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Abstract

The adaptive immune system arose 500 million years ago in ectothermic (cold-blooded) 

vertebrates. Classically, the adaptive immune system has been defined by the presence of 

lymphocytes expressing recombination-activating gene (RAG)-dependent antigen receptors and 

the MHC. These features are found in all jawed vertebrates, including cartilaginous and bony fish, 

amphibians and reptiles and are most likely also found in the oldest class of jawed vertebrates, the 

extinct placoderms. However, with the discovery of an adaptive immune system in jawless fish 

based on an entirely different set of antigen receptors — the variable lymphocyte receptors — the 

divergence of T and B cells, and perhaps innate-like lymphocytes, goes back to the origin of all 

vertebrates. This Review explores how recent developments in comparative immunology have 

furthered our understanding of the origins and function of the adaptive immune system.

Most studies that have defined the field of immunology were done in mammals, especially 

mice and humans, and most of our laws and paradigms are derived from these models. Yet, 

one of the fairly new laws developed by Janeway and Matzinger1,2, which states that 

adaptive immunity is called to action not by foreignness but rather by external or internal 

danger via pattern recognition receptors (PRRs), has its origins in the study of Drosophila 

melanogaster Toll-like receptors3. Additionally, more than 50 years ago, the divergence of 

two major subsets of lymphocytes (namely, B cells and T cells) was partially revealed in 

studies of the bursa of Fabricius in birds4. In order to appreciate the origins of adaptive 

immunity, we must look to the cold-blooded (also referred to as ectothermic or 

poikilothermic) vertebrates, as well as to the immediate ancestors of the vertebrates, the so-

called lower deuterostomes. Breakthrough discoveries over the past decade have ushered in a 

growing awareness of adaptive immune origins and alerted us to new possibilities.

A convenient way to appreciate the evolution of immunity is to compartmentalize the 

immune system into components that are conserved over time versus those that change 

rapidly, an idea originally put forward by Jan Klein5. Certain immune features, which will 

be described in some detail in this Review, such as the structure and function of 
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immunoglobulin M (IgM) and the presence of a thymus, spleen, conventional αβ T cell 

receptors (TCRs) and MHC class II molecules, are highly conserved in almost all 

gnathostomes (jawed vertebrates). By contrast, other immunological components like IgD, 

the γδ TCR, natural killer (NK) receptors (NKRs) and nonclassical MHC molecules are 

plastic, always present but often differing in gene numbers, domain organization and 

function. Keeping this standard in mind provides a framework for understanding the 

foundation of the immune system: preserve the tried and true, but permit evolutionarily rapid 

changes with other complementary features to combat ever-changing pathogens.

When studying the evolution of any system, one makes the reasonable assumption that 

features shared between two divergent species were likely present in their common ancestor. 

Some similar characteristics, however, may be derived by convergent evolution; examples 

include the emergence of two different sets of antigen receptors in jawless and jawed 

vertebrates6 and of single-domain immunoglobulin variable (V) regions in sharks and 

camels7. One must also recognize, and this is a common egregious error, that the shorthand 

manner of drawing representative species in figures (for example, see FIG. 1) is not meant to 

imply that the species derived from older taxa are ancestral to those derived from a more 

recent common ancestor. That is, the common ancestor of two distantly (or even closely) 

related organisms almost certainly was quite different from either descendant8,9. Finally, 

certain characteristics of a system can be lost in certain groups, which is the case for many 

of the bony fish that have been examined but is also true of all vertebrate classes. Keeping all 

these evolutionary attributes in mind, however, the salient adaptive immune features that we 

take for granted arose over a fairly short period of time in early gnathostomes, most likely in 

the extinct placoderms, in the so called evolutionary ‘Big Bang’10 (Fig. 2).

While the jawless fish have cells like T cells (both αβ and γδ T cells) and B cells (FIGS. 

1,2), as well as a thymus equivalent, the MHC has proved elusive; like the variable 

lymphocyte receptors (VLRs), an MHC may have arisen in this group via convergent 

evolution11,12. Mucosal adaptive immunity is present and unique for each group, as studied 

in amphibians and bony fish (and mammals)13–15. Cartilaginous fish, bony fish and 

amphibians display features that distinguish the entire vertebrate phylum (FIG. 1) but also 

(in some cases) have distinctive features that are found in subtaxa. Prominent in the bony 

fish, and consistent with the general rapid evolution of this vertebrate class, the immune 

system has unique features in different taxa such as the loss of an MHC class II system and 

certain immunoglobulin isotypes16,17. Cartilaginous fish have a distinctive immunoglobulin 

organization that has permitted the emergence of antigen receptor genes with novel 

functions18,19. Although NK cells clearly exist in ectotherms, identification of NKRs has 

been exceedingly difficult owing to the rapid evolution of this system20; nevertheless, NKR 

genes, which are linked to the MHC, have been found in all vertebrates, demonstrating an 

early (likely primordial) association of MHC class I and NKRs21,22. Ancient lineages of 

genes encoding MHC class I molecules, immunoproteasome and transporter associated with 

antigen processing (TAP) molecules are found in the MHC of all fish and amphibians 

studied so far, but in mammals, this prototype has been superseded by a system that is less 

rigid in MHC class I peptide specificity21,23–25. A large leap forward in evolution is clear in 

amphibians, which show canonical antibody class switching and have an IgG class (known 

as IgY) that is involved in typical memory immune responses26 (FIG. 2). The last major 
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advance in vertebrate evolution was the advent of lymph nodes and the formation of 

germinal centres in mammals27–29; the ectothermic vertebrates allow for the study of 

immunity that preceded the emergence of follicular dendritic cells (FDCs), the major 

cellular player in mammalian affinity maturation28,30. This Review will delve into all of 

these characteristics of adaptive immunity, focusing on basic questions that intrigue all 

immunologists, and explore what we can and should tackle over the next decade. It should 

be noted that endothermy is found in several taxa in the lower vertebrates, but by and large, 

their adaptive immunity has not been examined. Here, I will concentrate on the bulk of 

studies in fish, amphibians and reptiles.

Evolution of antigen receptors

Gnathostome antibodies and TCRs are members of the immunoglobulin superfamily 

(IgSF)31 and are derived from an unknown precursor; a general model has been proposed 

and is discussed below32–34. By contrast, the jawless fish VLRs belong to the ancient 

leucine-rich repeat (LRR) receptor family, possibly originating from (and most related to) a 

cell surface receptor expressed on platelets35. Very high levels of diversity can be generated 

in both types of antigen receptor during lymphocyte development, but the gene 

rearrangement mechanisms used to generate diversity are entirely different.

Variable lym phocyte receptors.

Some old studies examining basic immunity, both humoral and cellular, suggested that 

agnathans had adaptive immunity, with specific responses to different foreign antigens and 

alloantigens36. However, extensive searches for antibodies, TCRs and MHC molecules over 

30 years proved fruitless37, and most comparative immunologists came to believe that, 

despite the earlier functional work, there was no adaptive immune system in agnathans38. 

This assumption was proved incorrect by Pancer and Cooper, who examined the 

transcriptomes of lymphocytes from immunized lampreys and discovered a large number of 

LRR-containing proteins with varying numbers of internal repeats6 (FIG. 3). These LRR-

containing receptors were shown to be clonally expressed and generated by rearrangement 

during lymphocyte ontogeny, and they were christened VLRs. The first of these genes to be 

studied was VLRB, which is expressed in a subset of lamprey lymphocytes. The VLRB 

protein is anchored by glycosyl phosphatidylinositol on the surface of naive lymphocytes in 

lampreys and then secreted (through an unknown mechanism) as a pentamer of dimers 

following antigenic stimulation39 (FIG. 3). At first, it was thought that stimulation of the 

lamprey lymphocytes was similar to a T cell-independent immune response in mammals, 

that is, the crosslinking of antigen receptors on lymphocytes, likely in combination with 

another signal through a PRR, might activate B cells to induce VLRB secretion40. However, 

surprisingly, it was later found that a second rearranging VLR gene locus, VLRA, was 

expressed by another subset of lymphocytes, with a transcriptome similar to that of 

gnathostome T cells11. Further analysis revealed a third antigen receptor, VLRC, expressed 

by cells largely in epithelia and mucosa, and thus agnathan T cells seem to be split into two 

subsets, perhaps like gnathostome γδ and αβ cells41.
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IgM antibodies.

