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Abstract Collaborative filtering as a classical method of information retrieval has been
widely used in helping people to deal with information overload. In this paper, we intro-
duce the concept of local user similarity and global user similarity, based on surprisal-based
vector similarity and the application of the concept of maximin distance in graph theory.
Surprisal-based vector similarity expresses the relationship between any two users based on
the quantities of information (called surprisal) contained in their ratings. Global user simi-
larity defines two users being similar if they can be connected through their locally similar
neighbors. Based on both of Local User Similarity and Global User Similarity, we develop a
collaborative filtering framework called LS&GS. An empirical study using the MovieLens
dataset shows that our proposed framework outperforms other state-of-the-art collaborative
filtering algorithms.

Keywords Collaborative filtering · Similarity measure · Information theory

1 Introduction

Collaborative filtering algorithms are widely applied on e-commerce web sites, where
they predict user preferences of items taking into consideration the opinions (in the form
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of preference ratings) of other “similar” users. Generally, there are two major classes of
collaborative filtering algorithms, memory-based algorithms and model-based algorithms
(Breese et al. 1998). Because of their simplicity and robustness, memory-based algo-
rithms are widely applied in practice, e.g. (Herlocker et al. 1999; Linden et al. 2003;
Resnick et al. 1994). To estimate a prediction for a particular user (i.e., an active user),
the memory-based algorithms first find users from the database that are most similar to this
active user, and then combine those ratings together. The measurement techniques of the
similarity between users include the Pearson Correlation Coefficient (Resnick et al. 1994),
Vector Space Similarity (VSS) algorithm (Breese et al. 1998), and the extended generalized
vector space model (Soboroff and Nicholas 2000). These algorithms can be considered as
user-based algorithms.

However in practice, systems based on collaborative filtering algorithms often face the
problem of having at their disposal only an insufficient amount of preferences ratings of
their individual users. Therefore, one of the biggest challenges of designing a collaborative
filtering system is how to provide accurate recommendations with the sparse user profile
data. To estimate an active user’s rating of a particular item, traditional user-based methods
first find the user’s neighbors (the users who are similar to the active user). Then, the active
user’s rating is predicted by averaging the (weighted) known ratings on the item by his/her
neighbors. This kind of methods is based on the assumption that similar users have similar
rating patterns. Unfortunately, due to the data sparsity problem, firstly, often there does
neither exist a sufficient amount of similar neighbors, nor a sufficient amount of ratings of
the particular item.

The measurement of the similarity between users plays a fundamental role in user-based
algorithms (Resnick et al. 1994; Wang et al. 2006; Jin et al. 2004). Traditional methods of
computing similarity, however, have two important shortcomings. Firstly, usually all items
are treated the same when computing the similarity of users. This is addressed by (Jin et al.
2004), which assign different weights to items in order to allow for items to contribute in
different strength to the user similarity calculation. The second problem is that the similarity
of two users cannot be calculated if they have not rated any identical item. In other words,
due to the data sparsity problem, the neighbors of active user cannot be found. To solve this
problem, it seems promising to transitively examine whether the neighbors of the two users
are similar. That means we should estimate similarities between any two users from a global
perspective.

In this paper, we address these two problems by proposing to divide user similarity into
two parts, namely local user similarity and global user similarity. Local similarity is deter-
mined based on surprisal-based vector similarity (SVS). In SVS, the rating of each item
is firstly modeled as a Laplacian random variable. Then the quantities of information (sur-
prisal) contained in the ratings of a specific user will be used to represents his/her prefer-
ence. The similarity of any two users’ surprisal vector is defined as the local similarity of
them. We will show that some of the ratings of the same item carry more discriminative
information than others. Furthermore, we argue that less common ratings for a specific item
tend to provide more discriminative information than the most common ratings. Second, the
global similarity measures the similarity of two users by further considering the extent to
which their neighbors are locally similar (using the local similarity). In this way, the global
similarity takes the data sparsity problem in consideration by propagating similarity mea-
surement. All local similarities of any two users represented as the weights of edges will
be used to construct a user graph. The global similarity can be calculated as the maximin
distance of any two nodes in the graph. Under global user similarity, two users become more
similar if they can be connected through a series of locally similar neighbors. In brief, the
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local similarity attempts to accurately measure the similarity of two users’ preference. The
global similarity tries to find more similar users when the data of user’s preference is sparse.
On this basis, we propose a collaborative filtering framework that employs both Local User
Similarity and Global User Similarity (LS&GS).

