A coincidence-based test for uniformity given It turns out that the uniformity testing problem is easy,

very sparsely-sampled discrete data in the sense that we may reliably detect departures from
uniformity with many fewer sampled’ than binsm. In
Liam Paninski fact, it turns out that the conditioWe?m ™/ — oo
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liam@stat.columbia.edu on the number of “coincidences,” samples that fall into
http://www.stat.columbia.edwiam the same bin. Thus, for fixed, we only really need

aboutN > \/m samples. This is similar in spirit to the
Abstract— How many independent samplesV' do we need rgcept qbseryatlon that e§t|m§1t|ng the gntropy of discrete
from a distribution p to decide that p is e-distant from distributions is easy (Paninski, 2004) (in that ca¥e~
uniformin an L 1 sense>""" , |p(3)—1/m| > €? (Heremis cm for any c > 0 suffices, and hence by a subsequence
the number of bins on which the distribution is supported, argument in fact slightly fewer than m samples are
and is assumed knowna priori.) Somewhat surprisingly, required to estimate the entropy am bins). Thus it is

we only need N¢2 1/2 to make this decision reliabl ) AT X
(this cgndition i; b?thmsufficient and necessary). The teyst much easier to test whether a distribution is uniform than

for uniformity introduced here is based on the number of 10 actually estimate the full distribution (this requires
observed “coincidences” (samples that fall into the same N > m samples, as is intuitively clear and as can be

bin), the mean and variance of which may be computed made rigorous by a variety of methods, e.g. (Braess and
explicitly for the uniform distribution and bounded non- Dette, 2004; Paninski, 2005))

parametrically for any distribution that is known to be 1M ! : . .
e-distant from uniform. Some connections to the classical In addition, we prove a lower bound implying that

birthday problem are noted. must grow at least as quickly as2m!/? to guarantee
Index Terms—Hypothesis testing, minimax, convex the consistency ofny test (not just the coincidence-
bounds. based test introduced here); with fewer samples, any

test will fail to detect the nonuniformity of at least one

INTRODUCTION distribution in the alternate cladg 4.

We look at a rather basic problem: how many
i.i.d. samplesN are required to decide that a discrete . . . o .,
distribution p, supported onm points, is nonuniform  Our uniformity test will be based on “coincidences,
in an L, sense? More precisely, how large must th&hat is, bins: for which more than one sample is ob-

sample sizeV be so that we may test between the nufferved. Altermatively, we may look 41, the number of
bins into which just one sample has fallen; fr fixed,

UPPER BOUND

hypothesis ) . .
R K, is clearly directly related to the negative number of
Ho:p;i = 1/m .. L. . . .
coincidences. The basic idea, as in the birthday inequal-
and the nonparametric alternative ity, is that deviations from uniformity necessarily lead to
m an increase in the expected number of coincidences, or
Ha: ) |p(i) —1/m| > e equivalently a decrease (K ).
i=1 To see this, we may directly write out the expectation

with error approaching zero? We will be interested imf K under a giverp, using linearity of expectation:

the sparse caser > N, where the classical chi-square m
theory does not apply. E,(K,) = E ( )pi(l —p)V 1
; . . ¢ 1
This question has seen a great deal of analysis in both i=1

the computer science (Batu, 2001; Bellare and Kohnﬂq1 the uniform casep; = 1/m and
2004) and statistics (Diaconis and Mosteller, 1989) lit- No1
erature; in particular, there are obvious connections to Eu(Ki) = N (m — 1) (1)

the “birthday problem” (Camarri and Pitman, 2000; m

Das Gupta, 2005) and related techniques for entropyoy we will compare these two expectations by com-
estimation (Nemenman et al., 2004). In fact, our analysiimng the differenceB, (K1) — Ep(K1) =
makes essential use of a version of the so-called “birth-

day inequality,” which states that coincident birthday (m— 1>N1§:p_ [1 B ( m (1 —p~)) Nl}
i=1

are least likely when birthdays are uniformly distribute m m— 1
(Bloom, 1973; Munford, 1977; Clevenson and Watkins