Multiple antibody isotypes are found in all gnathostomes (FIG. 3). IgM has been known for 

many years to be the primordial antibody class26, although there are unique and intriguing 

features of IgM in each vertebrate class. In mammals, IgM is secreted as a pentamer 

associated with the joining (J) chain. IgM in cartilaginous fish is found in two forms: a 

multimeric form, as is present in all other vertebrates, and a monomeric form, which is most 

common in shark antigen-specific responses and is likely produced in a T cell-dependent 

manner42–44 (note, while monomeric IgM is also found in all other vertebrates, only in 

cartilaginous fish has it been shown to be of major physiological relevance in the course of 

an immune response). The secreted form of bony fish IgM is a tetramer, and the J chain gene 

has been lost from IgM in this group, as it is present in the older cartilaginous fish45–47. 

Interestingly, the extent of disulfide bonding in secreted teleost IgM is modified over the 

course of an antigen-specific response in a type of affinity maturation that seems unique to 

this antibody class48. In addition, the transmembrane form of bony fish IgM is alternatively 

spliced so that it has only three constant (C) domains (as opposed to the usual four) for 

unknown functional reasons49. In summary, IgM is the major serum antibody found in bony 

fish and is produced by these animals in response to conventional antigens; cartilaginous fish 

use IgM as an innate antibody class as well as in adaptive responses but also use other 

antibody isotypes in adaptive immunity, and amphibian IgM (to our best knowledge) 

functions much like its mammalian orthologue.

IgD and IgW antibodies.

IgD, long believed to be a recent addition in vertebrates, is actually very old, also going back 

to gnathostome origins as an isotype found in cartilaginous fish called IgW50,51 (FIG. 3). An 

immune-globulin resembling IgD was found first in bony fish, which was very surprising 

considering that in 1998, IgD had been found only in some mammals52. Subsequently, the 

IgD gene was uncovered in the genomic database of the amphibian genus Xenopus and 

shown to be expressed, like in mammals, via alternative splicing of IgM and IgD mRNA in 

naive B cells50,53. The cartilaginous fish homologue of IgD, IgW54,55, was also found in 

lungfish56, and in coelacanths, it seems to be the major isotype, with this famous species 

having lost IgM57,58. Recent data in bony fish and humans suggest that IgD is involved in 

inflammatory responses, binding to an unknown Fc receptor on basophils59,60. Compared 

with IgM, IgD is quite plastic in both structure and function; IgM is quite similar throughout 

evolution, whereas IgD is highly variable in terms of numbers of C domains (and even in the 

presence of IgD itself) and likely in terms of function as related to the transmembrane 

(largely unknown) and secretory (arming of innate cells) forms51.

IgG and IgY antibodies.

Mammalian IgG emerged as an isotype called IgY61 in amphibians. IgY arose concurrently 

with the first canonical class switch recombination (CSR) (FIGS. 2,3). Like IgM, the IgY 

heavy (H) chain has four C domains. Mammalian IgG and IgE are both related to an IgY 

common ancestor, with the IgE H chain maintaining four C domains and the IgG H chain 

losing its CH2 domain. In Xenopus, the switch to IgY, and hence its expression, is entirely T 

cell-dependent, and typical B cell memory generation as defined in mammals appeared in 
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this group. The cytoplasmic tail of both transmembrane IgY and IgG has a novel signalling 

motif that contributes to the proliferative burst of B cells in a memory response62,63. Besides 

its T cell-dependence, very little is known about the conditions for IgY class switching (see 

below) outside of mammals. An isotype related to IgY but lacking the two C-terminal 

domains, called IgF, was found in the Xenopus tropicalis genome; its function is unknown53.

Other antibody isotypes and light chains.

There are other ‘dead end’ H chain immunoglobulin isotypes that arose in various vertebrate 

taxa, which have been recently reviewed in great detail64–66, whose functions are 

unexplored. Mucosal isotypes, like the classical IgA in mammals, are described below.

Unlike what was thought for many years, the divergence of light (L) chains into κ and λ 
goes back to the origins of gnathostomes67,68. In most ectotherms, there is a third primordial 

L chain, σ, which was lost in reptiles69. There are L chain subgroups in some taxa, which 

are also dead ends like the H chains, especially in fish. In all the cartilaginous fish, the λ 
genes are ‘germline-joined’70, which allowed for an excellent analysis of somatic 

hypermutation (SHM) of all complementarity determining regions (CDRs) in sharks71. In all 

vertebrates, L chain preferences for certain H chain isotypes have been noted, which is one 

potential purpose for the multiple L chains72,73. Alternatively, it has been proposed that the 

different L chain isotypes might permit very different conformations of CDRs when paired 

with similar H chains67,74. Finally, multiple L chains allow for receptor editing in cells with 

a functioning H chain in cases where the L chain association provides a self-reactive 

receptor or the first L chain gene rearrangement is non-productive75,76.

αβ T cell receptors.

Generally speaking, αβ TCRs are well conserved across evolution77,78 (FIGS. 1,2). In cases 

where it is technically feasible, embryonic or neonatal thymectomy experiments have shown 

that adaptive immunity is dependent on T cells, including high-affinity, switched antibodies 

and cellular immunity to allografts and viral infection79,80. TCR diversity is quite high in all 

animals that have been studied, except in studies of cells resembling natural killer T (NKT) 

cells (see below). Next-generation sequencing in certain bony fish has shown a large 

diversity of αβ TCRs involved in their responses to antigens, such as viruses80–82.

γδ T cell receptors.

During the years of TCR discovery, a new rearranging antigen receptor was discovered for 

which there was no known function; it was later named TCRγ83. After the discovery of its 

partner TCRδ a few years later84, γδ T cells became the pariah of adaptive immunity, and 

only now are we beginning to grasp their recognition of antigens at the molecular level, at 

least for the γδ T cells involved in innate immunity85. In all ectotherms except bony fish 

(and in placental mammals), there are a large percentage of TCRδ genes that bear the 

immunoglobulin V region H chain (IgVH) as the recognition element (BOX 1). The 

immunoglobulin H chain (IgH) and TCRδ loci are linked in several vertebrates86–88, 

suggesting that the loci were derived from a cis duplication89,90, and it has been long 

recognized that TCRVδ and IgVH share attributes, especially a large size range of CDR3 

sequences91. The relationship between IgH and TCRδ is both ancient, via the cis 
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duplication, and ongoing, via the transfer of IgVH into the TCRδ locus in several 

vertebrates. Additionally, trans-rearrangements of shark IgM and IgW V segments to TCRδ 
diversity (D) and J segments from nearby immunoglobulin clusters are found in high 

levels78. These data suggest that a large proportion of γδ T cells act in an adaptive fashion, 

which has been borne out in several studies in mammals92,93. Future work should be done to 

analyse γδ T cell adaptive responses in ectotherms, which is just beginning to be 

accomplished93. This is especially of interest in cartilaginous fish, where the TCRγ V genes 

have been definitively shown to hypermutate, similar to what has been detected in 

immunoglobulin genes78,94.

Generating diversity: AID versus RAG.

