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ABSTRACT Cloud storage system provides data owners with remote storage service, which allows them to

outsource data without local storage burden. Nevertheless, the cloud storage service is not fully trustworthy

since it may not be honest and remote data would be corrupted. One way to ensure trustworthy preservation

of cloud data is the remote data auditing method, through which data owners can check storage reliability

of cloud system on demand and avoid potential data corruption in time. However, private auditing methods

fail to promise the mutual trust in auditing results. Thus, public auditing methods are introduced, in which

traditionally a third party auditor is delegated to interact with cloud service providers for auditing tasks.

Although the third party auditor serves as a medium to exchange trust, a centralized third party is hard to

stay neutral, which exposes the remote data auditing to some threats such as collusion attacks. To address

the trust problem between data owners and cloud service providers, we propose a collaborative auditing

blockchain framework for cloud data storage. In this framework, all consensus nodes substitute for the single

third party auditor to execute auditing delegations and record them permanently, thereby preventing entities

from deceiving each other. Security analysis shows that the proposed framework has advantage of preserving

remote data integrity from various attacks. Performance analysis demonstrates that the framework is more

functional and resource-friendly than existing schemes.

INDEX TERMS Cloud storage, collaborative blockchain, public auditing, trustworthy data integrity.

I. INTRODUCTION

With the volume of data becoming larger and larger rapidly,

cloud storage has made outsourcing data an inevitable trend

for resource-constraint data owners including individuals and

even organizations. Such cloud service provides not only

outsourcing function but also ubiquitous network access and

location independence [1], [2], which makes data owners

not worry about local operating system failures. In the

meantime, overheads resulting from data management are

The associate editor coordinating the review of this manuscript and
approving it for publication was Wen Sun.

greatly reduced, enabling data owners and local devices to

focus on data processing.

However, data stored in cloud storage system is out of

strong control of its owners, thus suffering from trust prob-

lem mainly caused by misbehaviors of the cloud service

provider (CSP) [3], [4]. In particular, malicious CSPs may

attempt to delete data which is accessed infrequently to save

storage space without authorization, or pretend nothing hap-

pens when stored data is corrupted. They may even tamper

with some data to deceive its owners for other financial

profits. The integrity and availability of cloud data are being

challenged.Many researchers have developed the remote data
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auditing (RDA) method for outsourced data to enable data

owners to measure the credibility of CSPwithout further loss.

In other words, a data owner who has deleted local copy can

still verify the correctness and integrity of remote stored data

through the RDA.

To implement RDA, a mechanism of ‘‘challenge-proof-

verify’’ is generally adopted between data owner and CSP

in private auditing, where the data owner generates data

challenges and verifies corresponding proofs from the CSP to

track the state of remote data. Nevertheless, the verification

process is only executed by the data owner in private auditing.

On the one hand, the auditing result may be unfavorable to the

CSP intentionally. On the other hand, such private methods

bring a lot of burdens on the data owner as data volume and

auditing requests increase. To resolve doubt about auditing

result, and to make verification process more energy efficient

for data owners, a new entity named third party auditor (TPA)

is introduced to achieve public auditing, who accepts auditing

delegations from data owners and executes them as directed.

But such solutions must assume that the TPA behaves in an

honest way, which is not a reliable premise in practice. For

example, a TPA may collude with either the CSP to hide

data corruption or the data owner to deceive for penalty.

In addition, an obvious weakness of a single centralized TPA

is the single point of failure.

To tackle the mutual trust problem in public auditing,

the emerging blockchain enables a decentralized way to track

state changes of a system. This technique first proposed

by Nakamoto et al. [5] is with the features of decentral-

ization, tamper-proof, consistency and traceability. Recent

years, a few schemes [6], [7] have combined integrity check-

ing and blockchain-based storage. However, they only regard

the blockchain as an immutable ledger, and data owners still

verify proofs by themselves. In some cases, data owners have

to maintain the whole blockchain, which increases much

storage burdens.

Hence, inspired by this technique as well, we design a

collaborative auditing blockchain (CAB) to enhance mutual

trust between data owners and CSPs in the cloud storage

system, while reducing as much resource overheads over data

owners as possible. In this paper, our main contributions are

summarized as follows:

• We design a hierarchical auditing framework to com-

bine RDA and blockchain, which makes all consensus

nodes verify data operation records collaboratively and

releases data owners from verification cost.

• We propose a credit-based consensus protocol and an

incentive mechanism intended to quantify behaviors of

entities.

• We extend our work to support some auditing properties

such as batch auditing and dynamic auditing.

• We conduct a comprehensive comparison between exist-

ing schemes and the proposed scheme. Security analysis

and simulation results can meet our design goals.

The remainder of this paper is organized as follows.

Section II presents some works related to our work.

Section III introduces some preliminaries which serves for

auditing process. Section IV is the problem statement includ-

ing system framework and design goals of the proposed

scheme. SectionV describes the core of the CAB and auditing

protocol. Section VI gives correctness, security, and simula-

tion analysis respectively. In the end, we draw conclusions in

Section VII.

II. RELATED WORK

The RDA can be categorized into private auditing and public

auditing. The former only contains two types of entities,

namely the data owner and the CSP. The auditing pro-

cess is mainly performed by the data owner. For example,

Ateniese et al. [8] first proposed the concept of provable

data possession (PDP), which adopted the mechanism of

‘‘challenge-proof-verify’’ to verify the integrity of remote

stored data, and has become the basis of many auditing pro-

tocols ever since. However, such private protocols increase

the burden on the data owner who lacks computing resources.

Furthermore, the data owner and the CSP distrust each other

in this context. Hence, auditing result may be harmful for

the CSP since it can only be obtained from the data owner.

To remove the above doubts, Wang et al. [9] first introduced

a trusted TPA into PDP to challenge the CSP on behalf of data

owners, which implemented public auditing. In this context,

delegation of auditing tasks means that the verification pro-

cess no longer requires the participation of the data owner,

thus reducing a lot of computation overheads. Nevertheless,

such public auditing schemes did not consider that the single

TPA is not always trustworthy and may be bribed by some

entity in practice. And it is even more dangerous that the

TPA can derive some information about delegators, since all

relevant information for verification are transmitted to it.

To address the above problems brought by the TPA in

public auditing, several blockchain-based solutions were

proposed. Liu et al. [10] replaced TPA with smart contract,

where the data owner and the CSP signed an auditing com-

mitment to resist repudiation. Then the data owner could get

the hash result of remote data through block identifier, which

was compared to the hash previously stored in the blockchain

ledger. Obviously, this scheme is not able to resist replay

attacks arose from the CSP. Yu et al. [6] presented a fully

decentralized data auditing solution without any TPA. They

employed homomorphic verifiable tag (HVT) to perform

RDA and their solution could effectively resist replay attacks

due to random challenge set generated in every auditing

request. But the data owner had to traverse the blockchain

ledger to find the specific proof for every challenge, which

brought extra cost. Yang et al. [11] combined merkle hash

tree (MHT) and timestamp server to ensure that all behaviors

of data owners and CSPs satisfied accountable traceability.