1991). The symmetry of the uniform distribution plays'b‘fter s'ome approximations and an gpplication of
a key role here. Jensen’s inequality, we have the following key lower

bound onE(K3) in terms of the distance from unifor-
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Lemma 1.
—f(p) 0.07 1 ——fi(p)
N2€2 0.25 bound 0.06 bound
E.(K1)—E,(K1) > - [1+O(N/m)] Vpé€ Ha. s P 005 P
0.04
0.15
0.03
(A technical note: as noted above, we restrict ou 01 0.02
attention to the “sparse” regim® = o(m), where direct s g 001
estimation of the underlying distributignis not feasible oo~
(Braess and Dette, 2004; Paninski, 2005).) 0T o2 os 0 002 004 006
Proof: p P
Making the abbreviation Fig. 1. lllustration of the convex lower bound on the funatio
f(p) in equation (2). Right panel is just a zoomed-in version
m N-1 of the left panel.N = 20; m = 50.
fpi) =pi |1 - ﬁ(l—pi) )
we have

Now we subtract off the line and then apply Jensen.
m— 1)N1 zm: f First, we have, for any constant
Di

Eu(K1) — Ey(Ky) = N (7
@ D lflp)—clpi—1/m)] = Zf (pi) Z (pi — 1/m)

m
The functionf(z) has a fairly simple formf(0) = 0, i

f(/m) =0, f(z) < 0for 0 < = < 1/m, f(z) is S - {(Zpi)l]

monotonically increasing for > 1/m, and f(z) —
> s

x as z becomes large. Howevef,(z) is not convex.
To develop a lower bound o®, (K:) — E,(K1), we
develop a convex lower bound ofi(x), valid for all

z € [0,1] whenN < m: in particular, we have that

fle) = gl = 1/m) QM= 1m) Sy >3 (g~ 1ml) + £ fm) (s~ 1/m)]

ith g(z) = ‘

Wi ) S allp — 1/ml).

{f(z+1/m)—f’(1/m)z, 2€1[0,1/N —1/m] i
fA/N) + (z+1/m—1/N) = f'(1/m)z, ow. Now Jensen implies

This lower bound ony(.) looks more complicated than

itis: for values ofx close tol/m, wheref(x) is convex, Zg (lpi—1/m|) > g ( Z |pi — 1/m|> > g(e/m),
we have simply reflected(z) about the pointl /m and

added a line in order that the reflected function is smooth.

Forz > 1/N, we have replaced with a linear lower where the last inequality is by the fact thgis increasing
bound of slopel (the limiting slope forf(z) for large andp € Ha. Thus we find that

x). Here the point: = 1/N is chosen as the solution of
the equation > f(pi) = mg(e/m),

!
fiz)=1 1/m<z <1 and therefore

this solution exists uniquely whem > N. The deriva- m—1\V"1
tive f'(1/m) is easily computed as Eu(K1) = Ep(K1) =2 Nm (T) g(e/m).
!
f@/m)=(N-1)/(m—1), Now we need to look ag(.). Near0, g(.) behaves like

and similarly we may directly computg’(1/N) = 1. a quadratic matched tf at the pointl /m:

The key is thay(|z|) is convex, symmetric, and strictly A, )
increasing in its argument see Fig. 1 for an illustration. 9(z) = 9% +o(2%), 2 =0,