Proteins encoded by recombination-activating genes (RAGs) are required for rearrangement 

of all antigen receptor genes in gnathostomes95. RAG1 does most of the work cleaving 

recombination signal sequences (RSSs) and is involved in RSS recognition, while RAG2 

guides and cooperates with RAG1 in gene rearrangement96. Recently, a RAG transposon 

complete with RSSs (or at least terminal inverted repeats), insertion sites and genes 

encoding the RAG enzymes was uncovered in a lower deuterostome (predating the 

vertebrates) called amphioxus97. There are several of these transposons in the genome, and 

phylogenetic analyses suggest that they are still active in this and related species98. In 

addition, the catalytic core of RAG1, a transposon called Transib, is found encoded in 

several invertebrate species99, showing that this transposon is quite old. Questions remain as 

to whether RAG2 was part of the original transposon or whether it was an existing gene in 

the genome recruited to assist RAG1 in gene rearrangement100,101. Note that the RAGs are 

not used for VLR gene rearrangement in agnathans (see below), yet as mentioned, RAG1-

like and RAG2-like genes have been found in the genomes of lower deuterostomes whose 

ancestors predated the vertebrates, such as sea urchins and amphioxi, where their functions, 

if any, are unknown100,102.

Activation-induced cytidine deaminase (AID) was identified in mice and humans in 2000 as 

the enzyme required for both SHM and CSR in mammals103,104. Not long afterwards, AID 

was detected in all gnathostomes and shown in several species to be capable of mutation and 

expression in secondary lymphoid tissues105–108. The AID amino and carboxyl termini are 

required for SHM and CSR, respectively, thus it was surprising that AID from bony fish, a 

phylogenetic group clearly lacking CSR, was capable of inducing CSR in vitro109,110. One 

possibility is that the bony fish lost the CSR capacity because cartilaginous fish, formerly 

believed to be incapable of CSR because of the cluster-type organization of their genes (FIG. 

1), indeed can undergo CSR among different IgM clusters, as well as between IgW and IgM 

clusters111. No typical switch boxes with either the repetitive elements or the targeting RGY 

(R=adenine or guanine, G=guanine, Y=Cytosine or Thymidine) motifs are found in the 

shark non-coding regions, so the switch mechanism is unknown as is the relationship to 

typical CSR. Nevertheless, this exciting finding in the oldest vertebrates with typical 

adaptive immunity heralds a new area for the study of AID and CSR.

AID is a member of the apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 

(APOBEC) family of enzymes, which were first discovered as modifiers of mRNA 
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splicing108. Later, other APOBEC members were shown to be involved in viral defence and 

protection of the genome from retroviral invasion112. Two members of the APOBEC family 

are expressed in lamprey lymphocytes, one in developing T cells (cytidine deaminase 1 

(CDA1)) and the other in B cells (CDA2), and these enzymes are likely required for the 

generation of VLR diversity35,113. The VLR genes are assembled via homology-based joins 

of the VLR cassettes in a process called ‘copy choice’114. Apparently, the emergence of two 

enzymes, one specific for somatic rearrangement in T cells and the other for somatic 

rearrangement in B cells, has obviated the need for the complex regulation required for the 

one enzyme complex associated with RAG proteins working on gnathostome T cell and B 

cell antigen receptor genes. These CDA enzymes have been shown to be mutators in vitro, 

and CDA1 recently has been fused to a CRISPR cassette for in vivo mutagenesis and 

knockout experiments115. The discovery of AID and these related molecules has heralded an 

exciting foray into adaptive immunity, innate immunity and general cellular homeostasis. 

For example, the APOBEC family is also involved in scanning for retro-elements, that is, in 

general preservation of the genome116. This field is in its infancy, and a comparative 

approach to determine the role of APOBEC family proteins in non-typical immune 

processes holds much promise112.

Evolution of the MHC

The MHC, complete with class I, class II and class III regions, was also first found in the 

cartilaginous fish (FIGS. 2,4). The levels of polymorphism of classical MHC class I and 

MHC class II molecules in most species are very high117. Furthermore, nonclassical MHC 

class I genes are also found in all gnathostomes tested, usually in regions distinct from the 

MHC locus itself (see below).

MHC class II molecules.

MHC class II α and β-chain genes are found in almost all gnathostomes. Generally, two or 

three isotypes are present, with high levels of polymorphism. Consistent with a slower 

evolution than MHC class I isotypes, mammalian MHC class II isotypes can be detected in 

ectotherms. The DO molecules, which in mammals are class II proteins that regulate the 

binding of peptides to MHC class II molecules through DM molecules, are not found in any 

ectotherm. In fact, the DM genes appear first in amphibians, are clearly lacking in bony 

fish118 and, so far, have not been found in cartilaginous fish. It will be of interest to study 

how the lack of these catalysts impacts the association of peptides with MHC class II 

molecules; much work has been done on the biochemistry of MHC class II molecules in 

amphibians, but very little has been done in bony or cartilaginous fish119. However, the 

invariant chain (which is essential for the stable assembly of MHC class II molecules) is 

found in all ectotherms, with the attendant MHC class II-associated invariant chain peptide 

(CLIP) and the expected tissue distribution120.

The Gadiformes order of teleost species has lost the MHC class II system, as first shown in 

the cod16,121 and later in other species. It has been known for a long time that specific 

antibody responses cannot be generated in cod after immunization, essentially producing the 

same repertoire of IgM antibodies to each antigen122. How lifestyle has impacted this lack of 
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MHC class II molecules has been speculated on — these animals live in a cold-water 

environment, and perhaps a lack of pathogen pressure may have contributed to a ‘use it or 

lose it’ scenario. It has been hypothesized that a large number of nonclassical MHC class I 

molecules in cod might somehow compensate for the absence of MHC class II molecules 

(BOX 1), but other species bearing MHC class II molecules also have expanded MHC class 

I genes.

MHC class I molecules.

The classical and nonclassical MHC class I paradigm is clearly found in all cold-blooded 

gnathostomes. Classical class I molecules are recognized by their high levels of 

polymorphism, ubiquitous tissue expression and defined peptide-binding residues that lock 

in the amino and carboxyl termini of the bound peptides123. Unlike what is found in 

mammals, the antigen-processing TAP genes and immunoproteasome (especially 

proteasome subunit-β type 8 (PSMβ8)) genes are closely linked to MHC class Ia genes, 

generally in lineages (BOX 1). No functional studies have been carried out in ectotherms, 

but in birds, TAP and MHC class Ia alleles have been shown definitively to have coevolved 

in peptide transport and binding studies124. Again, biochemical work was done long ago in 

amphibians, in which MHC class I proteins were isolated using cross-reactive xenoantisera, 

alloantisera and monoclonal antibodies119,125. Now, it is time to step up with studies 

examining associations with peptides and the importance of linkage24.

Nonclassical MHC or MHC class Ib genes are also present in all ectotherms. Amphibians 

have a large cluster of nonclassical genes downstream of the bona fide MHC gene (called 

Xenopus nonclassical or XNC) at the telomere126. Among Xenopus species, the number of 

genes found in the XNC varies greatly, as is the case for many large multigene families127. 

Early studies showed interesting tissue distributions of the XNC iso-types in the lung, 

intestine and spleen, with expression of all isotypes in the thymus, consistent with a positive 

selection of MHC class Ib-reactive T cells128. Recent work focusing on one of the isotypes, 

xnc10, has shown that NKT cells bearing an invariant TCR α-chain use this class Ib 

molecule as a restricting element, aiding in responses to tumour and viral antigens (see 

below for clarification; mammalian NKT cells use the nonclassical MHC class I molecules 

CD1 and MR1 as restricting elements129). Ancient nonclassical class I lineages in bony fish 

and cartilaginous fish are candidates for recognition by NKT-like cells or for other non-

immune functions as shown in mammals130,131. For example, despite the general rapid 

evolution of the bony fish, there are deep lineages of MHC class I molecules, especially the 

so-called Z lineage in which the peptide-binding region is extremely conserved in all 

species132.

Importance of MHC linkage.