In their design, the data owner should store all proofs and

compute the tree root from leaf nodes during every verifi-

cation process. Qi and Huang [12] suggested reputation to

quantify the reliability of a CSP, and improved its blockchain

with a two-step validation. But more details were not given
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in this scheme. Li et al. [13] separated operation behaviors

and file information within a block. They also introduced a

proxy node to efficiently search specific blocks. However,

the data owner needed to download the whole file to verify the

integrity and could not afford to require auditing from time to

time. Xue et al. [7] utilized the nonce in blockchain to con-

struct unpredictable challenges, thereby preventing malicious

TPA from forging auditing results. The TPA would insert all

proofs and auditing results into a log file, which is uploaded to

the blockchain afterwards. Nevertheless, it still required the

data owner to review the log from blockchain, where a subset

should be re-verified by the data owner to discover malicious

TPA.

In conclusion, existing blockchain-based auditing schemes

mostly focus on solving the collusion problem in TPA-based

schemes through recording entities’ behaviors or removing

the TPA. However, they only take the blockchain as an

immutable ledger rather than a distributed trust network,

and still involve data owners in nearly the whole auditing

process, which causes much burden especially on resource-

constrained ones. Therefore, to make use of trust that con-

sensus nodes can contribute to the auditing process, we

re-describe relationships among entities in the cloud storage

system based on the blockchain, and design a CAB for

resource-constrained data owners. There is no more need for

them to traverse the CAB ledger to obtain auditing results,

while various security threats cannot work on the CAB.

We also introduce a credit score mechanism to encourage all

participants to keep honest and maintain the stability of the

CAB. In addition, a new entity called group manager is set

up to separate data owners from consensus process, enabling

our design to accommodate more data owners.

Additionally, data dynamics support is also a hot

spot attracting scholars’ attention these years. In 2008,

Ateniese et al. [14] improved the PDP and achieved partially

dynamics. Later, Wang et al. [15] developed the MHT which

has been employed widely to support full data dynamics.

And Zhu et al. [16] introduced a structure called as index

hash table (IHT), which recorded the changes of data blocks.

However, the above schemes required large communication

resources during the updating and verification processes.

Then in 2016, Tian et al. [17] constructed a single linked

sequence table DHT, which reduced the computation cost

of the CSP and communication overheads in the updating

process. Inspired by the DHT, we also introduce an auxil-

iary chain table (ACT) to support data dynamics and help

data owners and consensus nodes search records in the CAB

efficiently.

III. PRELIMINARIES

Let G be an elliptic curve subgroup, and GT be a multiplica-

tive subgroup. They are of a large prime order p, and g is a

generator of G.

A. COMPUTATIONAL DIFFIE-HELLMAN PROBLEM

A computational problem generated with a security

parameter λ is hard if, given as input a problem instance,

the probability of finding a correct solution to this problem

instance in polynomial time is a negligible function of λ.

The security of our scheme is based on the hardness of

CDH problem, which is at least as hard as discrete logarithm

problem (DLP).

Definition 1 (CDH Problem): Given ga and gb, where a,

b ∈R Z
∗
p , compute gab.

B. SYMMETRIC BILINEAR PAIRING

Bilinear pairing for scheme construction is built from a

pairing-friendly elliptic curve where it should be easy to find

an isomorphism from the elliptic curve group to the multi-

plicative group. It is a relatively mature and efficient method

and has been employed in cloud auditing. The definition of

symmetric pairing is stated as follows.

Definition 2 (Symmetric Bilinear Pairing): A map func-

tion e : G × G → GT is a symmetric bilinear pairing only

when it satisfies three properties below:

• Bilinear: For ∀u, v ∈ G, a, b ∈ Zp, there is e(u
a, vb) =

e(u, v)ab.

• Non-Degeneracy: e(g, g) is a generator of GT .

• Computability: For ∀u, v ∈ G, there exists efficient

algorithms to compute e(u, v).

C. BLS-BASED HOMOMORPHIC VERIFIABLE TAG

BLS-HVT is based on the BLS signature algorithm, which

can be efficiently aggregated and verified without disclosing

private key.

Definition 3 (BLS-HVT): Given a data block blk , and a

cryptographic hash function H : {0, 1}∗ → G. Select a

random secret key sk = a ∈ Z∗
p , and compute the corre-

sponding public key pk = ga. Then the BLS-HVT for blk

is σblk = H (blk)a. For verification, the verifier will simply

need to check whether e(σblk , g) = e(H (blk), pk) holds.

With BLS-HVT, blockless verifiability can be realized.

IV. PROBLEM STATEMENT

A. SYSTEM FRAMEWORK

As shown in Fig. 1, the proposed framework contains four

entities: private key generator (PKG), data owners (DOs),

groupmanagers (GMs) andCSPs. In our framework, the PKG

is governed by a fully-trusted authority which is responsible

for setting public parameters for the whole system and gen-

erating key pairs for the GM. The DO is assumed to have

limited communication, computation, and storage resources.

It generates and sends auditing challenges to the CSP on

demand, meanwhile maintaining ACT to tracking changes

of data blocks. As a member of DOs, the GM is collec-

tively designated by a certain group of DOs. However, it is

assumed to possess more resources than common DOs. The

GM is responsible for maintaining the blockchain ledger for

managed DOs, and returning results to them when ledger

is updated. The CSP provides DOs with significant stor-

age space and computation capability. It is also responsible

for storing the chain of blocks, while responding proofs to
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FIGURE 1. The hierarchical CAB framework in cloud storage system.

auditing challenges. In our assumption, the CSP may not be

honest, and there exists business competition among different

CSPs.

To support public auditing, the CAB will store auditing

requests and proofs, which can be accessed and verified by

any entity if need be. In addition, the CAB works more like

a permissioned blockchain, since only node who meets some

requirements can participate in the consensus process.

As for relationships among the above entities, a brief expo-

sition will be provided here. The DO outsources its data files

to a CSP and can retrieve them on demand. When the DO

sends an operation request to the CSP through GM, the GM

simultaneously broadcasts related auxiliary information to

other consensus nodes. Once the CSP confirms request and

responds to it, the CAB performs consensus process, and then

records this operation and its result in a new block. Eventually

the DO is able to obtain final response from the GM after the

CAB ledger is updated.

B. THREAT MODEL AND SECURITY ASSUMPTIONS

Generally, a malicious entity in our frameworkmay attack the

CAB in three ways:

• by returning positive results to DOs at all times to

deceive for rewards, no matter what real responses are.

• by denying requests or operations done to the remote

data for further compensation.

• by colluding with other entity to directly interfere

consensus judgement.

Since all behaviors are signed and traceable in the CAB,

repudiation to what have happened is meaningless. Then we

mainly consider four types of attacks in this paper:

• Replacement attack. The CSP attempts to pass auditing

by replacing the challenged data block and tag with

combination of other uncorrupted data blocks and tags.