The major contributions of this paper are as follows.

(1) We propose a novel method (SVS) to compute local user similarity.
(2) We apply Maximin distance to capture global relationships of users to address the prob-

lem of data sparsity.
(3) A collaborative filtering framework (LS&GS) is proposed to based on local user simi-

larity and global user similarity.

The remainder of our paper is organized as follows: Sect. 2 will introduce the necessary
background and related work. In Sect. 3, we will present the definition of the local user simi-
larity and the global user similarity. Section 4 introduces the proposed collaborative filtering
framework. In Sect. 5, the experimental results are provided, followed by the conclusions in
Sect. 6.

2 Notations and related work

There are two major classes of collaborative filtering algorithms: memory-based and model-
based approaches (Breese et al. 1998). Memory-based algorithms make recommendations
based on the entire user profile database. Model-based algorithms, in contrast, use a com-
pact model which usually was previously learned from the user profile database to produce
recommendations.

In this section, we describe the most relevant existing approaches of memory-based al-
gorithms and briefly introduce the model-based algorithms. First, we describe the notations
that are used throughout this paper.

Given a recommendation system consisting of M users and N items, there is a M × N

user-item matrix R. Each entry rm,n = x represents the rating that user m gives to item n,
where x ∈ {1,2, . . . , rmax}. The default rm,n value, meaning that the rating is unknown, is 0.

The user-item matrix can be decomposed into row vectors:

R = [u1, . . . , uM ]T , um = [rm,1, . . . , rm,N ]T , m = 1, . . . ,M.

The row vector um represents the ratings of user m for all of N items.
Alternatively, the matrix can also be represented by its column vectors:

R = [i1, . . . , iN ]T , in = [r1,n, . . . , rM,n]T , n = 1, . . . ,N.

The column vector in represents the ratings of item m by all of M users.

2.1 Memory-based approaches

Memory-based algorithms were applied successfully in various real-life applications (Her-
locker et al. 1999; Linden et al. 2003). The major types of memory-based approaches are
user-based approaches (Breese et al. 1998) and item-based approaches (Linden et al. 2003;
Sarwar et al. 2001). The former approaches form a heuristic implementation of the “Word of
Mouth” phenomenon (Shardanand and Maes 1995). The later one attempts to improve the
scalability of collaborative filtering algorithms. User-based collaborative filtering predicts
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an active user’s interest in a particular item based on rating information from similar user
profiles (Breese et al. 1998; Herlocker et al. 1999; Resnick et al. 1994). Each user profile
corresponds to a row vector sorted in the user-item matrix. In detail, user-based approaches
first calculate all similarities of any two row vectors. For predicting a user’s rating of a par-
ticular item, a set of top-N similar users can be identified. Those top-N users’ ratings for
the item will be averaged as the prediction by weighted.

Consequently, the predicted rating r̂a,y of test item y by test user a is computed as

r̂a,y =
∑K

k=1 wa,uk
ruk,y

∑K

k=1 |wa,uk
|

where wa,uk
denotes the similarity between the test user and his neighbors uk .

Item-based approaches use the similarity between items instead of users. First, the simi-
larity of items (column vectors in the user-item matrix) can be calculated. Then the unknown
ratings can be predicted by averaging the ratings of other similar items rated by this active
user. That is

r̂a,y =
∑K

k=1 wy,ik ra,ik
∑K

k=1 |wy,ik |
,

where wy,ik indicates the similarity between the test item and the most similar items ik .
Similarity computation methods, such as the Pearson Correlation Coefficient (PCC) al-

gorithm (Resnick et al. 1994) and the Vector Space Similarity (VS) algorithm (Breese et al.
1998) are applied in user-based and item-based methods.

