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1. Introduction. Variations of the expansion and compression theorems 
of KrasnosePskii have been used frequently (see, for example, [1], [3], 
[4], [5], [6], [8], [9]) to obtain existence of solutions to various problems 
involving ordinary and functional differential equations where the solution 
is required to lie in some cone. These theorems apply to operator equa
tions of the form x = Ax. 

In §2 of this paper we establish a more general framework to treat 
equations of the form Lx — Nx where L is not necessarily invertible; 
we obtain Theorem 2.3 as a very simple consequence of invariance under 
homotopy of the Leray-Schauder degree. This theorem is in the same 
spirit as the continuation theorem of Mawhin [7] for coincidence degree. 

In §3 we illustrate the use of this theorem by giving conditions (Theo
rems 3.1 and 3.2) under which the problem x(t) = f(t, x(t)), x(0) = x(l), 
has a nonzero solution x(t) satisfying x(t) ^ 0. 

Finally, in §4 we discuss the problem x(t) = f(t, x(t)), x(0) — x(l) = 
x(0) — x(l) = 0 where we again seek non-negative solutions. 

2. A coincidence theorem for convex sets. Let X and Z be real Banach 
spaces. We will consider a linear mapping L:dorn L a X -* Z and a not 
necessarily linear mapping N: X -» Z with the following properties. 

a) L is Fredholm of index 0. This entails that Im L be closed and that 
dim Ker L = codim Im L. As a consequence of this property there exist 
continuous projection mappings P: X-± X and Q: Z -• Z such that 
I m P = Ker L and Ker Q = Im L. These projections induce a decomposi
tion of Zand Z into corresponding subspaces as indicated in the following 
diagram. 
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Im L = Ker 

Since dim Im Q = codim Im L = dim Ker L, there is an isomorphism 
/ : Im Q -• Ker L. Moreover, L|Im(7 — P) has an inverse which we shall 
denote by KP. It is well known (see [7]) that Lx = Nx is equivalent to 

x = Mx = Px + JQNx + KP(J - Q)Nx. 

(b) N is L-completely continuous. This entails that the mappings QN: 
X -> X and KP(I — Q)N: X'-* X are compact on every bounded subset 
of X. 

We will let C denote a nonempty closed convex subset of Zand y\ X -> 
C will denote a continuous retraction, i.e., y\C = /. Finally, fl will denote 
an open bounded subset of Zand we assume that y maps bounded subsets 
of Q into bounded subsets. Let M = M o y. It then follows that M is 
completely continuous. 

PROPOSITION 2.1. T/'Lx ^ Nxfor x e C fl dQ H dorn L and Miff) c C, 
f/*e« d[7 — M, £?, 0] w defined {where d[I — 0, £?, 0] denotes the Leray-
Schauder degree of the compact perturbation 0 of the identity on the set 
Q with respect to 0). 

PROOF. Suppose Mx = x for x e dQ. Then x e C fl dorn L since 
M(Q) c Cf i dorn L Thus Mx = (M © ^)x = Mx = x. Since Mx = x is 
equivalent to Lx = Nx, we have a contradiction. Thus Mx ^ x for 
xedQ and the Leray-Schauder degree is defined. 

PROPOSITION 2.2. //</[/ - M, £, 0] # 0 aw</ M(X?) c C, then Lx = Nx 
/zos a solution in C f| Q. 

PROOF. This follows immediately from the proof of Proposition 2.1. 

REMARK. An alternative to Proposition 2.2 is to take a set Q c C. With 
this approach it would be unnecessary to require M(Q) c C. On the other 
hand, we would need Lx ^ Nx on the entire boundary dQ. Thus Proposi
tion 2.2 provides a trade-off. Note further that the compression and 
expansion theorems of Krasnosel'skii may be obtained by using Proposi
tion 2.2 and some clever homotopy arguments (see [8]). 
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Next we prove our main result. 

THEOREM 2.3. / / 

A) (P + JQN)r(Q) a C and M(Q) c C, 
B) Lx * XNx, for x e C fl dQ f| dorn L and A e (0, 1], and 
C) dB[I - (P + /ßA0 r |K e r L , Ker L fl 0, 0] # 0 (dB denotes the 

Brouwer degree), 
then Lx = Nx has a solution x e C f) Q. 