In addition to the line-ages of antigen-processing and antigen-presenting genes found in 

ectotherms and the conservation of linkage groups, comparative analysis of the MHC has 

also permitted an understanding of the MHC before the emergence of adaptive 

immunity117,133. Linkage of MHC class I and MHC class II genes (as assessed by functional 

studies looking at genetic co-segregation of acute graft rejection and mixed leukocyte 

reaction) was shown in amphibians long ago, before cloning of the MHC genes134. In bony 
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fish, however, MHC class I and MHC class II genes were shown to segregate independently, 

suggesting that this configuration was the primordial state135. However, studies of shark 

families showed that, like all other vertebrates, MHC class I and MHC class II genes are 

linked, demonstrating that the teleost situation is derived, that is, it is specific to that 

taxon136. Furthermore, the gene encoding β2 microglobulin is also linked to the MHC in 

sharks and is encoded outside the MHC in all other vertebrates studied137. Preservation of 

this anticipated linkage in sharks suggests that other genes originally linked to the proto-

MHC will also be uncovered in ongoing cartilaginous fish genome projects88.

It has been known for many years that other genes encoding innate immune molecules are 

linked to the MHC in mammals, such as complement components C4, C2 and factor B, as 

well as tumour necrosis factor (TNF)138. It was originally speculated that these genes were 

MHC-linked by ‘genetic accident’5, but comparative analysis showed not only that several 

of these genes are also linked in cartilaginous fish but also that their linkage to framework 

MHC genes suggests that they were part of a pre-adaptive immune complex, that is, a 

‘proto-MHC’117–139–140 (FIG. 4). Members of the B7 family, which are crucial co-

stimulatory molecules involved in immunity, and several other immune molecules were also 

part of the original MHC141,142. NKR from both the C-type lectin superfamily and IgSF 

were also present in the MHC, strongly suggesting that the MHC, NK gene complex (NKC) 

and leukocyte immunoglobulin-like receptor complex (LRC) were syntenic 

ancestrally117–143–144. Additionally, IgSF members that have a specialized domain found in 

antigen receptor genes are also encoded by the MHC gene family of several ectotherms, 

suggesting that the immunoglobulin-TCR precursor was also encoded by the MHC gene 

family117,145. A working hypothesis is that the proto-MHC gene familywas a gene cluster 

already dedicated to immunity before the advent of adaptive immunity146,147, and the major 

components of adaptive immunity, namely, immunoglobulins, TCRs, MHC class I and MHC 

class II molecules ‘piggybacked’ onto a region already programmed to respond with 

increased transcription upon infection (FIG. 4).

Is there an MHC in jawless fish?.

When it was revealed that lampreys had both B and T cells, one obvious question emerged: 

what are the restricting elements for VLRA recognition? Extensive database searches, as 

well as various molecular approaches, yielded no evidence for MHC class I or MHC class II 

molecules, TAP or an immunoproteasome, showing that either the genes are present but 

unrecognizable at the protein level or that they indeed are absent (perhaps lost?) from the 

lamprey genome148. If truly absent in the agnathans, there are several possibilities. There 

may be a convergent system to MHC class I and MHC class II molecules that presents 

peptides to agnathan T cells; a polymorphic agnathan cell surface antigen (called NICIR3/

ALA) generates a strong alloantibody response in hagfish and may play such a convergent 

MHC role149,150. Alternatively, VLRA might recognize whole antigens associated with a 

cell surface molecule such as an Fc receptor or a complement receptor in order to initiate a T 

cell response. In one set of experiments, recombinant VLRA from expression libraries was 

capable of binding to an immunizing antigen (hen egg-white lysozyme (HEL))151; while 

TAP is not present in lampreys, a related molecule, TAP-like (TAPL), which is involved in 

cross presentation in mammals, is found in the lamprey genome152 and also in 
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invertebrates153. It is possible that TAPL may have been co-opted for antigen presentation in 

the agnathans.

Lymphoid tissues: evolutionary insights

The thymus.

The thymus is found in all gnathostomes, usually with the typical cortical and medullary 

organization78,154. It can range from one lobule to a multilobed and even discontinuous 

structure, depending on the species or the developmental stage examined. Additionally, the 

proteasome subunit-β type 11 (PSMβ11; also known as B5T) and the autoimmune regulator 

(AIRE) arose early in the gnathostome lineage, suggesting that positive and negative 

selection occurs in a similar manner in mammals and in early jawed vertebrates155,156 

(FIGS. 1,2). Until recently, it was believed that the thymus was absent in agnathans30, but 

with the discovery of VLRA-bearing T cells, this question was re-examined. In situ probes 

for Delta ligand (for the Notch receptor) and forkhead box protein N1 (FOXN1), a 

transcription factor shown to be essential in thymus development, defined a structure lining 

the pharynx of larval lampreys. Associated with these epithelia were lymphocytes 

expressing VLRA (and in later studies, VLRC) and the APOBEC family enzyme CDA1, 

mentioned above as the molecule believed to be important in VLRA and VLRC 

rearrangement113,157. This structure was named the thymoid, and it is believed to be the 

thymus equivalent in agnathans. Thus far, no PSMβ11 (no specialized proteasome 

components, actually) or AIRE genes have been found in agnathans, so further study may 

provide the original rationale for physically separating the development of T and B cells into 

different primary lymphoid tissues158. Structures in the gill region of lower deuterostomes 

like amphioxus also express FOXN1 and Delta ligand, so it will be of interest to study their 

roles (if any) in lymphocyte differentiation154.

The spleen as the primordial secondary lymphoid organ.

Only warm-blooded vertebrates have lymph nodes, Peyer’s patches and germinal centres, all 

of which are dependent on the cytokine lymphotoxin for their development28,159. Almost all 

gnathostomes, however, do have a spleen in which adaptive immune responses are 

generated, concentrating the antigens for interactions between antigen-specific T cells, B 

cells and antigen-presenting cells (APCs) (FIG. 1). The spleen can be partitioned into red 

pulp and white pulp in representative species to the level of cartilaginous fish, and B cells 

are also partitioned into segregated areas in many vertebrates (note that this segregated 

structure has been lost in several bony fish and amphibians.) During development, B cells 

are attracted to the chemokine CXC-chemokine ligand 13 (CXCL13), which is expressed by 

the splenic vasculature, and this forms the nascent white pulp. In mammals (and probably 

reptiles160) (FIG. 2), B cells are displaced into follicles, while T cells surround the vessel in 

the periarteriolar lymphocytic sheath. In amphibians and fish, B cells retain this embryonic 

characteristic161 (BOX 1). It is interesting that, in the course of evolution, B cells formed 

segregated structures before the formation of T cell zones, as discussed extensively in a 

classic review article161.
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When did conventional and follicular dendritic cells emerge?

The dichotomy between lymphocytes and myeloid cells appears in the lower chordates, 

predating adaptive immunity. Cells with the morphology of dendritic cells (DCs) are found 

in all gnathostomes, and where studied, they have a high expression of MHC class II 

molecules162–164. These cells have been best described in bony fish, at least by morphology, 

peanut agglutinin staining and the ability to stimulate T cells (note, peanut agglutinin 

staining indicates a lack of terminal sialic acids on glycoproteins, which is believed to 

promote cellular interactions by eliminating the natural repulsive effects of negative charge). 

FDCs, by contrast, have not been reported in ectotherms30. Instead, it seems that typical 

DCs (or APCs) of the haematopoietic lineage present antigens to both T and B cells. In 

Xenopus, these cells, called XL cells165,166, have high levels of MHC class II molecules for 

the presentation of antigens to T cells and bear immunoglobulins of all three isotypes on 

their surface, presumably in immune complexes (and coated with complement components) 

for the presentation of antigens to B cells (FIG. 5) (H. R. Neely, J. Guo, E. M. Flowers, M. 

F. Criscitiello and M.F.F., unpublished observations). It is proposed that XL cells provide a 

model for antigen presentation to both types of lymphocyte before the emergence of FDCs 

(BOX 1; FIG. 5).