The PCC method defines the similarity between two users wup,uq as

wup,uq =
∑

{i|rp,i ,rq,i �=0}(rp,i − r̄p)(rq,i − r̄q )
√∑

{i|rp,i ,rq,i �=0}(rp,i − r̄p)2 ·
√∑

{i|rp,i ,rq,i �=0}(rq,i − r̄q )2
,

where r̄p denotes the mean of user p’s ratings.
While the VS method defines the similarity as

wup,uq =
∑

{i|rp,i ,rq,i �=0} rp,irq,i

√∑
{i|rp,i �=0} r

2
p,i ·

√∑
{i|rq,i �=0} r

2
q,i

.

2.2 Model-based approaches

The model-based algorithms present good scalability once they have built the model. How-
ever, the overhead introduced for building and updating the model should be counted in
when evaluating this kind of algorithms. Various popular model-based algorithms exist, such
as the aspect model (AM) (Hofmann and Puzicha 1999), the Personality Diagnosis model
(PD) (Pennock et al. 2000) and the User Rating Profile model (URP) (Marlin 2004a).

The aspect model (Hofmann and Puzicha 1999) is a probabilistic latent-space model,
which models individual preferences to a convex combination of preference factors. The
latent class variable is associated with each observation pair of a user and an item. The
aspect model assumes that users and items are independent from each other given the latent
class variable. However, the aspect model cannot perform inference on novel user profiles
(Marlin 2004b). In other words, in order to make predictions for novel users, AM has to be
retrained based on the new training set, which should include the ratings of novel users.
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The Personality diagnosis approach (Pennock et al. 2000) considers each user in the user-
item matrix as an individual model. To predict the unknown rating of an item by an active
user, PD first calculates the likelihood for the active user to be in the ‘model’ of each training
user and then uses the aggregate average of ratings for the item by the training users as the
estimator.

The User Rating Profile model (Marlin 2004a) is a generative, latent variable model
which represents each user as a mixture of user attitudes, and the mixing proportions are
distributed according to a Dirichlet random variable. URP is different from AM by making
novel users’ rating predication possible.

3 Local user similarity and global user similarity

The key to many memory-based approaches is to estimate the similarity between two users
(Resnick et al. 1994; Jin et al. 2004). In this section, we will first introduce our method called
surprisal-based vector space similarity to compute local user similarity. Then, addressing the
data sparsity problem, global user similarity will be proposed. Global user similarity makes
two users to become more similar if they can be connected through their locally similar
neighbors.

3.1 Local user similarity (surprisal-based vector space similarity)

The Pearson Correlation Coefficient (PCC) algorithm is widely applied in collaborative
filtering algorithms to compute user similarity (Breese et al. 1998; Linden et al. 2003;
Resnick et al. 1994; Wang et al. 2006; Sarwar et al. 2001).

Breese et al. (1998) proposed that items with similar ratings should have less important
impact in determining user similarity than those with different ratings. They suggested using
the Inverse User Frequency as the weights of items. Herlocker et al. (1999) adopted vari-
ance weighting to improve PCC. The results turned out be to slightly worse than with no
weighting (Herlocker et al. 1999).

The ratings of a specific item are usually centralized around an average attitude. In the
PCC algorithm, if two users give an item the same rating, these two ratings will make the two
users more similar. We argue that we need to additionally consider the difference between
the rating and the average attitude. If the rating is close to the average attitude, the rating
only represents that these two users act like most other people. Based on the rating we
cannot conclude that the preferences of these two users are similar or dissimilar. On the other
hand, if the rating is totally different from the average attitude, the rating will provide more
discriminative information to determine whether their preferences are similar. Intuitively,
a rarely given rating for an item will be extremely useful to help us distinguish the user
which gives the unexpected rating from other users. For example, the movie “Godfather” is
highly favored by lots of people. The fact that a user likes the movie tells us almost nothing
about his/her preference. In contrast, if a user dislikes the movie and gives it a very low
rating (i.e., the kind of rating that is rare) for it, we can easily distinguish him/her from
others and know something about his/her preference (e.g., that he/she maybe dislike mafia
movies).