PROOF. Consider the family of mappings 

M(x, A) = (P + JQN)Tx + XKP(I - ß)JVrjc 

for A e [0, 1]. By standard arguments, Lx = AN* is equivalent to x = 
Af(x, A) where M(x, X) = Px + JQNx + A#P(7 - Q)Nx. We first show 
that M(x, A) =£ x for x e dQ and A e (0, 1]. If x e 30, then xeQ and >4) 
implies that (P + JQN)yx e C and Mx e C. But then 

(1 - X)(P + JQN)rx + A^x = M(x, X) e C. 

Hence, if x = M(x, A), then x G C fl dQ- Thus B) gives Lx ^ ANx, which 
implies M(x, X) = M(x, A) ^ x, a contradiction. 

For A = 0 the statement follows from the implicit assumption in C) 
that the Brouwer degree is well defined. Thus by the property of invariance 
under homotopy 

d[I - M(-, 1), Q, 0] = d[I - M(., 0), Q, 0]. 

But M{ •, 0) = (P + JQN)f. Since the range of this mapping is in the 
finite-dimensional space Ker L, 

d[I - M(., 0), Ö, 0] = dB[I - (P + /ßAO r |KerL, Ker L R U , 0]. 

The conclusion of the theorem then follows from C) and Proposition 2.2. 

3. Application to periodic solutions of first-order systems. In this section 
we consider the problem 

(3.1) x{t) = f{U x{t)) 

(3.2) x(0) = x(l) 

where/: [0, 1] x R* -> Rn is continuous and/(0, •) = / ( l , •)• We seek 
nonzero solutions satisfying 4 0 ^ 0 on [0, 1]. 

In order to apply Theorem 2.3 we define appropriate operators as
sociated with (3.1)-(3.2). Let X = {x: [0, 1] -> R*|x is continuous and 
x(0) = x(l)}, (X is equipped with the norm ||x||0 = max[0)1] \\x{t)\\) 
Z = X, dorn L = {xe X\x is continuous on [0, 1]}, L: dorn L ~> Z, x H* x, 
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and N: X-+ Z,x *-+/(-, *(•))• We note that Ker L = {x e dorn L\x(t) = 
ceR" for all t e [0, 1]}, Im L = {z e Z\\lz(s)ds = 0} (Note that Im L is 
closed), and dim Ker L = codim Im L = n. Thus L is linear and Fred-
holm of index 0. We define P: X -• Ker L , n - > $lx(s)ds, and g : Z -> Z, 
z i-> Jiz(.s)*&. We note that P and g induce the structure described in §2. 
In particular, for zelmL, 

Kpz = I G(s, t)z(s)ds 
Jo 

where 

^ x fc 0 ^ s < t 
(S — 1, f ^ J ^ 1. 

It is easily verified that N is L-completely continuous. We will let ||x||2 = 
X'X for xeRn and / will be taken to be ßl where / is essentially the 
identity mapping. 

THEOREM 3.1. Let 0 < r < Rbe constants. Suppose 
i) / ( / , x)x > OJorx ^ 0owrf||jc|| = R, 

ii) f(t, x)-x < 0,for x è 0am/||jc|| = /*, and 
iii) f(t, x) ^ -xjorx^Oandr ^ ||jc|| ^ i*. 

Tfte« (3.1)-(3.2) has a solution satisfying r < \x{t)\ < R and x(t) ^ 0. 

PROOF. Let Û = { j c e l : r < \\x(t)\\ < R for t e [0, 1]}. We define 
C = {xeX: x(t) ^ 0 on [0,1]} and r : X -+ C by (x^f ), *2<0> • • • » **(0) »-> 
(l*i(0l> 1*2(01 > •••» l*»(0D- F ° r convenience we will use the notation 

r(*X0 = r*(0-
A) We first show that M(Q) c C. We have 

M* = J / , ( 0 * + js£/fo r,(0)* + £c(*, OL/fo r*(0) 

•/ 0 

If xeQ, then r ^ ||JC(0II ^ i* which implies that r ^ ||r,(0ll è R for 
f e [0, 1]. Thus, by iii) we have/fa rx(s)) ^ -rx(s). Thus, 

Mx = VTx(s)ds + P[/3 + G(s, t) - VG(T, t)dz]f(s, Tx(s))ds 
JO JO JO 

= (%*(*)* + f #(*. 0/fo r*(*))*> 
JO JO 

where 

fj3.+ 1/2 - (t - J ) , 0 ^ s < * 
H^ f) 1/3 - 1/2 + (s - t\ t ^ s ^ 1. 
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Note that H(s, t) 1 0 if ß è 1/2. Thus, we take 0 = 1 / 2 . Then 