Mucosal immunity

Dimeric IgA is the mucosal immunoglobulin in mammals and birds, and it has well-defined 

roles in mucosal immunity, such as in the coating of commensal organisms to prevent their 

intimate association with mucosal epithelia. In amphibians, there is a third antibody iso-type, 

called IgX (FIGS. 3,6), which forms pentamers (or hexamers) like IgM but is preferentially 

expressed in mucosae167,168. The first bioinformatics analysis showed IgX to be most 

similar to IgM in sequence, and thus it appeared to be one of the dead end isotypes 

mentioned above. As more immunoglobulins were cloned, however, it became clear that IgX 

is orthologous to IgA, re-estimating the emergence of this isotype to the origins of 

tetrapods169. IgX levels increase after immunization with mucosal antigens170. In addition, 

unlike IgY but similar to mammalian IgA, switching to IgX can occur in the absence of T 

cells. Studies have not been carried out to determine whether IgX, IgM or both (like in 

mammals) can coat commensal organisms in the gut lumen and elsewhere.

Bony fish have a unique mucosal antibody isotype as well, originally called IgZ and/or IgT 

and now IgT (for immunoglobulin teleost) (FIGS. 3,6). Like the mammalian TCR αδ locus, 

the D, J and C segments for this isotype are embedded in the IgM locus, so that the IgT gene 

is deleted upon IgM rearrangement171,172. Excellent work has shown that IgT is expressed 

primarily at mucosal or epithelial sites, that it can be induced specifically in response to 

mucosal pathogens and that both IgT and IgM coat commensal pathogens15,173. A molecule 

related to the poly-immunoglobulin receptor transports both isotypes despite the fact that the 

J chain has been lost in bony fish. As mentioned above, cartilaginous fish have an isotype 

called IgW, which is most related to IgD. It has several isoforms expressed in different 

tissues, but its high expression in the pancreas suggests that it is a mucosal isotype of 

cartilaginous fish174 (FIG. 6).
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While large numbers of lymphocytes are found in the lamina propria and epithelia of 

mucosae in ectotherms, as are specialized immunoglobulin isotypes that are enriched in 

these areas, there is no evidence of defined lymphoid tissues, such as Peyer’s patches or 

mesenteric lymph nodes, in the ectotherm intestine. However, defined lymphoid tissue does 

exist in the olfactory epithelium, and this is an active area of research in lower vertebrates. It 

appears first in the lungfish and is also found in all amphibians studied to date (except the 

model species Xenopus laevis, where it was apparently lost)13,175 (BOX 1).

T helper cell subsets

Mammalian T helper cell phenotypic categories have expanded over the past 10 years from 

the classical T helper 1 (TH1) and TH2 cell paradigms to include TH17 cells, T follicular 

helper (TFH) cells, regulatory T (Treg) cells and several others T cell subsets176. While much 

work must be done to study T cell function in ectotherms, it is likely that such phenotypes 

will be found in all gnathostome classes (FIG. 2). A previous suggestion that cartilaginous 

fish lacked most of these phenotypes, as well as a functional CD4 molecules, was proved 

incorrect; several cytokines that were not detected in the genome project were uncovered 

with structurally based search programmes88,177; in addition, at least the expression levels of 

the shark CD4 molecule also appear to be conventional (Y. Ohta and M.F.F., unpublished 

results). To date, only jawless fish have been shown to have IL-17 (in T cells) and IL-17 R 

(in B cells), which are proposed to be involved in T-B cell collaboration11, but these are 

early days in this line of research, and other cytokines will likely be uncovered.

Evolution of the Treg cell lineage is of special interest. Studies in bony fish suggest that 

FOXP3+ cells act as Treg cells, perhaps as thymus-derived Treg (tTreg) cells (also referred to 

as natural Treg cells)178. Studies carried out long ago in amphibians suggested that a 

population of suppressor cells was peripheralized at metamorphosis, where they were likely 

involved in regulating adaptive responses to newly arising adult-specific self-antigens179. 

Rudensky and colleagues have suggested that peripherally derived Treg (pTreg) cells (also 

referred to as adaptive or inducible Treg cells) arose in evolution with the advent of 

placentation, consistent with a FOXP3 genetic regulatory element (conserved non-coding 

sequence 1 (CNS1)) found in only placental mammals and no other vertebrates180. They 

propose that after the emergence of pTreg cells for this purpose, such cells were co-opted to 

suppress adaptive immunity in a variety of situations. It will, of course, be of interest to 

determine whether this theory holds water, both in maternal-fetal interactions and generally 

in ectothermic vertebrates (and birds).

Innate-like lymphocytes

One of the most exciting current research areas in immunology is the study of innate-like 

lymphocytes, such as NKT cells, mucosal-associated invariant T cells (MAIT) cells, B1 

cells, marginal zone B cells and innate lymphoid cells (ILCs), including NK cells. It is 

fitting that studies of their evolution should be a new priority, considering that it is tempting 

to propose that ILCs (especially) may have predated lymphocytes bearing antigen 

receptors181,182.
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Most immunologists believed that innate T cells (NKT cells and MAIT cells) were late 

evolutionary additions in mammals, similar to germinal centres (BOX 2). This notion was 

put to rest when Robert and colleagues detected NKT-like cells in the amphibian genus 

Xenopus that were specific for one of the non-classical MHC class I molecules in the 

XNC129. Like the mammalian NKT cells, the frog NKT cells bear an invariant TCR α chain 

and have an effector cell phenotype. Larval Xenopus express low levels of classical MHC 

class I molecules, and preliminary evidence suggests that the larval TCR repertoire is 

predominantly made up of clones bearing these invariant TCR α chains183. This work in 

amphibians, and the identification of CD1 molecules in reptiles and birds184–186, has 

changed the paradigm for NKT emergence. Not only did NKT cells arise early in evolution 

but one could also propose that animals with moderately few lymphocytes predominantly 

use T cells that can fire rapidly, that is, that can proceed rapidly to effector function after 

antigen receptor stimulation, and that large TCR repertoires that favour clonal selection are 

not used in all cases. Robert’s studies suggest that NKT cells will be found throughout the 

vertebrate subphylum, because as described above, lineages of nonclassical MHC class I 

genes are present in all vertebrate classes187.

NK cell function has been detected in species of all vertebrate classes, but it has been 

difficult to identify their receptors (note that this was the case in studies in mammals as well 

in the 1990s). NKRs evolve at a very fast rate, which has been clear for many years, as 

primates and rodents do not even use the same gene family to encode their major NKRs188. 

This rapid evolutionary rate has made it difficult to detect NKRs in ectotherms20,189. Large 

gene families of NKR-like IgSF proteins have been detected in amphibians and fish, but for 

the most part, their role in NK cell recognition per se has not been determined, and many 

certainly have other functions. Conversely, clearly there are lymphocytes in fish and 

amphibians as shown in thymectomized animals, and in animals not bearing TCRs of any 

type that are still capable of directing cytolysis190–192. The challenge in the future will be to 

link such receptors with specific cellular functions.

As mentioned above, the MHC can harbour NKRs of both the IgSF and C-type lectin family 

(FIG. 4), depending on the taxon studied. Birds have two C-type lectin NKRs that are related 

(even orthologous) to mammalian NKRs in the MHC144. NK cell p30-related protein 

(NKp30; also known as NCR3), a specialized IgSF member that maps to the MHC in 

humans, is the most conserved NKR in gnathostomes and is also found in cartilaginous 

fish24,142. Amphibians have a direct homologue of NKp30 in the class III region of the 

MHC, called XMIV, while NKp30 has translocated outside the MHC and expanded on the 

telomere of another chromosome21,142. The ligand for NKp30, B7 homologue 6 (B7H6; also 

known as NCR3LG1)193, is also found in cartilaginous fish; interestingly, in species in 

which NKp30 has been lost, B7H6 has been lost as well; conversely, when NKp30 genes are 

expanded, B7H6 genes are expanded as well. Generally, ILCs have not yet been examined in 

any detail in species other than humans and rodents. Lamprey lymphocytes have been 

detected that bear no antigen receptors, and these are candidates for NK cells and other 

ILCs181.
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Quo vadis?