Although most users’ ratings of a specific item are centralized around an average attitude,
there still exist some users who give much higher (or lower) ratings than the average attitude.
In other words, the distribution of the ratings has fat tails. To implement the intuition above,
we modeled the rating of each item as Laplacian random variables Laplace(ūi , bi) rather
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than Gaussian random variables. The probability density function of the Laplacian random
variable is

f (r|μ,b) = 1

2b
exp

(

−|r − μ|
b

)

= 1

2b

{
exp(−μ−r

b
) if r < μ,

exp(− r−μ

b
) if r > μ.

Here, μ is a location parameter and b > 0 is a scale parameter. Given M ratings, in-
dependent and identically distributed samples r1,i , r2,i , . . . , rM,i , then using the maximum
likelihood estimator, estimators of μi and bi are expressed as (Norton 1984)

μ̂i = 1

M

M∑

p=1

rp,i ,

b̂i = 1

M

M∑

p=1

∣
∣rp,i − μ̂i

∣
∣ .

We propose a method for computing local user similarity based on the users’ surprisal vector,
rather than on the users’ ratings vector. User p’s surprisal vector Sp is defined as following

Sp = [sp,1, . . . , sp,N ]T
= [sgn(rp,1 − μ̂1) ∗ I (rp,1), . . . , sgn(rp,N − μ̂N) ∗ I (rp,N )]T , p = 1, . . . ,M

where sgn(rp,1 − μ̂i) presents whether the attitude of user p about item i is positive or
negative in comparison with the average attitude about the item, and I (rp,i) is the quantity
of information (surprisal) of the rating rp,i .I (rp,i) is defined as

I (rp,i) = − ln(f (r = rp,i |μ̂i , b̂i )) = ln(2b̂i ) + |rp,i − μ̂i |
b̂i

.

Given the users’ surprisal vectors, we can adopt the Vector SPACE Similarity (VS) al-
gorithm to calculate the user local similarity. We call this method surprisal-based vector
similarity (SVS), which is defined as

simL(up,uq) =
∑

{i|rp,i ,rq,i �=0} sp,i ∗ sq,i

√∑
{i|rp,i ,rq,i �=0} s

2
p,i ·

√∑
{i|rp,i ,rq,i �=0} s

2
q,i

.

Ma et al. (2007) proposed to add a correlation significance weighting factor that would
devalue similarity weights that were based on a small number of co-rated items,

sim′
L(up,uq) = Min(|Iup ∩ Iuq |, γ )

γ
simL(up,uq)

where |Iup ∩ Iuq | is the number of items which user up and user uq rated in common. If
the number of co-rated items is smaller thanγ , the similarity of these users will be deval-
ued. This change avoids overestimating the similarities of users who have rated a few items
identically, but may not have similar overall preferences.

The method is adopted to compute the local user similarity called surprisal-based vector
similarity with significance weighting (SVSS).
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In this paper, we aim to emphasize that less common ratings for a specific item tend to
provide more discriminative information than the most common ones. With regard to the
choice of the distribution for modeling ratings, some sophisticated variations of the Lapla-
cian distribution are available (Kotz et al. 2001).

3.2 Global user similarity

Under this similarity, we can find more neighbors of an active user even when he/she has
few immediate neighbors using local user similarity. To attain this, we first construct a user
graph using the local similarity as the weight of edges. Then, we use the maximin distance
of two users in the graph as the measurement of the global similarity between them.

3.2.1 User graph

We construct a user graph that describes their relationships, as follows.