J 0 

Second, we assert that (P + JQN)y(Q) c C. We have 

(P + JQN)rx = £r*W* + y J o / ( s ' Txis))ds-

If x e ö , then 

The assertion follows. 
B) Lx 7e XNx, for x e C H 30 fi dom L and A e (0, 1]. Suppose Lx — 

XNx for some x e C f| 9ß fi dorn L. Then r g ||x(OII ^ R and x(0 ^ 0 
on [0, 1], Suppose for definiteness that ||x(f0)ll = R f ° r some t0e[0, 1]. 
We may assume without loss of generality that t0 e [0,1). Then ||x(0ll2 has 
a maximum on [0, 1] at t0 and we must have 

d(\\x(tW) 
dt ^ 0. 

t=to 

But 

= 2x(t0)-x(t0) = 2x(t0)-Xf(tQ, x(t0)) > 0. d(\\x(tW) 
dt \t=to 

Thus we reach a contradiction. A similar contradiction is obtained in the 
case where ||x(f0)ll = r-

C) dB[I - (P + JQN)r\KerL, ker L f| Û, 0] # 0. In this case, ker L f| 
Û = { c 6 R * | r < ||c|| < 2*}. We write ker L f| Ö = ^ - Br where £m 

denotes the ball of radius m centered at the origin. We have 

Ic - (P + JQN)rc = c - r(c) - y £ / ( s , r (^))* = #*) . 

We first show that dB[cj)(c\ BR, 0] = 0. Let y e R* be chosen so that 
yt > R for i = 1, 2, . . . , « . We consider the family of mappings for 
A 6 [0,1] 

* - WP) - y £ / f r r W ) * - 0 - A-

Note that if e e dBR, then ||c|| = R. If 

* - W - y j / ^ ' rto)* - 0 - ^ = °> 
then 
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c = W + 4 Jo-K* r{c))dS " ° ~ A)>" 
This implies that c ^ 0. Thus, c = Ac + Xßllf{s9 c)ds + (1 - A)j>. 

Clearly this relation is not satisfied if A = 0. On the other hand, if 
A e (0, 1], we would have 0 < (A/2)JJc../fa c)ds = c-(c- y)(l - A) ^ 0. 
Thus dB[<f>(c), BR, 0] = dB[I - j , £*, 0] = 0. 

Next, we show that dB[<f>(c), Bn 0] = 1. Consider the family of mappings 
c - *r(c) - tt/2)ft/fo r W ) ^ ^ [ 0 , I]- If IMI = r and c - Ar(c) -
W/2)Jl/fo ric))ds = 0, then c = Ar(c) + (A/2)jJ/(s, r(c)>ft ^ 0. Thus 
c = Ac + (A/2)JJ/(^, c>fe, and 0 = (A/2)jfò/(s, c)ds - (1 - A)c. But 
then 0 = (mW(s, c)-cds - (1 - X)c-c < 0. Thus </ß[0(c), £ r , 0] = 
dB[I, Br, 0] = 1. Thus dß[cj, BR - Br9 0] = 0 - 1 ^ 0. Theorem 2.3 then 
yields the desired conclusion. 

REMARK. The verification that M(Q) a C depended heavily on the 
particular choice for P. To illustrate this we obtain an alternative theorem 
to Theorem 3.1 by choosing the projector P: X -+ ker L, x *-+ x(0). In 
this case 

Kpz = f G(s9 t)z(s)ds = \ z(s)ds 
Jo Jo 

where 

„ , x fl, 0 ^ s < t G(s, 0 = L 
v ' (0, t ^ s ^ 1. 

THEOREM 3.2. Lcf 0 < r < R. Suppose i) and ii) of Theorem 3.1 arc satisfied 
and 

hi') /(*, JC) ^ g(0, /or x ^ 0 a«^ r ^ ||x|| ^ i* wAcrc g: [0, 1] -• R* 
is Lebesgue integrable and 

(3.3) (2 - * ) £ * ( * ) * + (1 - O j 1 ^ ) * ^ 0 

/ o r / e [0,1]. 
Then (3 A)-(3.2) has a solution satisfying r < \\x(t)\\ < Randx(t) ^ 0. 

