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Abstract— How many independent samplesN do we need
from a distribution p to decide that p is ǫ-distant from
uniform in an L 1 sense,

Pm
i=1 |p(i)−1/m| > ǫ? (Here m is

the number of bins on which the distribution is supported,
and is assumed knowna priori.) Somewhat surprisingly,
we only needNǫ2 ≫ m1/2 to make this decision reliably
(this condition is both sufficient and necessary). The test
for uniformity introduced here is based on the number of
observed “coincidences” (samples that fall into the same
bin), the mean and variance of which may be computed
explicitly for the uniform distribution and bounded non-
parametrically for any distribution that is known to be
ǫ-distant from uniform. Some connections to the classical
birthday problem are noted.

Index Terms— Hypothesis testing, minimax, convex
bounds.

INTRODUCTION

We look at a rather basic problem: how many
i.i.d. samplesN are required to decide that a discrete
distribution p, supported onm points, is nonuniform
in an L1 sense? More precisely, how large must the
sample sizeN be so that we may test between the null
hypothesis

H0 : pi ≡ 1/m

and the nonparametric alternative

HA :
m
X

i=1

|p(i) − 1/m| > ǫ

with error approaching zero? We will be interested in
the sparse casem ≫ N , where the classical chi-square
theory does not apply.

This question has seen a great deal of analysis in both
the computer science (Batu, 2001; Bellare and Kohno,
2004) and statistics (Diaconis and Mosteller, 1989) lit-
erature; in particular, there are obvious connections to
the “birthday problem” (Camarri and Pitman, 2000;
Das Gupta, 2005) and related techniques for entropy
estimation (Nemenman et al., 2004). In fact, our analysis
makes essential use of a version of the so-called “birth-
day inequality,” which states that coincident birthdays
are least likely when birthdays are uniformly distributed
(Bloom, 1973; Munford, 1977; Clevenson and Watkins,
1991). The symmetry of the uniform distribution plays
a key role here.
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It turns out that the uniformity testing problem is easy,
in the sense that we may reliably detect departures from
uniformity with many fewer samplesN than binsm. In
fact, it turns out that the conditionNǫ2m−1/2 → ∞
guarantees the consistency of a fairly simple test based
on the number of “coincidences,” samples that fall into
the same bin. Thus, for fixedǫ, we only really need
aboutN ≫ √

m samples. This is similar in spirit to the
recent observation that estimating the entropy of discrete
distributions is easy (Paninski, 2004) (in that case,N =
cm for any c > 0 suffices, and hence by a subsequence
argument in fact slightly fewer than∼ m samples are
required to estimate the entropy onm bins). Thus it is
much easier to test whether a distribution is uniform than
to actually estimate the full distribution (this requires
N ≫ m samples, as is intuitively clear and as can be
made rigorous by a variety of methods, e.g. (Braess and
Dette, 2004; Paninski, 2005)).

In addition, we prove a lower bound implying thatN
must grow at least as quickly asǫ−2m1/2 to guarantee
the consistency ofany test (not just the coincidence-
based test introduced here); with fewer samples, any
test will fail to detect the nonuniformity of at least one
distribution in the alternate classHA.

UPPER BOUND

Our uniformity test will be based on “coincidences,”
that is, binsi for which more than one sample is ob-
served. Alternatively, we may look atK1, the number of
bins into which just one sample has fallen; forN fixed,
K1 is clearly directly related to the negative number of
coincidences. The basic idea, as in the birthday inequal-
ity, is that deviations from uniformity necessarily lead to
an increase in the expected number of coincidences, or
equivalently a decrease inE(K1).

To see this, we may directly write out the expectation
of K1 under a givenp, using linearity of expectation:

Ep(K1) =
m
X

i=1

 

N

1

!

pi(1 − pi)
N−1.