Definition 1 (User graph) A user graph is an undirected weighted graph G = (U,E),
where

(1) U is the node set (each user is regarded as a node of the graph G);
(2) E is the edge set. Associated with each edge epq ∈ E,wpq is a weight subject to

wpq > 0, wpq = wqp .

In this paper, we employ local user similarity as the weights of edges,

wpq =
{

sim′
L(up,uq) if sim′

L(up,uq) > 0,

0 else.

3.2.2 Maximin distance on user graph

Given a user graph G = (U,E), a path from node up to uq(up,uq ∈ U) is a sequence of
links, Ppq = (up, . . . , ui, . . . , uq), up,ui, uq ∈ U . If there are K paths between nodes up

and uq , these paths will be indicated as P 1
pq,P

2
pq, . . . ,P

K
pq . Given a path between up and uq

the minimal hop distance of these nodes along any path P
j
pq is defined as follow:

minimalhopj (up,uq) = min
ui ,ui+1⊂P

j
pq

wi,i+1, ∀ui, ui+1 ∈ P j
pq,1 ≤ j ≤ k.

The maximal value of the two nodes’ minimal hop distance along any paths is called the
maximin distance of the two nodes,

maximinhop(up,uq) = max
k=1,...,K

minimalhopk(up,uq)

= max
k=1,...,K

{
min

ui ,ui+1⊂Pk
ij

wi,i+1

}
, ∀ui, ui+1 ∈ P k

pq.

The corresponding path is called as maximin path.
The global similarity of two users is defined as the maximin distance between them:

simG(up,uq) = maximinhop(up,uq).
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For any two users up and uq , if simG(up,uq) �= 0, it means there are d users form-
ing a sequence S = {(up,u1), . . . , (ud−1, uk), (ud, uq)}, and ∀(ui, uj ) ∈ S, simL(ui, uj ) ≥
simG(up,uq). It can be interpreted as meaning that user up finds a similar user uq through
u1, . . . , uk , while all of these are similar in sequence. From this we can derive the following
propositions.

Proposition 1 ∀(up,uq) ∈ U, simG(up,uq) ≥ 0

Proof ∀up,uq ∈ U,wpq ≥ 0

simG(up,uq) = max
k=1,...,K

{
min

ui ,ui+1⊂Pk
ij

wi,i+1

}
, ∀ui, ui+1 ∈ P k

pq,

simG(up,uq) ≥ 0.

�

Proposition 2 ∀up,uq ∈ U, simG(up,uq) ≥ simL(up,uq)

Proof If ∀up,uq ∈ U,wup,uq = sim′
L(up,uq) > 0. There is at least one path from up to uq ,

(up,uq ). The minimalhop distance of the path (up,uq ),

minimalhopi (up,uq) = wup,uq = sim′
L(up,uq), 1 ≤ i ≤ k,

simG(up,uq) = maximinhop(up,uq) max
k=1,...,K

minimalhopk(up,uq) ≥ wpq = sim′
L(up,uq).

If ∀up,uq ∈ U,wup,uq = 0, then simL(up,uq) ≤ 0. From Proposition 1, simG(up,uq) ≥
sim′

L(up,uq). �

That is the global user similarity is non-negative and not less than the local user simi-
larity. In addition, if the global user similarity between up and uq is larger than their local
similarity, it means there exists a path between them, along which any consecutive pair of
nodes have larger local user similarity than simL(up,uq). In other words, two users become
more similar because they can be connected through some locally more similar neighbors.

The Floyd-Warshall algorithm can be adopted to effectively compute all-pairs maximin
distances (Aho and Hopcroft 1974; Cormen et al. 1992). The complexity of this algorithm is
O(N3). In practice, an efficient algorithm (Kim and Choi 2007) based on message passing
could be used to query the global similarity between a specific user u∗ and the rest users,
which exhibits a time complexity of O(N2).