• Forgery attack. The CSP forges proofs to deceive other

verifiers.

• Replay attack. The CSP replays previous proof which

has passed verification to bypass present challenge,

or the GM replays an existed and valid auditing result

to deceive the DO.

• Collusion attack. The CSP colludes with the GM to

change challenges and proofs, leading other verifiers to

wrong judgement.

We also make some standard cryptographic assumptions.

For example, the adversary is not able to forge signatures

without owning signer’s private key, and the one-way hash

function is secure. In addition, we assume that all entities are

rational, and no entity can control more than 30% consensus

nodes in the CAB.

C. DESIGN GOALS

In this paper, we target public and trustworthy integrity audit-

ing for cloud storage system. The following properties are

intended to achieve considering functionality, security and

Efficiency respectively.

1) FUNCTIONALITY

• Decentralization. All operation requests and responses

are maintained by all consensus participants so that

records can be accessed publicly. Through credit score

mechanism, each consensus node has a probability to be

in charge of generating new block and writing it into the

CAB ledger.

• Collaboration. The reliability of auditing result requires

all verifiers to devote some resources to execute the

verification process.

• Storage correctness and freshness. The CSPmust pass

auditing only if it is storing DO’s data files intactly.

Furthermore, the CSP keeps the latest version of data

blocks and corresponding tags, while the DO and veri-

fiers hold the latest auxiliary information used to verify

proofs.

• Dynamic operations support. The DO is able to per-

form remote data update operations, i.e., insertion,

deletion, and modification, with necessary cost.

2) SECURITY

• Identity-privacy preservation. It is impossible for enti-

ties except the GM to get the knowledge of DO’s

identity.

• Blockless verification. It enables verifiers to verify

proofs without original data, which ensures the security

of data to some extent.

• Unforgeability. This property indicates that the prob-

ability of forging a proof able to pass verification of

honest verifier in polynomial time is negligible.

• Collusion resistance. It offers the CAB with the abil-

ity of resisting against collusion attacks under certain

circumstance.

3) EFFICIENCY

• Batch auditing. Verifiers can check multiple auditing

challenges corresponding to various data blocks of dif-

ferent files from different DOs in a management domain

simultaneously.
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• Efficient traceability. All operation histories related to

a certain data block can be quickly retrieved by any

entity.

• Stability. The sharp increase in the number of DOs

and GMs will not substantially reduce verification

efficiency.

V. THE PROPOSED SCHEME

In this section, we first introduce a dynamic structure to

support various operations on data blocks. Then the core of

our public auditing scheme, which is based on the hierarchical

CAB, is illustrated in detail. Afterwards a description of

our auditing protocol is presented in subsection V-C. What

follows is the extended property of batch auditing. Finally,

the interaction between dynamic data operations and the CAB

are described briefly and formally. Table 1 shows some basic

notations and their descriptions referred to in our scheme.

TABLE 1. Notations and descriptions.

A. AUXILIARY CHAIN TABLE

In this part, based on the DHT designed in [17], we develop

a new data structure ACT employed by each DO, which

provides fast retrieval in the CAB and some metadata that

helps verification. The ACT is two-dimensional and its spe-

cific structure is shown in Fig. 2. Metadata information in

the ACT is categorized into file information and data block

information. The left part is the identifier of each file owned

by a DO, which forms an array since they are independent

in storage order. However, due to the correlation among

operations on data blocks within the same file, the right part

is designed to be a double linked list, where each item records

the current version number, time stamp, last operation height,

last operation type, and last operation state of corresponding

data block.

FIGURE 2. The auxiliary chain table for supporting data dynamics.

In our scheme the version number is denoted as vm,n, which

is updated when a given data block is inserted or modified.

Likewise, the time stamp, last operation height, last operation

type, and last operation state are respectively abbreviated to

tsm,n, lohm,n, lotm,n and losm,n. We should note that tsm,n and

lotm,n are updated when operation request is generated, but

lohm,n and losm,n are updated after corresponding responses

are obtained from the CAB. Here in the above symbols, m

represents the file ID and n represents the index of data block.

With such a double linked array, the insertion and dele-

tion of a data block will cause no change in other items

within the same file. Moreover, the ACT provides with local

convenience when retrieving state of a certain element or

performing forward traceability in the CAB.

For further operation convenience, we manually catego-

rize the ACT into existing ACT (EACT) and deleted ACT

(DACT). When a data block has been deleted, corresponding

item would be deleted from the EACT and inserted into the

DACT. In this way, the order of data blocks within the same

file would not be chaotic when a new data block is to be

inserted afterwards.

B. COLLABORATIVE AUDITING BLOCKCHAIN

The main function of the CAB is to encourage partici-

pants with credit rewards in packaging operation information

and verifying proofs to make auditing results more reliable.

In this part, we present the designed CAB from aspects of

block structure, consensus process, and incentivemechanism,

which are the basis of a blockchain.

1) BLOCK STRUCTURE

We should note that every practical blockchain system has

a strong requirement for application scenario, and existing

security architectures based on the blockchain have their own

security goals. Therefore, information stored in a block are

different in these systems. In practice, considering that the

capacity of a block is limited for the reason of efficiency,

we only store the most important metadata which reflects

entities’ behaviors and corresponding results in the form of

hash.

As shown in Fig. 3, a block is divided into two parts:

block header and block body. Different from cryptocurrency,

we adapt the block to remote auditing context by reconstruct-

ing transaction structure. Details about important fields are

showed as follows:

• height: the hight of current block, which is responded to

the DO to update the ACT.

• from, to: identifiers of delegated GM and requested

CSP.

• type: an operation type among insertion, modification,

deletion and auditing.

• sig: the signature of GMwho is responsible for transmit-

ting the transaction to the CAB network.

• result: the result to operation request signed by the

representative.
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FIGURE 3. The structure of a block in the CAB ledger.

• last op heights: a list of the heights of previous blocks

which track last operations done to the same data blocks.

It is filled with the field loh obtaining from the ACT.

• extension field: if operation type is auditing, this field is

filled with challenges and corresponding proofs. If oper-

ation type is insertion or modification, this field is

written with a list of v and ts obtaining from the ACT.

Otherwise it is empty.

2) CONSENSUS PROCESS

Apart from the construction of block structure for specific

scenario, another crucial part of a blockchain is the design of

its consensus process. Generally, the purpose of a consensus

protocol is to solve problems of storage consistency and

process reliability. Based on [18]–[20], which are known as

PoS and PBFT, we define credit score as measurement of

CSPs’ and GMs’ reliability and a factor affecting selection

of consensus nodes and representative. Before describing

consensus process, we give definitions about some concepts.

Definition 4 (Credit Score): Credit score cr is employed

to express the degree at which a CSP or a GM can be trusted

via evaluating their behaviors.

Definition 5 (Credit Block): A special block containing a

list of CSPs andGMs identified by their public keys and credit

scores {(pk1, cr1), (pk2, cr2), . . . }.