with symmetry we may write, £ | (S — S)?
2 N
4 = 8af(;v) 2E{xi}1<i<N1~p[ Z pip; (1(ni =0Nn; > 0)
z z=1/m 1<7,7<m
m N N—2
= (m) [2(]\7 -1 -=) +1(n; =0Nn; > 0))]
—(N-=1(N —2)z(1 - x)N73:| = szipjp{zi}lgiSN—lNP(ni =0Nmn; >0)
z=1/m i,j
= 2N+ O(N?/m). Nl p; \ V!
= N pi(l—p)" 11— —
;ppg( Pi) < ( l—pi) >
Thus, we haver, (K1) — E, (K1) B B
= szlpj (F=p)" = =pi—p)")
> N (P2 (1 0 ) + o )
= m m? m? < NZP; ( (1 _pJ)N_l)
N2 2
= 1+ OW/m)), N
= E.(K1) - E,(K1)+ N (1 - (T) )
which completes the proofl
P P _ = Eu(K1) — Ep(K1) + O(N?/m).
On the other hand, we may bound the variancésef
underp as follows: (Here n; denotes the number of samples observed to
have fallen in biri after N —1 samples have been drawn,
Lemma 2. the second-to-last equality follows from equation (2), and
the inequality uses the fact thet —y)" — (1 —y —x)"
Vary(K1) < Eu(K1) — Ep(K1) + O(N?/m). is a decreasing function af for n > 1, « € [0,1], and

O<y<l—z)O
Now we may construct our test faly versusH :
Proof: It is not difficult to computeVar,(K1) we rejectHy if

exactly: Var, (K1) = N1
TEEu(Kl)—K1:N<L_1) — Ky > T,

2 N—2 m
Ey(K1)—Ep(K1)*+N(N=1) Y pip; (1—pi—p;)~ 2.
ity for some threshold,.

Theorem 3. The size of this test is
However, we found it inconvenient to bound this for-

mula directly. Instead, we use the Efron-Stein inequality PuT>Ta) =0 < N2 ) .
(Steele, 1986) - mT2

The power is greater than

(S — SO Bu(Ky) — Ey(Ky) + O(N*/m)
g BT 2T0) 21 = =5 (R~ By(Ky) —Tw)?

Var(S) <

[\D\»—l

] ) ] ) uniformly over all alternative® € Ha4. If
where S is an arbitrary function ofV independent r.v.'s

x; and N264/m—> 0,

@) , then the thresholdl, may be chosen so that the size
S =Sz, 22, Ty, TN) tends to zero and the power to one, uniformly over all
p € H, (i.e., this condition is sufficient for the test to
denotesS computed withz substituted forz;, where be uniformly consistent). For example,
x} is an i.i.d. copy ofz;. We will apply this inequality
to S = K1, with x; the independent samples frgm
Since we are dealing with i.i.d. samples here, bguffices.

T, = N>¢®/2m



We should note that the above bounds are basetoosem/2 independent Bernoulli r.v's; € {—1,1}
on a simple application of Chebysheff's inequality andi.e., z samples uniformly from the corners of the/2-
therefore are by no means guaranteed to be tight.  dimensional hypercube). Givefx;}, set

Proof: We have thatt,(T)) = 0 and V,(T) = )
(i) = {(1 +ezip0)/m i even,

(1 — ez(i+1)/2)/m 7 Odd

O(N?/m) (by lemma 2), and therefore by Chebysheff
the size is bounded by

2 Such aq will be a probability measure satisfying the
Pu(TZTa):O<N ) 9 P Y fving

mT2 equality||u—g||: = € (and therefore lie on the boundary
of the alternate hypothesis claggs) with probability

For the power, we have that one, assuming < 1. We let Q(@) — [ q(#)du(q)

P, (T <Ta) = Po(T—-EyT)<Ta—EyT)) denote the resulting probability measure. Similar mixing
2 measures have appeared, e.g., in (Ritov and Bickel,
Ep(T) + O(N”/m)
= (Bp(T) = Tw)? 1990); this mixture of indistinguishable distributions

in by | 5 technique is a fundamental idea in the minimax density
again by lemma <. - . estimation literature.
Now, by lemma 1, it is clear that for the size to tend To compute the corresponding bound, we use the

tﬁ z?ro and }he power to tend to one, it is sufficient thaélegant (albeit somewhat involved) method outlined in
the “z-score Pollard’s “Asymptopia” minimax notes (Pollard, 2003).
1/2
N%e?/m _ N?¢'/m / 1) First, we substitute a more manageabledound
(N2/m + N2e2/m)1/? 1+ €2 for the Ly norm:

tends to infinity. Sincé) < ¢ < 2, ande*/(1+¢€*) ~ €* 11Q — ully < 1|Q — ullo.
for € € [0, 2], the proof is complete