PROOF. We define 7% Q and C as in the proof of Theorem 3.1, but with 

ß = l: _ 
A) M(Q) a C. In this case we have for x e Q 

Mx = r,(0) + fas, rÀs))ds + fa(s, t)[f(s, rJM) - fa(z, UW^ds 

•z fais, t)f(s, rx(s))ds, 
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where 

(2 - f, 0 ^ s < t 
v } [1 - t, t S s £ 1. 

Thus, 

Mx ^ (2 - f)f *(*)* + (1 - t)Vg{s)ds £ 0. 

To complete part A) we show that (P + JQN)j-(Q) c C. We have, for 

x e j 

(Z5 + /ßAOrf*) = TAO) + fas, Tx(s))ds 

è P/fr r )̂)A S Pi**)* è 0, 
Jo Jo 

the last inequality being deduced from (3.3) with t = 1. 
Parts B) and C) are identical to the proof of Theorem 3.1 and we again 

apply Theorem 2.3 to obtain existence of a solution in C fl 0. 

REMARK. In either Theorem 3.1 or Theorem 3.2 the signs in (i) and (ii) 
may be reversed. If condition (i) is removed, we obtain non-negative 
solutions. 

4. Application to periodic solutions of second-order systems. In this 
section we consider the problem 

(4.1) * = / ( ' , * ) 

(4.2) x(0) - x(l) = x(0) - x(l) = 0 

where/: [0, 1] x Rn -> R* is continuous and/(0, x) = / ( l , x). Associated 
with problem (4.1)-(4.2), define X = {x: [0, 1] -• Rn\x is continuous 
and* satisfies x(0) — x(l) = 0} with the norm ||x||0, Z = X, dorn L = 
{x e X\ x is continuous on [0, 1] and x(0) — x(l) = 0}, X: dorn L-+ Z, 
x »-• x, and N: X-> Z, *>->/(•, *(•))• We note that Ker L = {xe 
dorn L\x(t) = ceR» for all f e[0, 1]}, Im L = {zeZ|ftz(s)ds = 0} 
(Im L is closed), and dim ker L = codim Im L. Thus L is linear and 
Fredholm of index 0. We define P: X-+ Ker L, x *-+ $lx(s)ds, and 
Q: Z -» Z, z H-» Jjz(s)ds. Again, P and Q induce the type of structure 
described in §2. In particular, for z e Im L, 

Kpz = P G(s9 t)z{s)ds 

where 
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\s(2t~2
l-s\ 0£s<t 

G(s, t) = I 
Ys-W<-2\ r i , S i . 

It is again easily shown that N is L-completely continuous. In the next 
two theorems we shall again apply Theorem 2.3. 

THEOREM 4.1. Let n > 0 be a vector in Rw. Suppose there exist constants 
a, r and R with 0 ^ a ^ 8 and 0 < r < R such that 

i) n-/(f, x) > Ofor x ^ 0 andn-x = R, 
ii) n-/(V, x) < Ofor x ^ 0 andn-x = r, and 
iii) f(t, x) ̂  —ax for x ^ 0 ß«d r g n-x ^ i*. 

77ze« (4.1)-(4.2) /zas a nonzero solution x satisfying x(t) ^ 0. 

PROOF. Let us define 0 = {xe X\r < n-f(x(t)) < R}. We assert that 
condition (B) is satisfied. Suppose Lx = ÂNx for some x e dû fi C a n d 
A e (0, 1]. We would have x(t) = ;i/(f, x(0), l e (0, 1], x(0) - x(l) = 
i;(0) - x(l) = 0, and x(t) ^ 0. Let g(t) = n-x(t). Suppose there exists 
tQ e [0, 1] such that g(tQ) = m a x ^ u g(t) = R. Then g"(t0) ^ 0. On the 
other hand, 

g"(t0) = n-x"(t0) = An./(^o, xfa)) > 0. 

A similar contradiction is obtained if g(t0) = min/e[0,i] g(t) = r. The 
assertion follows. 

Next we show that M{Q) c C. If X G Ö , then f(s, rx(s)) ^ - ayx{s), 
Hence 

Mx = f \x(s)ds + |3 f Vfe r,W)^ + f ̂  OL/to r*(*)) 
•/ 0 »F 0 «10 

- f 1RT, rx(f))dv]ds = f V , ^ ) * + f 1 ^ . t)f(.s, rÂs))ds, 
JO JO JO 

where 

H(s, t) = ß + G(s, 0 - f * G(J, <)*• 
•J 0 

If j3 is taken to be 1/12, then it can be shown that 0 ^ H(s91) ^ 1/8. Thus, 

Mx ^ (1 - a/8) \1rx(s)ds ^ 0. 