Several major questions must be addressed in the field of comparative immunology (BOX 

3), which have been touched on here. The discovery of the adaptive system in jawless fish 

has provided a goldmine of interesting questions including the primordial role of the thymus 

(selection or isolation?), the origins of lymphocytes (ILCs or antigen receptor-bearing 

cells?), the emergence of IgSF antigen receptors (present in which form?), and the 

(convergent?) role of the proto-MHC for presentation to VLRA-bearing (T cell-like) 

lymphocytes. Studies of fish and amphibians, with new reagents and powerful sequencing 

and knockout procedures, will provide more insight for the study of antigen presentation 

before the appearance of FDCs and germinal centres, the multifaceted nature of γδ T cells, 

NKR and their functions and the origins of mucosal immunity; especially for the latter, 

study of this system in animals lacking mucosal secondary lymphoid tissues may provide a 

useful framework for understanding the highly complex mammalian gut-associated 

lymphoid tissue. We have just scratched the surface in our understanding of the evolution of 

the APOBEC family. There is no doubt that future studies of immunity in cold-blooded 

vertebrates will surprise us and more importantly continue to alter our views of the adaptive 

immune system.

Note added in proof

Since the formal acceptance of this article, regulatory T cell-like cells have been described in 

zebrafish194,195. These cells express foxp3a, suppress tissue inflammation and can home to 

damaged organs to promote organ-specific regenerative responses.
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Box 1 |

Unique adaptive immune features in ectotherms

• The immunoglobulin heavy (H) and light (L) chain genes of cartilaginous fish 

are in the ‘cluster organization’, with variable (V), diversity (D), joining (J) 

and constant (C) elements found in each cluster18 (FIG. 3). Despite this, each 

B cell shows antigen receptor exclusion, that is, the expression of only one H 

chain per cell196,197. This organization has allowed rapid evolution of distinct 

types of immunoglobulins, including a single-domain V region antigen 

receptor called immunoglobulin new antigen receptor (IgNAR)198, intimate 

associations of immunoglobulin genes with T cell receptor (TCR) genes86 and 

clusters that have been ‘germ line-joined’199,200 and are believed to serve 

unique functions early in ontogeny201 and into adult life70,71.

• A lineage of bony fish has lost MHC class II genes, the invariant chain and 

CD4 molecules, that is, apparently all the components necessary for T helper 

cell development16,17. Cod might compensate by expressing an inordinate 

number of nonclassical MHC class I genes, perhaps selecting for a system 

with many natural killer T (NKT)-like cells.

• Amphibians undergo metamorphosis, with extensive changes in adaptive 

immunity occurring at this transition202. Terminal deoxynucleotidyl 

transferase (TdT) is not expressed in larvae203, so antigen receptor junctions 

in immunoglobulins and TCRs lack N-regions, and thus diversity is quite low. 

In addition, classical MHC class I gene expression is also low, and MHC class 

II gene expression is distinct in tadpoles (in B cells and antigen-presenting 

cells (APCs)) and adults (in all lymphocytes)204. After metamorphosis, a 

second wave of lymphocytes develops rapidly, now with a large amount of 

complementarity determining region 3 (CDR3) diversity. A working 

hypothesis is that in larvae, humoral immunity is regulated by CD4+ cells, yet 

with low diversity of the immunoglobulin repertoire; cellular immunity might 

be the domain of NKT-like cells187. Suppressor cells may emerge at 

metamorphosis to prevent autoimmune reactions to newly arising adult-

specific self-antigens179.

• The genomic sequence of the famous coelacanth revealed a loss of 

immunoglobulin M (IgM), and it is the only vertebrate species to date with 

this feature57. IgW loci may have taken over the function of IgM. However, 

functional studies are difficult to perform, as these fish are rare and/or 

endangered species.

• The Antarctic fish immunoglobulins show clear evidence of selection, 

especially in their hinge regions, to allow for preservation of molecular 

flexibility in extremely cold temperatures205–207.

• Unlike most mammals, ectotherms have lineages related to classical MHC 

class I, transporter associated with antigen processing (TAP) and 
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immunoproteasome genes208,209. These genes, again unlike mammals, are 

tightly linked with MHC class II genes21. Proteasome subunit-β type 8 

(PSMβ8), but not PSMβ9 or PSMβ10, is included in these lineages, 

consistent with a critical function of PSMβ8 in the organization of 

immunoproteasomes. Note that both PSMβ8 and PSMβ11 (part of the thymic 

proteasome) are paralogues of the constitutive PSMβ5, again suggesting a 

crucial role for this member of the β-proteasome ring210.

• The TCR δ chain in cartilaginous fish, amphibians and coelacanths (and 

archaic mammals and birds) utilizes V regions from the immunoglobulin H 

chain, and the genes are found at the TCR αδ locus. This phenomenon was 

first discovered in the cartilaginous fish version of IgNAR86 and soon after in 

marsupials211 and other species as a single V domain, or VH domain, 

associated with the TCR Cδ chain. Consistent with old theories of γδ TCR 

function212, these findings suggest that γδ T cells in many vertebrates have 

adaptive functions12.

• B cells, in all ectotherms tested, are capable of phagocytosis of particles and 

microorganisms213. This feature also applies to mammalian B1 cells, 

suggesting an ancient connection between ectotherm B cells and mammalian 

B1 cells, as well as between B cells and myeloid cells214.

• Amphibians are in decline, and the best work has found a correlation with 

innate immune mechanisms and their suppression by pathogens215,216. 

Several studies, however, have also implicated adaptive immune mechanisms, 

specifically MHC polymorphisms, that correlate with susceptibility or 

resistance to the chytrid fungus217,218.

• Many fish and amphibians are polyploid, and adaptive immune genes are 

under pressure to become diploidized over evolutionary time (especially 

MHC class I and MHC class II genes). This has been an active area of 

research for decades and has been reinvigorated in the era of genome 

sequencing219–221.

• An immune hypothesis has been proposed for salmon migrating back to 

spawn in their original hatching grounds. During the stressful terminal 

migration, naive lymphocytes are depleted but plasma cells are spared, likely 

producing antibodies specific for pathogens where the fish first were 

exposed222,223.
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Box 2 |

Humoral immunity in the absence of germinal centres

Studies over the past 50 years have revealed that, by and large, specific antibody 

responses in cold-blooded vertebrates are of low affinity and do not mature over time to 

the high levels seen in mammals26,224. Before the molecular era, this was attributed to a 

potential lack of somatic hypermutation in non-mammals. However, mutations were 

discovered in cartilaginous fish225 and amphibian immunoglobulin genes29, and most 

conspicuously in the shark antigen receptor immunoglobulin new antigen receptor 

(IgNAR) genes198, in the early 1990s. Despite this, affinity increases do not exceed 100-

fold in any immunization study of ectotherms to date, although they show at least some 

level of selection44. As described in the text, at least at the taxonomic level of 

amphibians, follicular dendritic cells (FDCs) are not present, and recent work suggests 

that conventional, haem atopoietically derived antigen-presenting cells stimulate both T 

and B cells. Thus, the emergence of FDCs is believed to have provided the setting for the 

development of germinal centres and the selecting environment for the generation of high 

levels of affinity maturation226. As described in the previous review on the evolution of 

immunoglobulin genes and function, the discovery of activation-induced cytidine 

deaminase (AID) has provided some insight into the evolution of lymphoid tissues105,107 

but now should be used more extensively to study adaptive responses in lymphoid tissues 

over time. In addition, the jaw less fish apparently have no secondary lymphoid organs, 

so the locations in which cells come into contact with antigen and interact with each 

other are unknown40; the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-

like (APO BEC) family members implicated in the generation of diversity and likely 

mutations should be useful for such analyses.
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Box 3 |

Key questions for evolutionary immunologists

The transcriptional network for lymphocyte development was set up before the 

emergence of adaptive immunity. Did this system rely on innate lymphoid cell (ILC)-like 

processes, or did classical lymphocytes emerge first and then lose their antigen receptors? 