2) Next, we write out the likelihood ratio:

LOWER BOUND Q=27 > Q.
The theorem above states thatc*/m — oo is ze{—1,1}m/2

a sufficient condition for the existence of a uniformly with
consistent test of{, vs. H4. The following result is a aQ N
converse: 70 (@) = ]1:[1(1 + G(z5,2)),
Theorem 4. If N2e¢* < mlogh, then no test reliably _
distinguishesH, from H4; more precisely, for any test Wh?r_EG(xh z) = €2j3 OF —€2(j41) 2, depending
with critical region B and size bounded away from one, asj is even or odd, respectively. Note that
the minimum power E.G(zj,2) =0

inf p(z)dx for all j, z. Define

pPEH 5 B d
remains bounded away from one. A(Z) = %(:K)

Proof: Itis a well-known (LeCam, 1986; Ritov and N
—m/2
Bickel, 1990; Donoho and Liu, 1991) consequence of =2 Z <1 + ZG(%AZ) + Z G(xj,2)G(zy,2) + . --)7
the classical Neyman-Pearson theory that no uniformly z i=1 i>3’
consistent test exists if the; Ldistance the sums ending with thé/-fold product.
3) Now we expand the 4. norm:

)

1 1Q — ull3 = Eu(A —1)°

is bounded away fron2 for any u € P(Ha), with 9 . ,
P(Ha) the class of all probability measures difi, (A1) =2 Z <1+Z G(zjvz)+z Gz, 2)G(2y, 2 )+--~)-
J

(@) - / @i

and ||.||; denoting the L norm on the sample space 22! iy
Ze{1,...,m}" equipped with the counting measure. Because of the independenceagfand andz, and

We develop this bound for one particular tractable the fact thatG has zero mean, we may cancel all
mixing measurg:. (We make no claims that this measure of the terms that are not products of the form
will lead to optimal bounds.) Assume thatis even. (An 5 m)2
obvious modlflcayon applies ifn is odd._) We c.hoosq. Hi(z,7) = B.G(z;,2)G(z;, 7)) = 2¢” Z (2, 2),
randomly according to the following distribution(q): m



with v(z;, 2;) = 1if z; = 2§ andv(z;, 2}) = —1
otherwise. So we have

S (S

+ > Hi(z,2 ) Hy(z,2) +. )

>3’

27> [+ Hi(z,2') — 1.

z,z! ]

E.(A—1)

4) The above term may be regarded as an average

over two i.i.d. r.v)sz and z’:

EJA-1)?=E... [[0+H;z2)) -1
J
5) Now we uselog(1 +¢) < ¢
H(l + H; (z7 Z/)) < exp (Z Hj(zv Zl)) .
J J
6) Finally, we compute

E, . exp (Z Hj(z, z/)>

J

(1 (2]\762) 1 < 2N62)>m/2
=| z exp + —exp | —
2 m 2 m

and use the bound

% (exp(u) + exp(—u)) < exp <u§2> ’

to obtain

N2
E, . exp ZH]'(Z7Z/) Sexp( - >

J

Putting everything together,

N2t 1/2
|@—Mhs@m( G)fQ
m

Thus if N2m™'e* is not sufficiently large, thefQ—wu||

is bounded away fror, and no uniformly consistent test

exists.[J

An alternate lower bound

same uniform-hypercube mixture prior ¢hs as above.
Letting n; denote the number of samples observed to
have fallen into the-th bin, we have

