 2 Cd;j ; ð10Þ

Fig. 1. Experimentally observed ‘diffuse’ crack pattern [1] and
possible representation with cohesive segments

Fig. 2. Domain X crossed by two discontinuities, Cd;1 and Cd;2

(dashed lines)
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where r is the Cauchy stress in the bulk material, �tt are the
prescribed tractions on Ct with outward normal vector nt,
�uu are the prescribed displacements on Cu and tj are the
tractions at discontinuity Cd;j. The normal nd;j points from
X�

j to Xþ
j . Equilibrium can be expressed in a weak form by

multiplication with an admissible variational displacement
field g:Z
X

g � ðr � rÞdX ¼ 0 : ð11Þ

Taking the space of the admissible variations to be the
same as the actual displacement field, Eq. (3), the varia-
tions of the displacements can be decomposed as:

g ¼ ĝg þ
Xm

j¼1

HCd;j
~ggj : ð12Þ

Substituting the variations into Eq. (11) gives:Z
X

ĝg � ðr � rÞdX þ
Xm

j¼1

Z
X

HCd;j
~ggj � ðr � rÞdX ¼ 0 :

ð13Þ
We now apply Gauss’ theorem, use the symmetry of the
Cauchy stress tensor, eliminate the Heaviside functions in
the bulk by changing the integration domain and use the
boundary conditions at the external boundary Ct and at
the discontinuity planes Cd;j to give:Z
X

rsĝg : r dX þ
Xm

j¼1

Z
Xþ

j

rs~ggj : r dX þ
Xm

j¼1

Z
Cd;j

~ggj � tj dC

¼
Z
Ct

ĝg ��tt dC þ
Xm

j¼1

Z
Ct

HCd; j
~ggj ��tt dC : ð14Þ

5
Finite element formulation
For the finite element formulation, we use the partition-of-
unity property of finite element shape functions [22]. A
collection of functions /i, associated with node i
(1  i  n) form a partition of unity if:Xn

i¼1

/i ¼ 1 : ð15Þ

For any set of functions that satisfy this equation, a field u
can be interpolated as follows:

uðx; tÞ ¼
Xn

i¼1

/iðxÞ aiðtÞ þ
Xm

j¼1

bjðxÞbijðtÞ
 !

; ð16Þ

with aiðtÞ the regular nodal degrees-of-freedom, bjðxÞ the
enhanced basis terms and bij the additional degrees of
freedom at node i, representing the amplitude of the jth
basis term bj. The displacement fields HCd;j

~uuj can be con-
sidered as enhanced basis fields. By replacing bjðxÞ by the
corresponding Heaviside function HCd;j

, we can cast the
displacement field in Eq. (3) in the following discrete form:

u ¼ Na þ
Xm

j¼1

HCd;j
Nbj ; ð17Þ

where the vector a contains the regular nodal degrees of
freedom of the element and bj contains all additional nodal
degrees of freedom associated with discontinuity Cd;j. The
matrix N contains the conventional element shape func-
tions. The discretised strain field can be derived by
straightforward differentiation:

e ¼ Ba þ
Xm

j¼1

HCd;j
Bbj ; ð18Þ

where B ¼ LN contains the spatial derivatives of the ele-
ment shape functions. L is a differential operator matrix,
which, for two-dimensional elements, is:

L ¼

o
ox 0

0 o
oy

o
oy

o
ox

2
64

3
75 : ð19Þ

Finally, the discrete displacement jump at discontinuity
Cd;j, see Eq. (6), is equal to:

vj ¼ Nbj : ð20Þ
In the spirit of a Bubnov-Galerkin approach, the variations
of the displacement fields can be discretised as:

ĝg ¼ Nda ~ggj ¼ Ndbj

rsĝg ¼ Bda rs~ggj ¼ Bdbj :
ð21Þ

Inserting them into the weak form of the equilibrium
equation (10) yields:Z
X

ðBdaÞTrdXþ
Xm

j¼1

Z
Xþ

j

ðBdbjÞTrdXþ
Xm

j¼1

Z
Cd;j

ðNdbjÞTtj dC

¼
Z
Ct

ðNdaÞT�tt dCþ
Xm

j¼1

Z
Ct

HCd; j
ðNdbjÞT�tt dC : ð22Þ

By taking all the variations da and dbj respectively, the
weak equilibrium equations can be separated in a set of
m þ 1 equilibrium equations:Z
X

BTr dX ¼
Z
Ct

NT�tt dC ;

Z
Xþ

1

BTr dX þ
Z

Cd;1

NTt1dC ¼
Z
Ct

HCd;1
NT�tt dC ;

Z
Xþ

2

BTr dX þ
Z

Cd;2

NTt2 dC ¼
Z
Ct

HCd;2
NT�tt dC ;

..