In the uniform case,pi ≡ 1/m and

Eu(K1) = N

„

m − 1

m

«N−1

. (1)

Now we will compare these two expectations by com-
puting the differenceEu(K1) − Ep(K1) =

N

„

m − 1

m

«N−1 m
X

i=1

pi

"

1 −
„

m

m − 1
(1 − pi)

«N−1
#

.

After some approximations and an application of
Jensen’s inequality, we have the following key lower
bound onE(K1) in terms of the distance from unifor-
mity ǫ:
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Lemma 1.

Eu(K1)−Ep(K1) ≥
N2ǫ2

m
[1+O(N/m)] ∀p ∈ HA.

(A technical note: as noted above, we restrict our
attention to the “sparse” regimeN = o(m), where direct
estimation of the underlying distributionp is not feasible
(Braess and Dette, 2004; Paninski, 2005).)

Proof:
Making the abbreviation

f(pi) = pi

"

1 −
„

m

m − 1
(1 − pi)

«N−1
#

,

we have

Eu(K1) − Ep(K1) = N

„

m − 1

m

«N−1 m
X

i=1

f(pi).

(2)
The functionf(x) has a fairly simple form:f(0) = 0,

f(1/m) = 0, f(x) < 0 for 0 < x < 1/m, f(x) is
monotonically increasing forx > 1/m, and f(x) →
x as x becomes large. However,f(x) is not convex.
To develop a lower bound onEu(K1) − Ep(K1), we
develop a convex lower bound onf(x), valid for all
x ∈ [0, 1] whenN ≤ m:

f(x) ≥ g(|x − 1/m|) + f ′(1/m)(x − 1/m),

with g(z) =

(

f(z + 1/m) − f ′(1/m)z, z ∈ [0, 1/N − 1/m]

f(1/N) + (z + 1/m − 1/N) − f ′(1/m)z, o.w.

This lower bound onf(.) looks more complicated than
it is: for values ofx close to1/m, wheref(x) is convex,
we have simply reflectedf(x) about the point1/m and
added a line in order that the reflected function is smooth.
For x > 1/N , we have replacedf with a linear lower
bound of slope1 (the limiting slope forf(x) for large
x). Here the pointx = 1/N is chosen as the solution of
the equation

f ′(x) = 1, 1/m < x < 1;

this solution exists uniquely whenm > N . The deriva-
tive f ′(1/m) is easily computed as

f ′(1/m) = (N − 1)/(m − 1),

and similarly we may directly computef ′(1/N) = 1.
The key is thatg(|z|) is convex, symmetric, and strictly
increasing in its argumentz; see Fig. 1 for an illustration.
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Fig. 1. Illustration of the convex lower bound on the function
f(p) in equation (2). Right panel is just a zoomed-in version
of the left panel.N = 20; m = 50.

Now we subtract off the line and then apply Jensen.
First, we have, for any constantc,

X

i

[f(pi) − c(pi − 1/m)] =
X

i

f(pi) −
X

i

c(pi − 1/m)

=
X

i

f(pi) − c

"

(
X

i

pi) − 1

#

=
X

i

f(pi);

in particular, we have that

X

i

f(pi) ≥
X

i

ˆ

g(|pi − 1/m|) + f ′(1/m)(pi − 1/m)
˜

=
X

i

g(|pi − 1/m|).

Now Jensen implies

1

m

X

i

g(|pi−1/m|) ≥ g

 

1

m

X

i

|pi − 1/m|
!

≥ g(ǫ/m),

where the last inequality is by the fact thatg is increasing
andp ∈ HA. Thus we find that

X

i

f(pi) ≥ mg(ǫ/m),

and therefore

Eu(K1) − Ep(K1) ≥ Nm

„

m − 1

m

«N−1

g(ǫ/m).

Now we need to look atg(.). Near0, g(.) behaves like
a quadratic matched tof at the point1/m:

g(z) =
A

2
z2 + o(z2), z → 0,
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with

A =
∂2f(x)

∂x2

˛

˛

˛

˛

x=1/m

=

„

m

m − 1

«N−1 »

2(N − 1)(1 − x)N−2

−(N − 1)(N − 2)x(1 − x)N−3

–

x=1/m

= 2N + O(N2/m).