Previous work (Fouss et al. 2007; Gori and Pucci 2007) has investigated global similarity
measures for collaborative filtering. In (Fouss et al. 2007) and (Gori and Pucci 2007), col-
laborative filtering has been modeled as a bipartite graph, where nodes are users and items.
These algorithms are random-walk based scoring algorithms, which can be used to rank
items according to the active user’s preferences rather than to predict his/her explicit ratings
on items. However, our method aims to quantify the active user preferences; in a result it
provides more information to recommendation systems than those just ranking items based
on the active user’s preferences.
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4 The collaborative filtering framework

Taking both local and global users similarity into account, we propose the following col-
laborative filtering framework. To predict an active user’s (ua) rating on a particular item,
under local similarity and global similarity we first find his k nearest neighbors both for the
k local nearest neighbors (nnk

L(ua)) and the k global nearest neighbors (nnk
G(ua)). Then we

employ both nnk
L(ua) and nnk

G(ua) to predict the user’s rating

r̂a,i = (1 − α)

∑
uk∈nnk

L
(ua) sim′

L(uk, ua)rk,i

∑
uk∈nnk

L
(ua) sim′

L(uk, ua)
+ α

∑
uk∈nnk

G
(ua) simG(uk, ua)rk,i

∑
uk∈nnk

G
(ua) simG(uk, ua)

. (1)

The parameter α determines the extent to which the prediction relies on local user similar-
ity and global user similarity. With α = 0, it indicates that the prediction depends completely
on local user similarity and with α = 1, it states that the prediction depends completely on
global user similarity. α can be determined experimentally by using cross-validation.

5 Experiments

We conducted several experiments to examine the performance of the proposed collaborative
filtering framework (LU&GU), and address the following questions in particular:

(1) How does our approach of computing the local user similarity compare with traditional
methods? For this question, we employ PCC (Pearson Correlation Coefficient) (Resnick
et al. 1994), PCCS (Pearson Correlation Coefficient with significance weighting) (Ma
et al. 2007), SVS (surprisal-based vector similarity) and SVSS (surprisal-based vector
similarity with significance weighting) as different methods to compute user similar-
ity. Then we use these similarities in the traditional user-based collaborative filtering
(Resnick et al. 1994) and compare the performance.

(2) How does our collaborative filtering framework compare with other algorithms? For this
question, we compare our method (LS&GS) with the user-base algorithm (Resnick et
al. 1994), the item-base algorithm (Sarwar et al. 2001), the similarity fusion algorithm
(SF) (Wang et al. 2006) and the effective missing data prediction algorithm (EMDP)
(Ma et al. 2007).

(3) How does the parameter α affect the accuracy of prediction? Parameter α balances how
much the prediction takes into account local similarity and global similarity. We vary
the value of α from 0 to 1 to observe the differences in performance.

5.1 Experimental setup

We experimented with a popular database, the MovieLens1 dataset by the GroupLens Re-
search group at University of Minnesota. The MovieLens data set contains 100,000 ratings
(1–5 scales) from 943 users on 1682 movies (items), where each user has rated at least 20
movies.

To compare algorithms more thoroughly, we conducted the experiments under sev-
eral configurations. We randomly exacted a subset of 500 users, altered the training size
to be 300 (200, 100) users in the subset, and used the remaining 200 (300, 400) users

1http://www.grouplens.org/.
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as the active users. The respective sets were named MovieLens300, MovieLens200 and
MovieLens100. As for the ratings from the active users, we varied the number of rat-
ings provided by the active users from 5, 10, and 20, naming them Given5, Given10 and
Given20, respectively. This results in 9 configurations in total, which we call M300G20,
M300G10, M300G5, M200G20, M200G10, M200G5, M100G20, M100G10 and M200G5.
Different configuration represents different training data sparsity and test item of active
user sparsity. These protocols are widely adopted (Wang et al. 2006; Ma et al. 2007;
Xue et al. 2005). Furthermore, we also adopted the protocol of “All-but-one” (Breese et
al. 1998), within which we extracted a single randomly selected rating for each user in the
whole data set, and tried to predict its value given all the other ratings the user has voted on.
The protocol is also widely adopted (Marlin 2004a, 2004b; DeCoste 2006).