.Z
Xþ

m

BTr dX þ
Z

Cd;m

NTtm dC ¼
Z
Ct

HCd;m
NT�tt dC :

ð23Þ

The equilibrium equation that is related to the regular de-
grees of freedom is identical to the equilibrium equation for
an element without a discontinuity. Therefore, it is possible

72



to add a discontinuity to an element during the calculations
with a minimal effort by adding the additional equilibrium
relations and the corresponding degrees of freedom bj.

5.1
Constitutive relations
The stress rate in the bulk material _rr is a function of the
strain rate _ee and can be written as, see also Eq. (18):

_rr ¼ D _ee ¼ D B _aa þ
Xm

j¼1

HCd;j
B _bbj

 !
; ð24Þ

where ð_Þ denotes oð Þ=ot and D is the tangent stiffness
matrix of the bulk material (rate independent material
behaviour is assumed here). The traction rates _ttj at the jth
discontinuity can be expressed in terms of the corre-
sponding enhanced nodal velocities _vvj, Eq. (20):

_ttj ¼ T _vvj ¼ TN _bbj ; ð25Þ
where T is the tangent stiffness of the traction-separation
law at the discontinuity. The latter relations are defined in
a local frame of reference, aligned with the discontinuity.
Therefore, they must be transformed into the element local
frame of reference.

5.2
Linearisation of the equilibrium equations
The deformation history is calculated in an incremental
fashion. At each time step the rate equilibrium equations
are differentiated with respect to the displacement vari-
ables a and bj. Differentiating the rate form of the dis-
cretised equilibrium equations (23) leads to

Kaa Kab1
. . . Kabm

Kab1
Kb1b1

. . . Kb1bm

..

. ..
. . .

. ..
.

Kabm
Kb1bm

. . . Kbmbm

2
66664

3
77775

_aa
_bb1

..

.

_bbm

2
66664

3
77775

¼

fext
a

fext
b1

..

.

fext
bm

2
666664

3
777775�

f int
a

f int
b1

..

.

f int
bm

2
666664

3
777775 ; ð26Þ

where the terms in the stiffness matrix are:

Kaa ¼
Z
X

BTDB dX ;

Kabj
¼
Z
Xþ

j

BTDB dX ;

Kbjbj
¼
Z
Xþ

j

BTDB dX þ
Z

Cd;j

NTTN dC ;

Kbjbk
¼

Z
Xþ

j \Xþ
k

BTDB dX if j 6¼ k :

ð27Þ

The internal forces are given by:

f int
a ¼

Z
X

BTr dX ;

f int
bj

¼
Z
Xþ

j

BTr dX þ
Z

Cd;j

NTtj dC :
ð28Þ

Finally, the expression for the external forces is:

fext
a ¼

Z
Ct

NT�tt dC ;

fext
bj

¼
Z
Ct

HCd;j
NT�tt dC :

ð29Þ

Note that if the tangent matrices D and T are symmetric,
symmetry of the submatrices Kaa, Kabj

and Kbjbk
is

preserved. Consequently, the total stiffness matrix also
remains symmetric.

6
Implementation
The procedure has been implemented using a four-node
quadrilateral continuum finite element. A new cohesive
segment is added when the major principal stress at an
integration point within an element reaches the cohesive
strength ft in Eq. (1). The added cohesive segment passes
through the integration point and extends through the
entire element and into the neighbouring elements to the
boundary of a patch of elements influenced by the added
degrees of freedom, see Fig. 3. Various criteria can be used
to determine the direction of the cohesive segment, but
here the cohesive segment is taken to be normal to the
major principal stress direction at the integration point.