On the whole, the credit-based consensus process is run

by all CSPs and selected GMs over a sequence of rounds

in our framework. Before establishing the CAB, through

negotiating, CSPs and GMs get their initial credit scores

according to the percentage of DOs that they provides ser-

vice for or they manages. Then the representative election

proceeds as follows:

1) Initialization: When system starts, CSPs and GMs

broadcast their public keys and credit scores

(pk, cr, σPKG(pk ‖ cr)). Then all CSPs and GMs get

the credit block to initialize the CAB.

2) Consensus nodes selection: As the number of DO

rises, there would be more GMs for load balancing.

Considering efficiency and stability of consensus

process, we first sort GMs by the number of request

source in current transaction pool in descending order

and get {GM1,GM2, . . . }. ThenGMi is selected to be a

consensus node in current round with a probability pi,

where pi =
cri∑
j crj

. Consensus nodes selection process

flips a p1-biased coin to checkwhetherGM1 is selected;

then for all j > 2 if exists, it flips a (1 − p1) · · ·

(1 − pj−1)pj-biased coin to check whether GMj is

selected. Once a GM is picked out, the sorted set of

GMs would remove it. The selection process would

be executed 2f + 1 times, where f ∈ Z is the maxi-

mum number of possible malicious GMs in the CAB.

Additionally considering that the number of clouds

is limited in reality, all CSPs will participate in the

consensus process in our scheme.

3) Representative election: Similar to consensus nodes

selection in GMs, except that we first sort CSPs by

the number of request destination in current transac-

tion pool in ascending order. After rearranging the set

of consensus nodes in the order of {{CSPs}, {GMs}},

the p-biased coin selection process will be only exe-

cuted once to determine current representative.

For every round after the representative has been elected,

the abstract flow from sending requests to the end of consen-

sus is as Fig. 4 shows.

FIGURE 4. The communication flow from DO’s request to the end of
consensus.

As a prerequisite, a DO sends an operation request req on

remote stored data to the GM, and GM broadcasts req to

the CAB network after re-signing it. Upon receiving req,

the designative CSP signs response res and broadcasts to the

network as well. When the representative collects enough

(req, res) to form a block, it adds its verification result to

each (req, res) and launches a three-stage consensus proposal.

Firstly, the representative broadcasts a pre-prepare message

and a new packaged block. When a consensus node receives

the message, it checks correctness of current round infor-

mation. If passed, this consensus node broadcasts a prepare

message to claim its ready state. Once a consensus node

obtains more than 2N/3 prepare messages, where N is the

total number of consensus nodes in current round, it begins

verification process with relevant information stored in the

CAB ledger to check whether the result is the same as what

the representative gets or not. If the same, this node will

broadcast a commit message to other peers. Finally, if a

consensus node gets more than 2N/3 consensus commits,

it will accept the new block and append it to the end of

ledger. Then all consensus GMs reply to other unselected

GMs in current round, each of which will accept the new

block if more than f +1 same blocks are received. Eventually,

the GM responds to the DO with operation result after ledger

is updated.
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3) INCENTIVE MECHANISM

Another important part to a blockchain is the incentive mech-

anism, which can encourage consensus nodes to repeat some

tasks honestly and get their rewards, thus enhancing the

distributed trust of the whole system and the reliability of

results. Based on the assumption that all entities are rational,

we roughly present a feasible incentive mechanism that takes

economic benefit and misbehaviors into consideration for

further stability:

• A DO needs to buy credits to pay GMs and CSPs for

operation requests.

• Each communication in consensus process will cost

GMs and CSPs a portion of credit.

• A CSP who fails DO’s request will decrease exponen-

tially on credit score, whereas the DO gets extra com-

pensation apart from request fee which has been paid.

• A GM can only get credit rewards when managed DO’s

request passes, otherwise the GM makes neither profit

nor loss.

• A representative will get large but linear and other con-

sensus nodes will get small but also linear increase on

credit scores if current round successfully reaches final

consensus.

• A DO has the freedom to choose any CSP to store data

or any GM to transfer messages according to the credit

score. If the credit score falls below a threshold, existed

consumers will leave for another CSP or GM.

It is obvious that the credit score not only affects the

probability of consensus nodes selection and representative

election, but also determines practical economical benefit of

all entities, since it is like a token to some extent. If a CSP

keeps data intact, performs DO’s requests honestly, or reports

other CSPs’ misbehaviors, it will be rewarded with some

credit scores. In other words, if a CSP is detected having some

misbehaviors, which eventually leads to failing to pass audit-

ing in our scheme, it will be punished hard in credit score.

Any DO prefers choosing a CSP which has a relatively high

credit score to store data, and such CSPs can also be elected to

be the representative with a high probability. Likewise, for a

rational GM, though its credit score will not decrease even if

DOs’ requests fail, a DO tends to send requests to a GM with

a relatively high credit score when there are other GMswithin

a big domain, which further influence the probability of a GM

to be selected as a consensus node. Therefore, the proposed

incentive mechanism guarantees the honesty of entities to a

considerable extent.

C. HIGH DESCRIPTION OF THE AUDITING PROTOCOL

In this part, we focus on our public auditing protocol with the

help of the CAB described in subsection V-B. The construc-

tion of the proposed protocol is divided into two phase: setup

phase and audit phase. The former is responsible for system

parameters initialization and auxiliary information genera-

tion. The latter is the core process of remote data auditing.

Both phases need collaboration among all participants, that

is, the interaction with the CAB.

Assuming that a PKG, a DO, a GMwhich the DO chooses,

and all CSPs participate in our auditing protocol. In addition,

the specific signature algorithm for message authentication is

out of our consideration.

1) SETUP PHASE

In this phase, the PKG is in charge of system parameters

initialization, while the DO and GM need to pre-process files.

Firstly, the PKG utilizes security parameter to generate a

public-secret key pair for the GM, and the DO also generates

its own key pair in KeyGen. Then the DO initializes EACT

and DACT in FileToAux to store metadata in the form of as

described in subsection V-A. Finally, the DO pre-processes

files and uploads them to the CSP in FileToCS.

KeyGen:With a security parameter λ, the PKG first selects

an elliptic curve group G and a multiplicative group GT of

the same large prime order p, a field Zp of residue classes

modulo p, and a symmetric bilinear pairing e : G×G → GT .

Two random generators g1, g2 ∈ G are also picked.

Additionally, the PKG defines a one-way hash function H :

{0, 1}∗ → G, a pseudo-random function (PRF) f , and a

pseudo-random permutation (PRP) π . Thus, the set of system

public parameters is

SP = {G,GT , p,Zp, g1, g2, e,H , f , π}. (1)

Then the PKG chooses random element α ∈ Z∗
p = Zp\{0} as

the secret key gsk of GM, and let its public key be gpk = gα
1 .

The GM also chooses a signing key pair (gssk, gspk). As for

the DO, it randomly chooses sk = β ∈ Z∗
p as private key, and

computes pk = gpkβ to be public key. Afterwards the DO

calculates the inverse inv satisfying

inv · β ≡ 1 (mod p),

and a parameter γ = gpk inv. Likewise, the DO chooses a

signing key pair (ssk, spk). Furthermore, we assume that the

CSP which is designated to offer storage service to the DO

has signing keys (cssk, cspk).