L(T_ilHA) n; mn;
—— = E> 1—226)" "1 (1 4 2;/2€)™
L([Ho) Ml}_,m( e/ (Lt )
= H E(l — Zi/QG)niil(l + Z,‘,/QE)ni
i=2,4,...m
- 1 <(1 + e (1— ™
i=2,4,...m

I1

+u+amu—dmﬁm
i=2,4,...m

- (a-o + )2
I1

2ym; di\ 2 di\ 4
i:244.4m(1 *) <1+<2>6+<4>6

where we have abbreviateth, = min(n;,n;—1) and
d; = |n; —n;—1], and used the independencezgf (We
interpret (%) as0 wheneverd; < k.)

Now note that the above multiplicands are greater than
one only ifd; > 2, and less than one only h; > 1.
And since the number of “two-bin coincidences” — pairs
of bins into which two or more samples have fallen — is
bounded in probability ifN = O(y/m), the likelihood
ratio is bounded in probability as well, implying that the
error probability of any test is bounded away from zero,
and the proof is complete.

Finally, it is worth noting that the expected numbers of
the eventgm,; = 1,d; = 0) and(m; = 0,d; = 2) scale
together, leading (after an expansion of the logarithm and
a cancellation of the® terms) to exactly theVZe*/m
scaling we observed previously.

Batu, T. (2001)Testing Properties of Distribution$hD
thesis, Cornell.

Bellare, M. and Kohno, T. (2004). Hash function balance
and its impact on birthday attackEUROCRYPT
pages 401-418.

—+

The above result provides a quantitative, nonasymBioom, D. (1973). A birthday problemThe American
totic lower bound on the error probability, but the bound  Mathematical Monthly80:1141-1142.
is loose and the result becomes useless for a fixdd Braess, D. and Dette, H. (2004). The asymptotic mini-
N?/m becomes too large. It is worth deriving a simpler, ~ max risk for the estimation of constrained binomial
asymptotic result to handle this case of large but bounded and multinomial probabilities. Sankhya 66:707—
N?/m: 732.
Theorem 5. If N2/m remains bounded, then no te‘StCamarri, M. and Pitman, _J. (2000). Limit distributions
reliably distinguishesto from Ha. and random trees der.l\./gd from the plrthday problem

with unequal probabilities. Electronic Journal of

Proof: The proof here is much more direct. We Probability, 5:1-18.

write out the ratio of marginal likelihoods, using theClevenson, M. and Watkins, W. (1991). Majorization



and the birthday inequalitfMathematics Magazine
64:183-188.

Das Gupta, A. (2005). The matching, birthday and the
strong birthday problem: a contemporary revielv.
Statist. Plann. Inferencel30:377-389.

Diaconis, P. and Mosteller, F. (1989). Methods for
studying coincidences.Journal of the American
Statistical Association84:853-861.

Donoho, D. and Liu, R. (1991). Geometrizing rates of
convergenceAnnals of Statistics19:633—701.

LeCam, L. (1986). Asymptotic Methods in Statistical
Decision Theory Springer, New York.

Munford, A. (1977). A note on the uniformity as-
sumption in the birthday problemThe American
Statistician 31:119.

Nemenman, |., Bialek, W., and de Ruyter van
Steveninck, R. (2004). Entropy and information
in neural spike trains: Progress on the sampling
problem. Physical Review E69:056111.

Paninski, L. (2004). Estimating entropy on m bins
given fewer than m sampleslEEE Transactions
on Information Theory50:2200-2203.

Paninski, L. (2005). Variational minimax estimation of
discrete distributions under KL lossAdvances in
Neural Information Processing Systems'.

Pollard, D. (2003). Asymptopia
www.stat.yale.edu/pollard.

Ritov, Y. and Bickel, P. (1990). Achieving information
bounds in non- and semi-parametric modélsnals
of Statistics 18:925-938.

Steele, J. (1986). An Efron-Stein inequality for nonsym-
metric statistics Annals of Statistics14:753—758.