Thus, we haveEu(K1) − Ep(K1)

≥ Nm

„

m − 1

m

«N−1„

[N + O(N2/m)]
ǫ2

m2
+ o(

ǫ2

m2
)

«

=
N2ǫ2

m
[1 + O(N/m)],

which completes the proof.

On the other hand, we may bound the variance ofK1

underp as follows:

Lemma 2.

V arp(K1) ≤ Eu(K1) − Ep(K1) + O(N2/m).

Proof: It is not difficult to computeV arp(K1)
exactly:V arp(K1) =

Ep(K1)−Ep(K1)
2+N(N−1)

X

i6=j

pipj(1−pi−pj)
N−2.

However, we found it inconvenient to bound this for-
mula directly. Instead, we use the Efron-Stein inequality
(Steele, 1986)

V ar(S) ≤ 1

2
E

N
X

j=1

(S − S(i))2,

whereS is an arbitrary function ofN independent r.v.’s
xi and

S(i) = S(x1, x2, . . . , x
′
i, . . . , xN )

denotesS computed withx′
i substituted forxi, where

x′
i is an i.i.d. copy ofxi. We will apply this inequality

to S = K1, with xi the independent samples fromp.

Since we are dealing with i.i.d. samples here, by

symmetry we may write1
2
E
PN

j=1(S − S(i))2 =

N

2
E{xi}1≤i≤N−1∼p

"

X

i≤i,j≤m

pipj

`

1(ni = 0 ∩ nj > 0)

+1(nj = 0 ∩ ni > 0)
´

#

= N
X

i,j

pipjP{xi}1≤i≤N−1∼p(ni = 0 ∩ nj > 0)

= N
X

i,j

pipj(1 − pi)
N−1

 

1 −
„

1 − pj

1 − pi

«N−1
!

= N
X

i,j

pipj

“

(1 − pi)
N−1 − (1 − pi − pj)

N−1
”

≤ N
m
X

j=1

pj

“

1 − (1 − pj)
N−1

”

= Eu(K1) − Ep(K1) + N

 

1 −
„

m − 1

m

«N−1
!

= Eu(K1) − Ep(K1) + O(N2/m).

(Here ni denotes the number of samples observed to
have fallen in bini afterN−1 samples have been drawn,
the second-to-last equality follows from equation (2), and
the inequality uses the fact that(1− y)n − (1− y−x)n

is a decreasing function ofy for n > 1, x ∈ [0, 1], and
0 < y < 1 − x.)

Now we may construct our test forH0 versusHA:
we rejectH0 if

T ≡ Eu(K1) − K1 = N

„

m − 1

m

«N−1

− K1 > Tα,

for some thresholdTα.

Theorem 3. The size of this test is

Pu(T ≥ Tα) = O

„

N2

mT 2
α

«

.

The power is greater than

Pp(T ≥ Tα) ≥ 1 − Eu(K1) − Ep(K1) + O(N2/m)

(Eu(K1) − Ep(K1) − Tα)2
,

uniformly over all alternativesp ∈ HA. If

N2ǫ4/m → ∞,

then the thresholdTα may be chosen so that the size
tends to zero and the power to one, uniformly over all
p ∈ HA (i.e., this condition is sufficient for the test to
be uniformly consistent). For example,

Tα = N2ǫ2/2m

suffices.
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We should note that the above bounds are based
on a simple application of Chebysheff’s inequality and
therefore are by no means guaranteed to be tight.

Proof: We have thatEu(T ) = 0 and Vu(T ) =
O(N2/m) (by lemma 2), and therefore by Chebysheff
the size is bounded by

Pu(T ≥ Tα) = O

„

N2

mT 2
α

«

.