FileToAux: Initially the DO creates the EACT for all files to

be uploaded. For i-th data block in a file, we set corresponding

item as

(vi = 1, tsi, lohi = −1, loti = insert, losi = −1)

in the EACT.

FileToCS: For simplicity, we suppose that the DO needs to

upload a file F . The DO splits F into data blocks such as:

F = {b1, b2, · · · , bi, · · · , bn} i ∈ [1, n],

where bi is a general name of data block. Then the DO

generates a BLS-HVT for each bi:

σi = (H (vi ‖ tsi) · g
bi
2 )

sk , (2)

of which the aggregated set is

σ = {σi}i∈[1,n].
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In (2), vi and tsi are obtained from the EACT. Afterwards the

DO constructs an insertion instruction

{insert, tsins, IDF ,F, σ,H (F),

IDCSP, {(vi, tsi, lohi)}i∈[1,n], σDO}

and sends to the GM, where

σDO = σssk (tsins ‖ σ ‖ {(vi, tsi, lohi)}i∈[1,n]),

and tsins is the generation time of this instruction. The GM

transforms the insertion instruction and delivers

{insert, tsins, IDGM , IDF ,F, σ,H (F), σGM }

to the CSP for the DO, where

σGM = σgssk (tsins ‖ σ ).

In the meantime, the GM creates and broadcasts a insertion

request to the CAB network:

TXins2CAB = {insert, tsins, IDGM , IDF ,

{(vi, tsi, lohi)}i∈[1,n], IDCSP, σ
′
GM }, (3)

where

σ ′
GM = σgssk (tsins ‖ {(vi, tsi, lohi)}i∈[1,n]).

Upon receiving insertion instruction, IDCSP verifies σGM
firstly and then checks integrity of file F through H (F).

If passed, it stores F and broadcasts a response

TXres2ins = {IDCSP, tsins, IDGM , IDF , 1, σCSP},

where

σCSP = σcssk (1 ‖ tsins).

When the representative receives both TXins2CAB and

TXres2ins, it verifies GM’s and CSP’s signatures, and writes

(1, σrep(1 ‖ tsins ‖ IDGM ‖ IDF ) into field result of a

transaction in the new packaged block if passed. Once the

representative collects enough transactions, the consensus

process will be performed as described in V-B.2. In the end,

the GM obtains the latest ledger and returns

{IDF , 1, h, σrep(1 ‖ tsins ‖ IDGM ‖ IDF )}

to the DO, where rep is the abbreviation of the representative

and h is set as the hight of the latest block in the updated

ledger. The DO verifies the representative’s signature with

local stored tsins, and overwrites items in the EACT as

(vi = 1, tsi, loh
∗
i = h, loti = insert, los∗i = 1)

if passed, which means that the insertion request is performed

successfully. At this moment the DO can delete the local copy

of file F .

2) AUDIT PHASE

This phase performs remote data integrity auditing.

Specifically, challenges are generated from the DO and sent

to the CSP in ChalGen, after which the CSP computes

integrity proofs and broadcasts them to the CAB network in

ProofGen. Then in ProofAudit, consensus nodes check the

correctness of proofs with the help of auxiliary metadata pre-

viously stored in the CAB ledger. For simplicity, supposing

that the DO wants to audit aforementioned file F which has

been uploaded.

ChalGen: The DO randomly chooses two generation keys

k1, k2 ∈ Z∗
p , and picks z ∈ Z+ random items from the EACT,

eventually obtaining a challenge set

chal = {i, ri}i∈[1,z] (4)

by calculating

i = πk1 (l), ri = fk2 (l) l ∈ [1, z].

Meanwhile, the DO updates these items as

(vi = 1, ts∗i = tsaud , lohi = hi, loti = audit, losi = −1),

where tsaud is current time. Then the DO signs chal and other

auxiliary information, after which it constructs an auditing

instruction and sends it to the GM:

{audit, tsaud , γ, IDF , chal, {lohi}i∈[1,z], IDCSP, σDO},

where

σDO = σssk (tsaud ‖ γ ‖ chal ‖ {lohi}i∈[1,z]).

The GM constructs and re-signs

TXaud2CAB = {audit, tsaud , IDGM , γ, IDF , chal,

{lohi}i∈[1,z], IDCSP, σGM }, (5)

where

σGM = σgssk (tsaud ‖ γ ‖ chal ‖ {lohi}i∈[1,z]).

Finally it will be broadcast to all participants for future

verification.

ProofGen: Once IDCSP gets the TXaud2CAB, it verifies

GM’s signature and checks whether chal are out of range or

not. If valid, IDCSP generates a tag proof

TP =
∏

i∈[1,z]

σ
ri
i (6)

and a data block proof

DP =
∑

i∈[1,z]

bi · ri (7)

according to chal. Upon completion, the above proofs

TXres2aud = {IDCSP, tsaud , IDGM , IDF ,TP,DP, σCSP} (8)

will be broadcast, where

σCSP = σcssk (tsaud ‖ TP ‖ DP).
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ProofAudit: The representative collects TXaud2CAB and

TXres2aud . Based on lohi, the representative retrieves field last

op heights of a transaction in corresponding blocks recur-

sively till the type of transaction is ‘‘insert’’ or ‘‘modify’’,

and gets all v and ts of challenged data blocks from the

CAB ledger. Then the representative computes aggregated

data block information

DBI = e(
∏

i∈[1,z]

H (vi ‖ tsi)
ri , gpk) (9)

for the whole chal. And it continues to check whether

e(TP, γ ) = DBI · e(gDP2 , gpk) (10)

holds. If holding, the representative writes (1, σrep(1 ‖ tsaud ‖

chal ‖ IDGM ‖ IDF ) into field result of corresponding

transaction, otherwise it writes (0, σrep(0 ‖ tsaud ‖ chal ‖

IDGM ‖ IDF ). When enough transactions are collected

and processed in such way, the representative performs the

consensus process. Finally, the GM receives new block and

updates local ledger, after which it returns result

{IDF , state, h, σrep(state ‖ tsaud ‖ chal ‖ IDGM ‖ IDF )}

to the DO. The DO verifies it with stored tsaud , k1 and k2, and

updates corresponding items in the EACT as:

(vi, ts
∗
i , loh

∗
i = h, loti = audit, losi = state).

If state = 1, the challenged data blocks are complete; other-

wise if state = 0, there is at least one of these outsourced data

blocks suffering corruption.

D. BATCH AUDITING

There aremany different DOs to be served andmultiple audit-

ing tasks may be waiting for processing simultaneously. The

batch auditing in our work supports aggregating challenges

of multiple files from various DOs managed by the same

GM, which can reduce computation overheads of verifiers in

ProofAudit compared with individual auditing.