In order to examine the performance of our approach and to compare it with experiments
reported in the literature, e.g. (Resnick et al. 1994; Wang et al. 2006; Sarwar et al. 2001;
Ma et al. 2007), we adopted the mean absolute error (MAE) (Sarwar et al. 2001). The MAE
is computed by first summing the absolute errors of the N corresponding ratings-prediction
pairs and then averaging the sum. Formally,

MAE =
∑N

i=1 |ri − r̂i |
N

.

A smaller value of MAE indicates a better accuracy.

5.2 Surprisal-based vector similarity

In order to examine the performance of SVSS and SVS, we compared our methods of
computing the user similarity with other traditional methods, PCC and PCCS. We used
these methods in the traditional user-based collaborative filtering and compared their per-
formance. The parameter γ (used in SVSS and PCCS) of the significance weighting was set
to 20.

We compared SVSS and SVS with other methods in all experimental configurations.
The number of nearest neighbors in user-based collaborative filtering was set as 35 in all
configurations.

The results are presented in Table 1 and Table 2. We can see that:

(1) SVSS and SVS outperform the other methods in all configurations.
(2) The performance of SVSS and SVS improves with the number of items rated by the

users.
(3) Significance Weighting improves SVS much more than PCC except in the All-but-one

protocol. The reason for that is SVS can get more accurate contributions of each rating
to the value of similarity than PCC does. Using significance weighting amplifies the
influence.

Next, in order to examine the sensitivity of the neighborhood size, we performed an
experiment where we varied the number of nearest neighbors that were used and computed
the MAE for each variation. In this article, we report only the results for the configurations
M100G5 and M300G20, however, the other configurations yield similar results. The results
are shown in Fig. 1.

We can observe that the size of neighborhood does affect the performance. Both SVS and
SVSS improve the accuracy of prediction as the neighborhood size increases from 5 to 15.
For greater values, the curve flattens. Again, SVS and SVSS outperform the other methods.
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Table 1 MAE comparison of
different methods of computing
the user similarity on the
MovieLens dataset (the smaller
the value, the better the
performance)

Training users Methods Given5 Given10 Given20

100 SVSS 0.8173 0.7843 0.7743

SVS 0.8232 0.7914 0.7813

PCCS 0.8335 0.8004 0.7918

PCC 0.8377 0.8044 0.7934

200 SVSS 0.814 0.7908 0.7792

SVS 0.8193 0.7995 0.7931

PCCS 0.8156 0.7995 0.7954

PCC 0.8185 0.8067 0.7960

300 SVSS 0.784 0.7786 0.7407

SVS 0.7883 0.7874 0.7564

PCCS 0.8040 0.7865 0.7689

PCC 0.8055 0.7910 0.7805

Table 2 MAE comparison of different methods of computing the user similarity on the MovieLens dataset
(the smaller the value, the better the performance)

Methods SVSS SVS PCCS PCC

All-but-one 0.72 0.7232 0.7466 0.7625

Fig. 1 (a) Sensitivity of the neighborhood size (on M100G5). (b) Sensitivity of the neighborhood size (on
M300G20)

In addition, it can be seen that SVS and SVSS results in much better performance than other
methods when there are more ratings (Given20) from active users in the training data. The
reason is that for computing the similarity, SVS and SVSS have access to more accurate
contributions from each item.