Since the cohesive segment is taken to be a straight line,
the normal vector nd;j is constant along the patch of ele-
ments. The magnitude of the displacement jump of the
segment is governed by a set of additional degrees of
freedom, which are added to all four nodes of the central

Fig. 3. A single cohesive segment in a quadrilateral mesh. The
segment passes through an integration point (�) where the co-
hesive strength is attained. The dark nodes contain additional
degrees of freedom bj that determine the magnitude of the dis-
placement jump. The gray shade denotes the elements that belong
to the patch that is influenced by the cohesive segment
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element of the patch. Since the nodes at the edge of the
patch do not contain additional degrees of freedom, the
displacement jump at the edge vanishes, thus ensuring a
zero opening at the tip of the cohesive segment [24].

Since the additional degrees of freedom cannot be
condensed at an element level, they influence all the
surrounding elements in the patch (denoted by the gray
shade). For the elements that belong to the patch, but do
not contain a cohesive segment, the additional displace-
ment ~uuj is not premultiplied with a Heaviside function, but
with a value, which is zero when the element belongs to the
X�

j part of the domain, and equals one when the element is
in the Xþ

j part.
A key feature of the approach is the possibility of having

overlapping cohesive segments. In the situation sketched
in Fig. 4, a new cohesive segment is added next to an
existing segment. The displacement jump of the new co-
hesive segment is supported by an additional set of de-
grees of freedom, and is added to the nodes of the central
element of the new segment (denoted by black squares).
This new set has no relation to the additional degrees of
freedom of the first segment. The hatched elements are
elements in the patches that belong to both segments. In
these elements two additional sets of degrees of freedom
are present, although each set of degrees of freedom is
added to a different set of nodes.

Another possible configuration is shown in Fig. 5 where
two segments cross to form a cohesive zone with a sharp
bend. Here, the patches overlap in such a way that one
node contains additional sets of degrees of freedom as-
sociated with both segments. Again, this configuration will
act as a single cohesive zone on a global level.

Numerical integration of an element that contains one
or more discontinuities is not trivial. Since the displace-
ment fields are only piecewise continuous, standard inte-
gration techniques are no longer accurate. One alternative
is to divide the element into subdomains, see Fig. 6. Since
the displacement field is continuous within each subdo-
main, the integrals over the subdomain can be evaluated
numerically with standard integration techniques. A sec-
ond possibility is to integrate such an element using a
large number of fixed integration points. A possible

candidate is Simpson’s rule. Although the error with this
integration scheme is greater than that associated with the
first alternative the effect on the global accuracy of the
computation will generally be small, since these elements
are usually nearly stress free.

7
Numerical examples
Some features of the cohesive segments method are illus-
trated in a few simple problems. The material behaviour is
taken to be described by isotropic elasticity and only
mode-I (tensile) separation is considered. However, the
cohesive surfaces formulation places no restriction on the
material constitutive relation and allows for mixed mode
crack growth. A double-cantilever beam with an initial
notch with length 1 mm as shown in Fig. 7 [30] is con-
sidered. The beam is loaded by peel forces P. The two
layers of the beam have identical elastic properties:
Young’s modulus E ¼ 100 N/mm2 and Poisson’s ratio
m ¼ 0:3. The tensile strength of the adhesive is ft ¼ 1:0
N/mm2 and the work of separation is Gc ¼ 0:1 N/mm. It is

Fig. 4. Interaction of two cohesive segments. The hatched ele-
ments have two sets of additional degrees of freedom. The dark
circles denote the nodes that contain the additional degrees of
freedom for the segment on the left and the dark squares denotes
those on the right

Fig. 5. Crossing of two cohesive segments. The lighter shade of
gray denotes the patch of elements to the left hand cohesive
segment. The dark circles the nodes that contains the enhanced
degrees of freedom. The darker shade of gray and the black
squares denote the elements and the nodes that belong to the
right-hand segment. The dark triangle denotes the node that
contains additional degrees of freedom of both segments

Fig. 6. Numerical integration of an element with two disconti-
nuities (heavy lines). The subdomains (denoted with dashed
lines) are integrated with a Gauss scheme with one integration
point (þ) each
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assumed that the fracture mode is purely mode-I, the shear
traction is identically zero and the decohesion relation is
given by Eq. (1), which can be differentiated to give the
material tangent matrix:

T ¼ � f 2
t

Gc
exp � ft

Gc
j

� �
0

0 0

" #
: ð30Þ

The specimen is analysed with a mesh having 200 � 7 el-
ements. The initial notch is modelled as a series of
overlapping traction-free cohesive segments which are
added to the mesh beforehand.