Supposing that the ui ∈ [1, uz] DOs delegate auditing tasks

of i ∈ [1, z] data blocks in fi ∈ [1, fz] files to the GM at the

same time. Then in ChalGen, the DO needs to extends fields

chal and {loh} in auditing instruction. The batch verification

equation is

uz∏

ui=1

e(

fz∏

fi=1

TP, γ )
?
= DBI ′ · e(g

∑uz
1

∑fz
1 DP

2 , gpk), (11)

where

DBI ′ =

uz∏

ui=1

fz∏

fi=1

DBI

=

uz∏

ui=1

fz∏

fi=1

e(

z∏

i=1

H (vi ‖ tsi)
ri , gpk)

= e(

uz∏

ui=1

fz∏

fi=1

z∏

i=1

H (vuifii ‖ tsuifii)
ruifii , gpk)

If it holds, the completeness and correctness of all verified

files can be ensured, otherwise at least one file of a certain

DO is corrupted.

E. DYNAMIC AUDITING

Data flow during insertion and auditing processes has been

respectively described in detail. Hence, we proceed to intro-

duce how the other two operations generate trails in the

CAB, which are modification (TXmod2CAB) and deletion

(TXdel2CAB). In the following, we suppose that a remote data

block bi in file IDF of a DO will be manipulated. In addition,

corresponding item in current EACT is assumed to be:

(vi, tsi, lohi, loti, losi)

1) MODIFICATION

Assuming that bi is modified to b∗
i . Firstly, the DO updates

corresponding item in the EACT to:

(v∗i = vi + 1, ts∗i , lohi, lot
∗
i = modify, los∗i = −1),

and generates a new BLS-HVT

σ ∗
i = (H (v∗i ‖ ts∗i ) · g

b∗
i

2 )sk

for the modified data block. Then a modification instruction

{modify, tsmod , IDGM , IDF , i, b∗
i , σ

∗
i ,H (b∗

i ), σGM }

is sent to the CSP with the help of the GM, where tsmod is the

generation time of this instruction. After the GM broadcasts

TXmod2CAB = {modify, tsmod , IDGM , IDF , i,

IDCSP, (v
∗
i , ts

∗
i , lohi), σ

′
GM }, (12)

and the CSP modifies bi as indicated and broadcasts response

TXres2mod = {IDCSP, tsmod , IDGM , IDF , 1, σCSP},

the CAB collects them to verify. If their information matches

and the CAB ledger is updated after all processes,

{IDF , i, 1, hi, σrep(1 ‖ tsmod ‖ IDGM ‖ IDF )}

will be returned from the GM. The last step for the DO is

to validate the result, and overwrite corresponding item to

loh∗
i = hi and los

∗
i = 1.

2) DELETION

Similarly, after setting ts∗i = tsdel , lot
∗
i = delete and los∗i =

−1, where tsdel is the deletion time, a deletion request

TXdel2CAB = {delete, tsdel, IDGM , IDF , i, σGM } (13)

is broadcast. Once the CSP accepts the request, it makes a

response

TXres2del = {IDCSP, tsdel, IDGM , IDF , 1, σCSP}.

Then after TXdel2CAB and TXres2del have been written into the

CAB, the DO finally gets

{IDF , i, 1, hi, σrep(1 ‖ tsdel ‖ IDGM ‖ IDF )}
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and updates the EACT as loh∗
i = hi and los

∗
i = 1, after which

corresponding item will be moved to the DACT.

We can note that los in relevant items would be reset and

overwritten at the beginning and the end of each request. This

field keeps the state of lot and it has three different values.

When los equals to −1, it means that request lot has not

gained a response yet. If los is set to 0, which indicates request

lot fails, there exists two possible cases: 1) when lot = audit ,

then the outsourced data is not complete or tampered with;

2) otherwise the asked CSP refused to perform request lot for

some reasons such as illegal remote data operation. In this

case, the CSP should present relevant evidence to other con-

sensus nodes to validate. If los = 1, it shows that request lot

has been successfully admitted by the CSP or the auditing

result is positive.

VI. EVAULATION

In this part, analysis of correctness, security and performance

are showed.

A. CORRECTNESS ANALYSIS

There are two primary equations employed in our verifica-

tion process: (10) for a single auditing task from a single

DO and (11) for several auditing tasks from multiple DOs.

Supposing that each consensus node in our protocol has

received challenges and valid proofs, we will demonstrate the

equality of these two equations to prove the correctness of

audit phase.

(10) can be derived as follows:

e(TP, γ ) = e(
∏

i∈[1,z]

σ
ri
i , gpk inv)

= e(
∏

i∈[1,z]

(H (vi ‖ tsi) · g
bi
2 )

sk·ri , gpk inv)

= e((
∏

i∈[1,z]

H (vi ‖ tsi)
ri ) · g

∑
i∈[1,z] bi·ri

2 , gpk)

= e(

z∏

i=1

H (vi ‖ tsi)
ri , gpk) · e(g

∑z
1 bi·ri

2 , gpk)

= DBI · e(gDP2 , gpk).

Based on (10), (11) explains how a verifier aggregates

different challenges and proofs while executing less pairings:

uz∏

ui=1

e(

fz∏

fi=1

TP, γ ) =

uz∏

ui=1

e(

fz∏

fi=1

z∏

i=1

σ
ruifii

uifii
, gpk invui )

=

uz∏

ui=1

fz∏

fi=1

e(

z∏

i=1

σ
ruifii

uifii
, gpk invui )

=

uz∏

ui=1

fz∏

fi=1

DBI · e(gDP2 , gpk)

=

uz∏

ui=1

fz∏

fi=1

DBI

·

uz∏

ui=1

fz∏

fi=1

e(g

∑z
1 buifii·ruifii

2 , gpk)

= DBI ′ · e(g

∑uz
1

∑fz
1 DP

2 , gpk).

We should note that only DOs who are managed by the same

GMare able to reduce pairing operations through information

aggregation, compared to individual auditing.

B. SECURITY ANALYSIS

In this subsection, we analyze how the CAB resist four types

of attacks which could happen during the whole audit phase,

including replacing attacks, forgery attacks, replay attacks

and collusion attacks. It is noteworthy that in our assumption

all other entities apart from the mentioned in each kind of

security threat will comply with auditing regulations.

Theorem 1: The CAB can resist replacing attacks gener-

ated by the CSP. A malicious CSP is not able to get the cor-

rect combination of intact data block information to replace

corrupted data block when generating proofs and deceive

verifiers.