Note that the adaptive cytokines, including IL-2, IL-4, IFNγ and many others, to this 

point have been found in only gnathostomes.

• Did antigen receptors containing immunoglobulin superfamily (IgSF) and 

leucine-rich repeat (LRR) domains coexist in a common ancestor? What 

drove the newer system to emerge? Was the original system for 

immunoglobulin and T cell receptor function actually first based on the 

apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like(APO 

BEC) family of proteins (that is, mutation-based) and then superseded by the 

system based on the recombination-activating gene (RAG)-based (that is, 

rearrangement-based) system? And how do other APOBEC family members 

function throughout the ectotherm ic lineages?

• Was an IgSF family member encoded by the proto-MHC gene closely related 

to the precursor gene that was invaded by the RAG transposon to become a 

primordial antigen receptor? There are genes of this particular type of IgSF 

member found in antigen receptors (‘VJ type’) that are encoded by the MHC 

genes and are good candidates to be related to this ancestor.

• Somatic hypermutation, class switch recombination and T-B cell 

collaboration clearly existed before the emergence of germinal centres in 

ectotherms. How and why were follicular dendritic cells built into this system 

as a leap forward in selection for high-affinity antibodies? Are conventional 

dendritic cells truly ‘double-duty’ antigen-presenting cells presenting antigen 

to both T and B cells?

• B1 cells in mammals and conventional B cells in all ectotherms tested are 

capable of phagocytosis. Does this imply an ancient connection between 

myeloid and lymphoid lineages, and what is the utility of such a mechanism 

physiologically in cold-blooded and warm-blooded vertebrates?

• How do lamprey T cells recognize their antigen? Is there a convergent 

peptidic recognition of foreign antigen, or is there an entirely different 

mechanism?

• Why did the thymus evolve? If the agnathan thymoid is a model, perhaps the 

thymus emerged not for positive or negative selection in the gnathostome 

thymus but rather for sequestration of developing T cells away from the 

microenvironment where B cells develop (bone marrow equivalent). It 

(potentially) follows that, once a sequestered environment for T cell 

development was acquired, sophisticated and complex mechanisms for 

Flajnik Page 29

Nat Rev Immunol. Author manuscript; available in PMC 2018 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



positive and negative selection emerged, perhaps in conjunction with T cell 

recognition of peptide-MHC complexes.

• Translationally, the variable lymphocyte receptors and shark single-domain 

antibodies are novel platforms for diagnostic and/or therapeutic antibodies. 

The great phylogenetic distance between agnathans and/or cartilaginous fish 

and humans allows for the development of immune responses to 

evolutionarily conserved epitopes on human targets. How useful will such 

reagents prove in our pharmaceutical arsenal?

• Technologically, the advent of CRISPR technology for knockout and 

mutational studies will allow rapid progress in the basic immunology of 

model ectothermic organisms. Additionally, next-generation sequencing of 

whole genomes and transcriptomes, as well as rapid generation of proteomes, 

can, at least in some ways, obviate the requirement for model organisms in 

many studies.

• Will studies of nonmammalian vertebrates alert the general field of 

immunology to the potential for adaptive immunity of γδ T cells? How can 

we devise experiments to understand how native antigen is recognized by 

such cells in all vertebrates?

• Mucosal immunity in mice and humans can be quite dissimilar. How can 

studies of ectotherms further inform the entire field of the most basic, 

conserved elements of a mucosal immune system?

• Many years ago, suppressor cells were suggested to emerge at amphibian 

metamorphosis to suppress any responses to adult-specific antigens. 

Technologies exist now to re-examine this proposal with many new resources.

• Did peripherally derived regulatory T (Treg) cells truly emerge as a 

subpopulation of cells that regulate paternal-specific immunity in placental 

mammals? That is, do ectothermic vertebrates (and birds) have only thymus-

derived Treg cells?

• The lifestyle of animals is clearly important to take into account when 

examining adaptive immunity. In addition to the cod and Antarctic fish, there 

are many other species of bony and cartilaginous fish living in diverse 

environments that should be studied.

• Which came first: MHC class I or MHC class II? For MHC class I, did 

classical or nonclassical molecules come first? The plasticity of MHC class I 

molecules suggests that they were primordial, while the thermodynamic 

stabilityof MHC class II molecules argues for their early emergence. Sim 

ilarly, CD4 and CD8 were not derived from a recent common ancestor, so 

their co-option for recognition of MHC molecules occurred independently. 

Which came first?
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Bursa of Fabricius

An organ derived from a cloacal outpocketing in birds in which B cells develop.
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Deuterostomes

Embryonically, animals in which the blastopore becomes the anus, including all of the 

vertebrates. Lower deuterostomes such as tunicates, lancelets and echinoderms are 

descendants of ancestors before the emergence of adaptive immunity and the genome-

wide duplications that occurred early in vertebrate history.
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Gnathostomes

Jawed vertebrates, including placoderms, cartilaginous fish, bony fish, amphibians, 

reptiles, birds and mammals.
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Evolutionary ‘Big Bang’

The rapid emergence of the majority of molecules, mechanisms and tissues that define 

human adaptive immunity, which most likely occurred in placoderms (see FIG. 2).
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Variable lymphocyte receptors

(VLRs). Antigen receptors (VLRA and VLRB) found in the agnathan jawless fish 

(lamprey and hagfish).
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Follicular dendritic cells

(FDCs). Cells found in only warm-blooded vertebrates that present native antigen to B 

cells in the follicles and germinal centres of secondary lymphoid organs.
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Immunoglobulin superfamily

A family containing proteins with a specific immunoglobulin superfamily (IgSF) domain, 

including molecules such as immunoglobulins, T cell receptors and MHC class I and 

MHC class II molecules, in which there are unique members of the superfamily (VJ and 

C1 domains).
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Agnathans

The most ancient extant vertebrates (lamprey and hagfish), which lack jaws.
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Xenopus

A genus of aquatic amphibians that is a widespread model for basic science research, 

including in comparative immunology.
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Lungfish

Vertebrates that serve as a tractable model for the transition from fish to tetrapods and 

share features with both groups.
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Coelacanths

Vertebrates with lobed fins, once thought to be extinct, that serve as a model for the 

transition from fish to tetrapods.
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‘Dead end’ H chain immunoglobulin isotypes

Immunoglobulin heavy (H) chain isotypes that arose in particular vertebrate taxa but are 

apparently not perpetuated throughout the vertebrate tree.
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Somatic hypermutation

(SHM). A process that introduces activation-induced cytidine deaminase (AID)-initiating 

mutations into the immunoglobulin variable region genes of B cells during an adaptive 

immune response.
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Complementarity determining regions

(CDRs). Loops on one face of variable immunoglobulin superfamily domains in regions 

of both immunoglobulins and T cell receptors that contact antigen (or antigenic peptide-

MHC complexes) and that display the greatest variability.
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CDR3

A complementarity determining region (CDR) that is generally considered to be the most 

diverse part of the immunoglobulin and T cell receptor binding site and is derived from 

recombination-activating gene (RAG)-mediated rearrangements during lymphocyte 

ontogeny.
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RAG transposon

A hypothetical transposable element that contains insertion elements, recombination 

signal sequences and (at least) one gene encoding the V(D)J recombination-activating 

protein 1 (RAG1) catalytic core, which invaded an immunoglobulin superfamily gene, 

initiating the generation of diversity in antigen receptor genes.
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Switch boxes