Since the adhesive is relatively weak, the crack growth
trajectory is known, i.e. the interface between the two
beams. Therefore, we have only monitored the normal
stresses in the y-direction at the interface as the new
segment is always aligned with the x-axis. The results are
shown in Fig. 8 which gives the load–displacement curve
and in Fig. 9 which gives the deformed specimen at the
final load step, when u ¼ 6 mm. The cohesive segments
approach gives results that are nearly identical to those
obtained with a method in [30] where a continuous crack
is modelled using the partition-of-unity property of finite
element shape functions. The areas below the curve, which
are a measure of the energy dissipation, are virtually the
same for the two calculations. It is noted that there is a
high stress concentration in a relatively small area around

the crack tip in this example. To capture the high peak
stresses accurately, a rather fine mesh is needed.

In order to demonstrate the ability to simulate discon-
tinuous crack growth, the previous example is slightly
modified. A double-cantilever beam is now considered that
is identical to the one in Fig. 7 except for a small cavity
with length 0:25 mm and height 0:14 mm at a distance
2 mm from the loaded edge, see Fig. 10. During loading,
the crack at the initial notch propagates into the cavity.
Upon further loading, a new crack nucleates at the oppo-
site side of the cavity and continues along the weak in-
terface. This transition is indicated by the steep jump in
the load–displacement curve in Fig. 11. The position of
cohesive segments immediately after the nucleation of the
second crack, position (A) in the load-displacement curve,
is shown in Fig. 12.

The third example illustrates crack nucleation without
any initial crack. The specimen is now clamped at both
sides and has no initial crack, see Fig. 13. The structure is
loaded by forces P. In order to preserve symmetry of crack
growth, the specimen is modelled with an odd number of
elements (199 in the calculation here) in the x direction.

When P � 0:45 N, a small crack initiates in the centre of
the beam. Due to the size of the discrete load steps, this
initial crack consists of three overlapping cohesive seg-
ments, which nucleate at the same load step. The crack
propagates in both directions with the same velocity. The
load increases until the external load is 1:2 N, see Fig. 14.

Fig. 7. Double-cantilever beam with an initial notch subjected to
peel forces P

Fig. 8. Load–displacement curve of double-cantilever beam as
calculated using the cohesive segments method and a continuous
partition of unity method (PUM) [30]

Fig. 9. Final deformation of double-cantilever beam. Note that
the deformations are not magnified

Fig. 10. Geometry of double-cantilever beam with a small cavity
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Subsequently, crack growth continues under decreasing
load. Figure 15 shows the deformed specimen at the final
load step.

8
Concluding remarks
A method for modelling crack growth has been described
in which a crack is represented by a collection of cohesive
segments with a finite length. The segments are added to
finite elements by using the partition-of-unity property of
the finite element shape functions. The method permits
crack nucleation and discontinuous crack growth to be
modelled, irrespective of the structure of the finite element
mesh. The numerical formulation is a moderate extension
to existing methods which capture discontinuities using

the partition-of-unity property of finite element shape
functions. Nevertheless, the actual implementation of the
method can be somewhat elaborate from a bookkeeping
point of view, since a single element can be crossed by
multiple cracks, each with its own additional degrees of
freedom.

Some capabilities of the cohesive segments method have
been illustrated by simple two dimensional examples. The
extension of the formulation to more complex bulk and
cohesive constitutive relations and to three dimensions is
straightforward in principle. The ability of the method to
capture complex crack patterns accurately, such as shown
in Fig. 1, remains to be demonstrated. However, the initial
studies here suggest that the cohesive segments method
provides a promising approach for modelling complex
fracture behaviour.
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