Proof: Supposing that a data block bj to be checked has

been corrupted but that two data blocks bj1 and bj2 , whose

HVT are σj1 and σj2 respectively, are well maintained in the

CSP. To retrieve the HVT of bj, the CSP should find out the

correct combination of σj1 and σj2 . Since

σj1 = (H (vj1 ‖ tsj1 ) · g
bj1
2 )sk ,

σj2 = (H (vj2 ‖ tsj2 ) · g
bj2
2 )sk ,

then the CSP sets that

σ ∗
j = σ

αj1
j1

· σ
αj2
j2

= ((H (vj1 ‖ tsj1 ) · g
bj1
2 )sk )αj1

· ((H (vj2 ‖ tsj2 ) · g
bj2
2 )sk )αj2

= ((H (vj1 ‖ tsj1 )
αj1 · H (vj2 ‖ tsj2 )

αj2 )

· g
αj1 ·bj1+αj2 ·bj2
2 )sk

where αj1 , αj2 ∈ Zp. Comparing σ ∗
j and σj, it follows that

αj1 · bj1 + αj2 · bj2 = bj,

H (vj1 ‖ tsj1 )
αj1 · H (vj2 ‖ tsj2 )

αj2 = H (vj ‖ tsj)

must be satisfied simultaneously. Solution to the second equa-

tion refers to the DLP on elliptic curve, which means it is

hard to work out the desired αj1 and αj2 . Thus the probability

that the CSP performs such replacing attacks successfully is

negligible.

Theorem 2: The CAB can resist forgery attacks from the

CSP. A malicious CSP cannot directly forge a tag proof to

make (10) hold.

Proof: If the CSP has modified data block bi to bi+offi
for i ∈ [1, z], where offi represents the modification part.

Then in ProofGen, the CSP should have computed the new
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TP∗ which adapts to the new DP∗ as follows:

TP∗ =
∏

i∈[1,z]

((H (vi ‖ tsi) · g
bi+offi
2 )sk )ri

=
∏

i∈[1,z]

((H (vi ‖ tsi) · g
bi
2 )

sk · g
offi·sk
2 )ri

=
∏

i∈[1,z]

σ
ri
i · g

sk·
∑

i∈[1,z] offi·ri

2

= TP · g
sk·

∑
i∈[1,z] offi·ri

2

Since the CSP only owns TP, it must continue to multiply

the rest to get TP∗. Note that sk is just the private key of

the DO, which cannot be known by any other entities in our

assumption. Hence, the CSP could not forge proofs to deceive

other verifiers.

Theorem 3: During the audit phase, the CAB can resist

replay attacks from the CSP or the GM. It can be categorized

into two cases: a malicious CSP could not pass verification if

it responds to verifiers with previous valid proofs; a malicious

GM is not able to deceive the DO successfully even if it

returns previous valid auditing result.

Proof: For the former case, the replay attack may be

executed by a malicious CSP when it has illegally changed

the state of a data block bj. We assume that bj’s proof infor-

mation is replaced by its former data block b−
j . Then the CSP

calculates the new proof (TP∗,DP∗) as follows:

TP∗ =
∏

i∈[1,j−1]
⋃
[j+1,z]

σ
ri
i · σ

rj

j−
,

DP∗ =
∑

i∈[1,j−1]
⋃
[j+1,z]

bi · ri + bj− · rj.

Upon receipt, verifiers will analyze proofs according to (10).

The left part concerning the tag proof can be written as:

e(TP∗, γ ) = e(
∏

i∈[1,z]\{j}

σ
ri
i · σ

rj

j−
, gpk inv)

= e(
∏

i∈[1,z]\{j}

(H (vi ‖ tsi) · g
bi
2 )

sk·ri

· (H (vj− ‖ tsj− ) · g
bj−

2 )sk·rj , gpk inv)

= e(
∏

i∈[1,z]\{j}

(H (vi ‖ tsi) · g
bi
2 )

ri

· (H (vj− ‖ tsj− ) · g
bj−

2 )rj , gpk)

= e(
∏

i∈[1,z]\{j}

H (vi ‖ tsi)
ri

·H (vj− ‖ tsj− )
rj , gpk)

· e(g

∑
i∈[1,z]\{j} bi·ri+bj− ·rj

2 , gpk).

Since verifiers would compute DBI by collecting neces-

sary information from the CAB, therefore the right part

concerning the data block proof can be expanded as:

DBI · e(gDP
∗

2 , gpk) = e(
∏

i∈[1,z]

H (vi ‖ tsi)
ri , gpk)

· e(g

∑
i∈[1,z]\{j} bi·ri+bj− ·rj

2 , gpk)

= e(
∏

i∈[1,z]\{j}

H (vi ‖ tsi)
ri

·H (vj ‖ tsj)
rj , gpk)

· e(g

∑
i∈[1,z]\{j} bi·ri+bj− ·rj

2 , gpk).

Comparing the above two expanded equations, we conclude

that only when H (vj ‖ tsj) = H (vj− ‖ tsj− ), i.e., vj = vj−

and tsj = tsj− , can (10) hold. To our knowledge, version

number and timestamp of two different data blocks can never

be the same. Moreover, it is impossible for the CSP to tamper

withDBI , since this variable is calculated by all verifiers with

version number and timestamp recorded in the CAB. Hence,

replay attacks cannot work in this case.

For the latter case, the replay attack may happen when a

malicious GM is greedy for rewards and attempts to deceive

the DO with previous result even if the CSP has failed

auditing request. However, this evil intention can be easily

prevented owing to the representative’s signature of tsaud ,

IDGM , and IDF contained in the result. These three variables

act as a random and unique identifier set by the DO and

thus the signature of representative changes every request.

Therefore, previous auditing result cannot work any more in

this case.

In conclusion, our scheme can resist replay attacks.

Theorem 4: The CAB can resist collusion attacks from

CSPs and GMs. Colluding CSP and GM cannot deceive the

DO by tampering with challenges and adapting proofs to

bypass corrupted data blocks.

Proof: In this situation we consider that the CSP and

GM have more power to control a part of auditing process.

Since the GM is responsible for transferring challenges to

the CAB network for DOs, there is a possibility that the GM

negotiates with the challenged CSP in advance and then the

GM tampers with the range of a challenge set, i.e., chal →

chal∗ = {(i∗, ri)} and {lohi → loh∗
i }, to pick out those still

intact data blocks so as to avoid auditing failure. Obviously,

altered challenge and proof can easily pass other verifiers’

verification afterwards. Nevertheless, similar to themethod of

preventing replay attacks, in ProofAudit, our design requires

a signed auditing result from the GM, which contains the

CAB’s acknowledgement of current challenge set. Hence,

the DO can judge whether current auditing request has been

suffered from collusion attacks based on k1 and k2 stored

temporarily, which can be used to re-generate chal. So our

scheme can resist collusion attacks.

Theorem 5: Apart from the GM managing a DO, all other

verifiers cannot get information about the relation between

the DO and challenged data blocks.

Proof: Before broadcast to the CAB network, each

request from the DO will be re-constructed by the GM,

i.e., removing signature of the DO.What other entities can get

is some auxiliary information about a data block. During the

audit phase, an extra variable other verifiers will get is γ =

gpk inv sent along with chal. Although there holds an equation

gpk inv·sk = gpk , verifiers still cannot solve out gpksk = pk

with the help of γ and gpk due to the CDH problem.
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TABLE 2. Comparison of security properties.

TABLE 3. Property comparison in functionality.

That is, verifiers are not able to determine which DO in the

domain sends the request. Hence, the CAB can protect DO’s

identity.