Repetitive DNA elements upstream of every immunoglobulin H (IgH) isotype gene in 

mammals that are involved in class switch recombination.
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APOBEC family

A specialized family of cytidine deaminases (CDAs) of which the best studied is 

activation-induced cytidine deaminase (AID), including its function in somatic 

hypermutation and class switch recombination. Members found in jawless fish (CDA1 

and CDA2) are implicated in the rearrangement of the variable lymphocyte receptor 

genes, and other APOBEC family members in mammals are involved in viral defence 

and genome preservation.
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Copy choice

The gene conversion-like mechanism by which diversity is generated for the variable 

lymphocyte receptor genes in developing agnathan T and B cells.
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CD1

The evolutionarily oldest nonclassical (MHC class Ib) molecule that presents lipid 

antigens to natural killer T cells and a subset of γ δ T cells.
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NK gene complex

(NKC). A large family of C-type lectin genes in mammals involved primarily in natural 

killer (NK) cell recognition (for example, killer cell lectin-like receptor subfamily K 

member 1 (KLRK1) and CD94).
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Leukocyte immunoglobulin-like receptor complex

(LRC). A large family of immunoglobulin superfamily genes in mammals (found on 

chromosome 19 in humans) involved in many immune reactions, including natural killer 

cell receptors.
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Proteasome subunit-β type 11

(PSM β11). Also known as B5T; an immunoproteasome catalytic subunit expressed 

specifically by the thymic cortical epithelium in all gnathostomes that is vital for the 

production of peptides involved in the positive selection of CD8+ T cells (cytotoxic T 

cells).
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Autoimmune regulator

(AIRE). A protein that is expressed specifically by the thymic medullary epithelium in all 

gnathostomes and is vital for central tolerance of T cells via the expression of tissue-

specific antigens.
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Peanut agglutinin staining

A process that makes use of lectin, which recognizes desialylated glycoproteins, most 

conspicuously staining germinal centre B cells, double-positive thymocytes and dendritic 

cell subsets.

Flajnik Page 55

Nat Rev Immunol. Author manuscript; available in PMC 2018 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1 |. General adaptive immune functions, mechanisms and molecules in the different 
vertebrate classes.

Numbers to the left indicate the approximate number of years (millions of years ago (Myr 

ago)) since the emergence of the ancestor of each vertebrate class. The term ‘archaic 

mammals’ refers to how different reptilian ancestors gave rise to birds and mammals, and 

the most ancient mammals most likely had these features. Note that while birds clearly have 

germinal centres, they have lost many features of adaptive immunity and are deserving of an 

entire review article of their own to explain their unique immune system. Animals discussed 

in this Review include amphibians (Xenopus and axolotl), bony fish (trout, salmon, medaka, 

zebrafish, cod, Antarctic fish, coelacanths and lungfish), cartilaginous fish (nurse shark, 
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skate and/or ray and elephant shark) and jawless fish (lamprey and hagfish). ?, unknown; 

CSR, class switch recombination; DCs, dendritic cells; FDCs, follicular dendritic cells; 

IgVH, immunoglobulin heavy chain variable region; SHM, somatic hypermutation; TCRδ, T 

cell receptor δ chain.
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Fig. 2 |. The ‘Big Bang’ emergence of almost all features of human adaptive immunity early in 
gnathostome history.

Immune features of each ectothermic vertebrate class, both in terms of leaps forward in 

evolution and unique characteristics of each group, are shown below the representative 

animal. Note that there appears to have been two Big Bangs, one at the emergence of the 

jawless fish and another when the gnathostomes emerged. In this and other figures, it has 

been assumed that the extinct placoderms had all the immune features of the cartilaginous 

fish, but this is speculative. AID, activation-induced cytidine deaminase; APOBEC, 

apolipoprotein B mRNA editing enzyme catalytic polypeptide-like; AIRE, autoimmune 

regulator; CDA, cytidine deaminase; CSR, class switch recombination; Ig, immunoglobulin; 

NKp30, natural killer cell p30-related protein; PSMβ11, proteasome subunit-β type 11; 

RAG, recombination-activating gene; SHM, somatic hypermutation; TAP, transporter 

associated with antigen processing; TAPL, TAP-like; TPN, tapasin; VLR, variable 

lymphocyte receptor.
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Fig. 3 |. Antibody and variable lymphocyte receptor proteins and genes throughout evolution.

The figure illustrates the main features of the antibodies found in amphibians, bony fish and 

cartilaginous fish and the variable lymphocyte receptors (VLRs) found in agnathans (jawless 

fish). Key differences in the variable (V), diversity (D), joining (J) and constant (C) domains 

of antibodies in each class are shown, as well as the structure of the leucine-rich repeat 

(LRR) cassettes found in agnathan VLRs. Note that naive B cells in the jawless fish also 

express cell surface VLRB in a monomeric form. The features noted below each molecule 

are described in the text and to some extent in FIG. 6. APOBEC, apolipoprotein B mRNA 

editing enzyme catalytic polypeptide-like; CT-LRR, carboxy-terminal LRR; GPI, glycosyl 

phosphatidylinositol; H, heavy; Ig, immunoglobulin; L, light; NAR, new antigen receptor; 

NT-LRR, amino-terminal LRR; TM, transmembrane.
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Fig. 4 |. MHC in the ectotherms, with an emphasis on what is unique in different classes.

The proto-MHC is shown at the top of the figure with several framework genes in blue 

found in all the MHC paralogous regions141,227228. The immune genes in blue are inferred 

to be part of the ancestral MHC, and genes with asterisks (*) are proposed to have existed. 

Chromosomes 1, 6, 9 and 19 are the MHC paralogous regions (numbering is based on 

human chromosomes, but all vertebrates have such paralogous regions) arising as a 

consequence of the two rounds (R) of genome-wide duplications (1 R and 2 R in the figure); 

these two rounds of genome duplications are shown, with short descriptions of what is 

special for each paralogous syntenic group. Features of the MHC of each vertebrate class are 

shown beneath the representative animal from each class. α2m, α2 macroglobulin; β2m, β2 

microglobulin; BRD, bromodomain protein; C3, complement component C3; IgSF, 

immunoglobulin superfamily; JAK, Janus kinase; NKR, natural killer receptor; NKR-C-type 

lectin, natural killer receptor of the C-type lectin family; NKR-IgSF, natural killer receptor 

of the IgSF; NOTCH, neurogenic locus Notch homologue protein; PBR, peptide-binding 

region; PSMβ8, proteasome subunit-β type 8; RXR, retinoid X receptor; TAP, transporter 

associated with antigen processing; TNFSF, tumour necrosis factor superfamily; TPN, 

tapasin.
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Fig. 5 |. ‘Double-duty’ APCs may have presented antigen to T cells and B cells before the 
emergence of FDCs.

It is proposed that a single population of conventional, haematopoietically derived dendritic 

cells (DCs) presents antigen to both T and B cells in ectotherms. This was likely the 

ancestral state before the appearance of follicular dendritic cells (FDCs) in mammals. 

Double-duty antigenpresenting cells (APCs) express MHC class II molecules, Fc receptors 

(FcRs) and complement receptors. BCR, B cell receptor.
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Fig. 6 |. Mucosal adaptive immunity throughout ectotherm evolution.

The figure illustrates the key features of adaptive mucosal immunity in mammals, 

amphibians and fish. The major mucosal immunoglobulin is indicated for each group, but 

IgM can also be transported across mucosal epithelia, although its role is less important, 

where studied.?, unknown; CSR, class switch recombination; J chain, joining chain. aNasal 

organized lymphoid tissue is found in all amphibians examined except Xenopus175. 
bOrganized nasal tissue is lacking in the majority of bony fish (actinopterygians) but present 

in the lungfish (sarcopterygians).
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