For the power, we have that

Pp(T < Tα) = Pp (T − Ep(T ) < Tα − Ep(T ))

≤ Ep(T ) + O(N2/m)

(Ep(T ) − Tα)2
,

again by lemma 2.
Now, by lemma 1, it is clear that for the size to tend

to zero and the power to tend to one, it is sufficient that
the “z-score”

N2ǫ2/m

(N2/m + N2ǫ2/m)1/2
=

„

N2ǫ4/m

1 + ǫ2

«1/2

tends to infinity. Since0 < ǫ ≤ 2, andǫ4/(1+ ǫ2) ∼ ǫ4

for ǫ ∈ [0, 2], the proof is complete.

LOWER BOUND

The theorem above states thatN2ǫ4/m → ∞ is
a sufficient condition for the existence of a uniformly
consistent test ofH0 vs. HA. The following result is a
converse:

Theorem 4. If N2ǫ4 < m log 5, then no test reliably
distinguishesH0 from HA; more precisely, for any test
with critical regionB and size bounded away from one,
the minimum power

inf
p∈HA

Z

B

p(x)dx

remains bounded away from one.

Proof: It is a well-known (LeCam, 1986; Ritov and
Bickel, 1990; Donoho and Liu, 1991) consequence of
the classical Neyman-Pearson theory that no uniformly
consistent test exists if the L1 distance

˛

˛

˛

˛

˛

˛

˛

˛

u(~x) −
Z

q∈HA

q(~x)dµ(q)

˛

˛

˛

˛

˛

˛

˛

˛

1

,

is bounded away from2 for any µ ∈ P(HA), with
P(HA) the class of all probability measures onHA,
and ||.||1 denoting the L1 norm on the sample space
~x ∈ {1, . . . , m}N equipped with the counting measure.

We develop this bound for one particular tractable
mixing measureµ. (We make no claims that this measure
will lead to optimal bounds.) Assume thatm is even. (An
obvious modification applies ifm is odd.) We chooseq
randomly according to the following distributionµ(q):

choosem/2 independent Bernoulli r.v.’szj ∈ {−1, 1}
(i.e., z samples uniformly from the corners of them/2-
dimensional hypercube). Given{zj}, set

q(i) =

(

(1 + ǫzi/2)/m i even,

(1 − ǫz(i+1)/2)/m i odd.

Such aq will be a probability measure satisfying the
equality||u−q||1 = ǫ (and therefore lie on the boundary
of the alternate hypothesis classHA) with probability
one, assumingǫ ≤ 1. We let Q(~x) =

R

q(~x)dµ(q)
denote the resulting probability measure. Similar mixing
measures have appeared, e.g., in (Ritov and Bickel,
1990); this mixture of indistinguishable distributions
technique is a fundamental idea in the minimax density
estimation literature.

To compute the corresponding bound, we use the
elegant (albeit somewhat involved) method outlined in
Pollard’s “Asymptopia” minimax notes (Pollard, 2003).

1) First, we substitute a more manageable L2 bound
for the L1 norm:

||Q − u||1 ≤ ||Q − u||2.

2) Next, we write out the likelihood ratio:

Q = 2−m/2
X

z∈{−1,1}m/2

Qz,

with
dQz

du
(~x) =

N
Y

j=1

(1 + G(xj , z)),

whereG(xj , z) = ǫzj/2 or −ǫz(j+1)/2, depending
as j is even or odd, respectively. Note that

EuG(xj , z) = 0

for all j, z. Define

∆(~x) ≡ dQ

du
(~x)

= 2−m/2
X

z

„

1 +

N
X

j=1

G(xj , z) +
X

j>j′

G(xj , z)G(xj′ , z) + . . .

«

,

the sums ending with theN -fold product.
3) Now we expand the L2 norm:

||Q − u||22 = Eu(∆ − 1)2

(∆−1)2 = 2−m
X

z,z′

„

1+
X

j

G(xj , z)+
X

j>j′

G(xj , z)G(xj′ , z
′)+. . .

«

.