With respect to common data operations, our CAB satisfies

the properties of non-repudiation and accountable traceabil-

ity. On the one hand, each behavior is signed with unique

file information and timestamp, which means that no entity

can deny what has happened or reuse previous information.

On the other hand, all related records in the CAB ledger can

be found rapidly and can directly reflect modification history

of a data block.

Lastly, Table 2 summarizes security comparison results of

our scheme with several blockchain-based auditing schemes.

C. PERFORMANCE ANALYSIS

In this subsection, we evaluate the performance of the CAB

from two aspects: property comparison and computation cost

comparison.

Considering functionality and efficiency, Table 3 lists

out comparison result in several properties mentioned

in subsection IV-C. Our scheme provides all verifiers with

common knowledge, where no sensitive information is

involved, and they all have to cost some resources to check

auditing proofs, which contributes to the reliability of results.

As for compared schemes, their consensus members own no

prior knowledge and are only responsible for the verification

of signatures, which means that the DO still has to execute

auditing process by itself. The CAB supports dynamic data

due to operations on data blocks instead of on the whole file.

In addition, the proposed ACT helps the DO and consensus

paticipants efficiently locate related blocks. With respect to

storage freshness, [6], [10], [11] cannot prevent all types

of mentioned attacks to ensure the integrity of remote data,

thus failing this property’s requirement. Apart from [6] and

ours, other schemes can only process auditing requests and

responses in serial order, which means that they do not

support batch auditing to reduce the number of calculation.

Moreover, blockchain-based designs generally allow permis-

sible entities to search records in the ledger. We add field

last op heights bound to operation history of a data block

to accelerate retrieving, whereas other schemes must iterate

through the whole ledger to find out the correct transaction

in the worst case. The last property that proposed scheme

provides is described as stability, which is influenced by the

number of DOs in our consideration. Our CAB meets this

target due to the hierarchical structure which is introduced

into the consensus process, where the GM is delegated to

participate in verification process. Therefore, a sharp increase

of DOs will not substantially reduce the efficiency.

The comparison of entities’ computation cost with [6]

and [7], which also employ HVT for auditing, is shown

in Table 4. Computation overheads are mainly distributed

TABLE 4. Comparison of computation cost.

VOLUME 8, 2020 94791



P. Huang et al.: CAB for Trustworthy Data Integrity in Cloud Storage System

in FileToCS, ProofGen and ProofAudit in the comparison.

Firstly in FileToCS, the DO generates tags for all data blocks

to be uploaded. Then in ProofGen, the CSP computes proofs

according to challenges. Finally in ProofAudit, the DO

in [6], the TPA and DO in [7], or each consensus node

in the proposed scheme verifies the correctness of proofs.

From Table 4, we can see that the DO in the CAB costs

much less, since the burdens caused by local trust in auditing

result is spread across the CAB network, which is adapted for

resource-constrained DOs.

Additionally, we evaluate performance of the CAB by

conducting several experiments using JAVA SE 8.0 on

Ubuntu 16.04 Virtual Machine equipped with Intel Core

i5 CPU at 2.3GHz and 4GB RAM. All pairing related calcu-

lations are implemented with JPBC library v2.0.0 and type A

pairing parameters, in which the group order is set to 160 bits

and the base field order is 512 bits. We divided a file into

10,000 shards and the size of each data block is set to 4KB,

while the proportion of corrupted data blocks is set to 0.001.

According to the loss function theory described in [21],

overall considering the optimal balance of a high detection

probability and low validation cost, only a limited number of

data blocks need to be challenged. Hence, the sample size is

changed from 50 to 500 data blocks in our experiments.

Fig. 5 shows the computation cost on the DO side during

the whole auditing process. It is obvious that as the sample

size increases, the growth rate of DO’s computation time in

our scheme is almost half that of other two schemes. In fact

apart from tag generation, DOs in comparative schemes have

to search blockchain ledger to get proofs and execute verifica-

tion, whereas the DO in proposed scheme does not concern

about these processes and can obtain trustworthy results at

last.

FIGURE 5. The computation cost comparison on the DO during the whole
auditing process.

Fig. 6 shows the average verification time which the DO

in [6], the DO and the TPA in [7] and the consensus node

in our scheme spend respectively. Thanks to less expensive

operations such as map-to-point hash and pairing, and quick

search for specific authentication information stored in the

FIGURE 6. The verification cost comparison for each verifier.

FIGURE 7. The consensus time variation with the number of GMs.

CAB with the help of field last op height, our verification

cost is more acceptable to each involved verifier compared

with other schemes.

In Fig. 7, on the one hand when the size of a challenge set

is fixed, the total consensus time in a round, which includes

ProofGen and ProofAudit, does not vary a lot as the number

of GMs increases. This is because that the actual number of

GMs which are to participate in consensus process depends

on the stability of current framework, i.e., only a few when

most of GMs are honest, which means the total number of

consensus nodes is limited and thus the CAB can support

more domains without affecting efficiency greatly. On the

other hand, when the size of a challenge set becomes bigger,

it takes more time to get a final auditing result due to the

growing waiting latency caused by more proof generation

and verification cost. However, it also means that when the

amount of data grows, more resources are needed to exchange

for more reliable results.

In our scheme, challenges and proofs are only relevant to

the GM, and all DOs are separated from consensus process.

Therefore, the burdens of consensus nodes barely change

when the number of DOs in a group increases from 50 to

500 in Fig. 8, where a challenge is set to the size of 250 data

blocks.
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FIGURE 8. The consensus time variation with the number of DOs in a
group.

FIGURE 9. The average auditing time comparison for multiple DOs in a
group in batch auditing.

Lastly in Fig. 9, we present the comparison of batch

auditing with [6] under the condition that each DO executes

auditing tasks on 10 different files, of which each challenge

set contains 250 data blocks, and these DOs are from the same

group. We can see that as auditing tasks come from more

DOs, our average auditing efficiency improves whereas [6]

stays nearly unchanged. This is because that the total time

cost does not increase linearly when different proofs from

multiple DOs are aggregated into (9). However, in the com-

pared work, each DO verifies proofs with local information

itself and there is no way to aggregate proofs from various

DOs.

VII. CONCLUSION

In this paper, we propose a collaborative auditing scheme

based on blockchain to mainly achieve trustworthy data

integrity in cloud storage system. By introducing the CAB,

the RDA process and its results can be more reliable with

the help of interested entities, instead of relying on a single

third party. Meanwhile, the proxy role played by the GM

separates the DO from consensus process, which means that

theDO is free from verification burdens and its identity can be

hidden. Moreover, our distributed consensus protocol avoids

centralization, and incentive mechanism enhances security

and stability of the CAB with the credit score. Security

analysis demonstrates that our scheme can handle with mul-

tiple security threats. Performance evaluation indicates that

the CAB is more resource friendly towards DOs and more

functional compared with other blockchain-based auditing

schemes. Both show that our CAB is capable of solve the

mutual trust problem between DOs and CSPs in cloud storage

system practically.
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