5.3 Comparison of our framework of collaborative filtering and other methods

We compared the following algorithms: the user-based using PCC (UPCC) (Resnick et al.
1994), the item-based methods (IPCC) (Sarwar et al. 2001), the similarity fusion algorithm
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Table 3 MAE comparison with
state-of-the-arts algorithms on
MovieLens (A smaller value
means a better performance)

Training users Methods Given5 Given10 Given20

100 LU&GU 0.791 0.7681 0.7565

EMDP 0.7896 0.7668 0.7806

SF 0.8446 0.7807 0.7717

UPCC 0.8377 0.8044 0.7943

IPCC 0.9639 0.8922 0.8577

200 LU&GU 0.7937 0.7733 0.7719

EMDP 0.7997 0.7953 0.7908

SF 0.8507 0.8012 0.7862

UPCC 0.8185 0.8067 0.796

IPCC 0.955 0.9135 0.871

300 LU&GU 0.7718 0.7704 0.7444

EMDP 0.7925 0.7951 0.7552

SF 0.8062 0.7971 0.7527

UPCC 0.8055 0.7910 0.7805

IPCC 0.9862 0.9266 0.8573

Table 4 MAE comparison with
state-of-the-arts algorithms on
MovieLens (A smaller value
means a better performance)

Methods LU&GU EMDP SF UPCC IPCC

All-but-one 0.719 0.8017 0.7413 0.7625 0.7919

(SF) (Wang et al. 2006) and the effective missing data prediction (EMDP) algorithm (Ma et
al. 2007). The parameters of SF were set to λ = δ = 0.4, k = 35. The parameters of EMDP
were set to λ = 0.6, γ = 30, δ = 25, η = θ = 0.6. The parameters of our method were set to
γ = 30, k = 35, α = 0.5. Table 3 and Table 4 summarized our results. Our method outper-
forms UPCC, IPCC and SF in all configurations and outperforms EMDP in the most con-
figurations. In the conditions Movie100Given10 and Movie100Given5, our results are very
close to EMDP’s. We want to point out that EMDP is a combination of a user-based pre-
dictor and an item-based predictor. Our approach in nature is an improvement of user-based
algorithms. Hence our method can be easily employed by EMDP to replace the traditional
user-based approaches and achieve a better performance.

5.4 Impact of parameter

As discussed above, we employed the parameter α in Eq. 1 to balance the prediction from
local user similarity and the prediction from global user similarity. Next, in order to deter-
mine the sensitivity of the parameter α in Eq. 1, we carried out several experiments on all
configurations in which we varied the value of α from 0 to 1, iteratively incrementing it by
0.05. The results are shown in Figs. 2 and 3.

With α = 0, the prediction depends completely on local user similarity and with α = 1,
the prediction depends completely on global user similarity. Figures 2(a) and 3(a) shows
that when there exist few ratings of the active users or few training users, the global user
similarity will help to improve the prediction accuracy in a great deal. But when there exist
plenty of ratings from the active users and more training users. Then the global similarity
cannot obviously improve the accuracy. This can also be observed in Figs. 2(b) and 3(b).
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Fig. 2 (a) Impact of Alpha on MAE (on MovieLens100). (b) Impact of Alpha on MAE (on MovieLens300)

Fig. 3 (a) Impact of Alpha on MAE (on Given5). (b) Impact of Alpha on MAE (on Given20)

6 Conclusions

In this paper, we first proposed to describe the relationship of users using local user sim-
ilarity and global user similarity. Then we proposed new methods to compute local user
similarity and global user similarity, and a collaborative filtering framework based on both
of these user similarity measures. SVS (local user similarity) considers the quantities of
information (surprisal) of each rating to determine the contribution of any two ratings of
two users to calculate their similarity. The intuition behind this method is that less com-
mon ratings for a specific items trend to provide more discriminative information than the
most common ones. Under global user similarity, two users become more similar if they can
be connected through their locally similar neighbors. The proposed collaborative filtering
framework employs both local and global user similarity to make rather accurate predic-
tions. Experimental results show: (1) using SVS (local user similarity) can find high quality
neighbors; (2) our proposed framework (LU&GU) can improve the accuracy of predication;
(3) under the sparse data set condition, the global user similarity can improve the perfor-
mance of the algorithm which uses only local user similarity.

In the future, we plan to investigate how to combine local and global user similarity in
a more natural way. Furthermore, we have started to investigate whether it is possible to
incorporate information about items in the proposed framework.
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