Because of the independence ofxj and andz, and
the fact thatG has zero mean, we may cancel all
of the terms that are not products of the form

Hj(z, z′) ≡ EuG(xj , z)G(xj , z
′) =

2ǫ2

m

m/2
X

i=1

v(zi, z
′
i),
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with v(zi, z
′
i) = 1 if zi = z′

i and v(zi, z
′
i) = −1

otherwise. So we have

Eu(∆ − 1)2 = 2−m
X

z,z′

„

X

j

Hj(z, z′)

+
X

j>j′

Hj(z, z′)Hj′(z, z′) + . . .

«

= 2−m
X

z,z′

Y

j

(1 + Hj(z, z′)) − 1.

4) The above term may be regarded as an average
over two i.i.d. r.v.’sz andz′:

Eu(∆ − 1)2 = Ez,z′

Y

j

(1 + Hj(z, z′)) − 1.

5) Now we uselog(1 + t) ≤ t:

Y

j

(1 + Hj(z, z′)) ≤ exp

 

X

j

Hj(z, z′)

!

.

6) Finally, we compute

Ez,z′ exp

 

X

j

Hj(z, z′)

!

=

„

1

2
exp

„

2Nǫ2

m

«

+
1

2
exp

„

−2Nǫ2

m

««m/2

and use the bound

1

2
(exp(u) + exp(−u)) ≤ exp

„

u2

2

«

,

to obtain

Ez,z′ exp

 

X

j

Hj(z, z′)

!

≤ exp

„

N2ǫ4

m

«

.

Putting everything together,

||Q − u||1 ≤
„

exp

„

N2ǫ4

m

«

− 1

«1/2

Thus ifN2m−1ǫ4 is not sufficiently large, then||Q−u||1
is bounded away from2, and no uniformly consistent test
exists.

An alternate lower bound

The above result provides a quantitative, nonasymp-
totic lower bound on the error probability, but the bound
is loose and the result becomes useless for a fixedǫ if
N2/m becomes too large. It is worth deriving a simpler,
asymptotic result to handle this case of large but bounded
N2/m:

Theorem 5. If N2/m remains bounded, then no test
reliably distinguishesH0 from HA.

Proof: The proof here is much more direct. We
write out the ratio of marginal likelihoods, using the

same uniform-hypercube mixture prior onHA as above.
Letting ni denote the number of samples observed to
have fallen into thei-th bin, we have

L(~n|HA)

L(~n|H0)
= E~z

Y

i=2,4,...,m

(1 − zi/2ǫ)
ni−1(1 + zi/2ǫ)

ni

=
Y

i=2,4,...m

E(1 − zi/2ǫ)
ni−1(1 + zi/2ǫ)

ni

=
Y

i=2,4,...m

„

(1 + ǫ)ni−1(1 − ǫ)ni

+(1 + ǫ)ni(1 − ǫ)ni−1

«

/2

=
Y

i=2,4,...m

(1 − ǫ2)mi

„

(1 − ǫ)di + (1 + ǫ)di

«

/2

=
Y

i=2,4,...m

(1 − ǫ2)mi

 

1 +

 

di

2

!

ǫ2 +

 

di

4

!

ǫ4 + ...

!

,

where we have abbreviatedmi = min(ni, ni−1) and
di = |ni −ni−1|, and used the independence ofzj . (We
interpret

`

di
k

´

as0 wheneverdi < k.)
Now note that the above multiplicands are greater than

one only if di ≥ 2, and less than one only ifmi ≥ 1.
And since the number of “two-bin coincidences” — pairs
of bins into which two or more samples have fallen — is
bounded in probability ifN = O(

√
m), the likelihood

ratio is bounded in probability as well, implying that the
error probability of any test is bounded away from zero,
and the proof is complete.

Finally, it is worth noting that the expected numbers of
the events(mi = 1, di = 0) and(mi = 0, di = 2) scale
together, leading (after an expansion of the logarithm and
a cancellation of theǫ2 terms) to exactly theN2ǫ4/m
scaling we observed previously.
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