Moreover, it is easily seen that (P + JQN)y{Ü) <= C. Therefore, condition 
A) is satisfied. 

Finally we outline the proof of condition C). In this case we have 
Ker L f| Q = {e e Rn\r < n-^c) < R}. As in the proof of Theorem 3.1, 
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it can be shown that dB[<f>(c), DR, 0] = 0 and dB[<f>(c), Dn 0] = 1 where 
Dp - {ceRn\ n-7-(c) < p] and<f>(c) = c - y{c) - \\f{s, y{c))ds. Hence, 

dB[I - (P + ^ß^)rlKerL5 0 H Ker L, 0] 

= dB[$, DR, 0] - dB[(j>, Dr, 0] 

= 0 - 1 ^ 0 . 

We conclude this section by using an a priori bound lemma (Lemma 
4.4) to obtain nonnegative solutions to (4.1)-(4.2). Our result, Theorem 
4.5, is in the spirit of [2]. 

LEMMA 4.2. There exist CCQ > 0 and p0 > 0 such that ifO<a^ao and 
M ^ p0, the solution z(t, M) to the scalar initial value problem z = — az, 
z(0) = M, z(0) = 0, satisfies z(t, M) è R on [-1/2, 1/2] where R > 0 is 
given, 

LEMMA 4.3. Suppose 0 < a ^ cc0. Assume thatf(t9 x) ^ —axfor z ^ 0 . 
7/*x w a nonnegative l-periodic solution to x{t) = f(t, x(t)) with n • x(tQ) = M 
andn- x(tQ) = Ofor some t0 e [0,1], then n-x(/) ^ z(t — t0, M) on [tQ — 1/2, 
'o + 1/2]. 

The above lemmas are proved by simple direct computation, therefore, 
their proofs are omitted here. It may be shown, in fact, that a0 = %\2. 

LEMMA 4.4. Suppose the hypotheses of Lemma 4.3 are satisfied. Further 
assume n • f(t, x) < Ofor n • x §: R andx ^ 0. Ifx is a nonnegative l-periodic 
solution to x(t) = f{t, x(t)), thenn*x(t) ^ p0. 

PROOF. Let u(t) = n-x(t). Suppose max u(t) = u(t0) = M > p0. Then 
u(t0) = n-x(t0) = 0 and from Lemma 4.3, n-x(t) ^ z(t — f0, M) on [f0 — 
1/2, t0 + 1/2]. This relation and Lemma 4.2 imply that n-x(t) ^ R on 
[t0 - 1/2, t0 + 1/2]. Further, there exists tx e [t0 - 1/2, t0 + 1/2] such that 
u(ti) = min u(t). On the other hand, w"(>i) = n*.*"(*i) = n - / ^ , x(t{)) < 
0, a contradiction. 

REMARK. In Lemmas 4.3 and 4.4, x and/were extended by 1-periodicity 
when needed. 

THEOREM 4.5. Let n e Rn be positive. Suppose the following conditions 
are fulfilled: 

i) there exists R > 0 such that n-f(t, x) < Ofor x^0 and n-x ^ R; 
and 

ii) there exists a with 0 < a ^ 8 such thatf(t, x) ^ —ax for x ^ 0 . 
Then (4.1)-(4.2) has a nonnegative solution. 

PROOF. We use the notation preceding Theorem 4.1. First we observe 
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that exactly as in Lemma 4.4, any possible solution to x(t) = Xf(t, x(t)), 
X e [0, 1], x(0) - x(l) = JC(0) - x(l) = 0, x(t) ^ 0, satisfies n-x(t) g pQ. 

Let Q = {x e X\n-f(x(t)) < p0 + e}. We apply Theorem 2.3. To verify 
condition A) we use the same argument as in Theorem 4.1. Condition B) 
follows immediately from the a priori bounds obtained above. 

Finally, we suggest the proof of condition C). In this case we have 
Ker L fl 0 = {c e Rn: n-f(c) < p0 + e}. As in the proof of Theorem 4.1 
it can be shown that dB[<j>{c), Dpo+£, 0] = 1, where <f>(c) = c — f{c) — 
jo/to r(c))ds. Hence 

dB[I - (P + /ßAOrlKer L , û n Ker L, 0] = dB[<f>, Dpo+£, 0] = 1 ^ 0. 

NOTE. The authors are indebted to the referee for substantial improve
ments in clarity and technical quality. 
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