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A Collaborative Intrusion Detection Approach
using Blockchain for Multi-microgrid Systems

Abstract—Multi-microgrid (MMG) systems have the po-
tential to play an increasingly important role in the trans-
formation of existing power grid to smart grid. However,
the open and distributed connectivity of MMGs exposes
the systems into various cyber-attacks, which may cause
serious failures or physical damages, such as power supply
interruption and human casualties. Therefore, ensuring the
security of MMGs is of paramount importance. To address
this issue, a new collaborative intrusion detection (CID) ap-
proach using blockchain is proposed in this paper for MMG
systems in smart grid. Due to the consensus mechanism
of blockchain, the approach is designed without the need
of a trusted authority or central server while improving
the accuracy of intrusion detection in a collaborative way.
It is equipped with a proposal generation method that
combines periodic and trigger patterns to generate the
detection target of CID, i.e., a proposal. From the generated
proposals together with the correlation model of MMGs,
a CID is achieved by using the consensus mechanism. The
final detection results of CID are stored on blockchain in
sequence. The use of an incentive mechanism motivates a
single microgrid to participate in consensus. The effective-
ness of the presented approach is demonstrated through a
case study on an MMG system.

Index Terms—Collaborative intrusion detection (CID);
multi-microgrid (MMG); blockchain; consensus mecha-
nism; incentive mechanism.

I. INTRODUCTION

In today’s power grid, energy is most generated in
large and centralized power plants. Meanwhile, various
new energy technologies are being introduced to the
power grid such as distributed generators, multi-agent
systems and cloud computing. Among these new tech-
nologies, multi-microgrid (MMG) systems have the po-
tential to play an increasingly important role in the future
power grid [1]. They can be operated in either grid-
connected or islanded mode [2]. New trading models
such as trading with the power grid, and purchasing
from a controllable distributed generation plant, will
coexist [3], [4]. The typical structure of an MMG system
is shown in Fig. 1. While the vulnerability of traditional
power systems has been exposed in recent years [5],
the open and distributed connection of MMG systems
exposes the systems to serious cyber-security problems.
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Figure 1. A typical MMG system.

Therefore, it is of critical importance to ensure the secu-
rity in addition to the stability for MMG systems. As the
initial protective barrier, intrusion detection system (IDS)
playes a critical role in overall security protection. The
results from IDS can be used in self-adaptive decisions
and real-time response [6], or help safety operator with
the detection result of abnormal state in time [7], [8].
However, traditional host-based or network-based IDS
that works independently [9], [10] is not entirely adopted
to MMG systems. In comparison, collaborative intrusion
detection system (CIDS) can analyze the evidence from
multiple domains simultaneously and consider the alerts
of distributed detector synthetically for promoting the
efficiency of IDS [11]. Therefore, it is more appropriate
for distributed architecture as in MMG systems.

Recently, efforts have been made in the applications
of CIDS in smart grid. This includes a fully distributed
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CIDS management structure [12]. For constrained re-
sources in smart meters, a CIDS is proposed against
false data injection attack [13]. A scalable and elastic
architecture is also presented with a Peer-to-Peer (P2P)
solution for grid and cloud computing [14]. In addition,
considering the problem of how to operate a CIDS when
these assumptions of trust and security are relaxed, some
proposed methods have partially addressed this problem.
Such as several CIDSs [15], [16] use message authen-
tication to guarantee that alerts come from a trusted
participant by using a central certification authority (CA)
or certifying happens among peers [1], [17]. However,
the central certificate authority can become a bottleneck
for scalability as the number of participants increases.
Furthermore, these approaches cannot protect against a
legitimate participant who is sending malicious data, and
prevent misbehavior by a peer who has taken the time
to first build a high reputation.

Therefore, a new CID approach using blockchain is
presented in this paper for MMG systems. More specif-
ically, the target of CID, called a proposal, is generated
from periodic and trigger patterns. From these generated
proposals together with the correlation model of MMGs,
a CID is achieved by using the consensus mechanism in
blockchain. The final detection results are stored on each
block. The recording node that proposes the consensus-
reached block will be awarded according to an incentive
mechanism. Overall, the paper makes the following three
main contributions:

1) A distributed CID approach incorporating with the
consensus and incentive mechanisms of blockchain
is proposed for MMG systems without a trusted
authority or central server;

2) As a part of the approach, a proposal generation
method that combines periodic and trigger patterns
is designed to enhance the accuracy of intrusion
detection;

3) An improved algorithm of delegated proof of stake
(DPoS) is devised for consensus on the distributed
detection results by the utilization of the degree of
correlation and the detection coefficient.

The rest of this paper is organized as follows. Sec-
tion II provides some background knowledge about
CIDS and blockchain. Section III presents the archi-
tecture of our CID approach using blockchain. This
is followed by Section IV on the process of gener-
ating proposals based on multiple patterns. Section V
shows the process of collaborative detection based on
an improved DPoS algorithm and incentive mechanism.

TABLE I
A COMPARISON OF THE THREE CLASSES OF CIDS.

Species Advantage Shortcoming

Centralized
CIDS [20]

1) High detection
accuracy
2) Simple
implementation

1) Poor scalability
2) Unsuitable for
large-scale scenarios

Hierarchical
CIDS [21]

1) Better scalability
2) Suitable for
large-scale scenarios

1) Lower detection
accuracy
2) Loss of detection
information
3) Single-Point-of-Failure

Fully Dis-
tributed
CIDS [15]

1) Peer to peer suits
to transfer data

1) Lacking detector from
a global perspective
2) Low detection accuracy

Experiments are conducted in Section VI to demonstrate
our approach. Finally, Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. A Brief Review of CIDS

A skilled intruder can slowly change his or her be-
havior to avoid being detected by IDS. Thus, it is worth
achieving collaboration among MMGs to increase the
difficulty of intrusion. According to the network topol-
ogy of each detection unit and ways of the information
interaction, a classical CIDS falls into one of the three
classes [11], [18]: centralized, hierarchical [19], and
distributed. A comparison of these three classes is shown
in Table I.

However, the survey [11] also point out that the
another important aspect is the problem of security
and trust for CID, and the trustworthiness of the alerts
generated by each single anomaly detection unit is the
premise of accurate results of CIDS.

Thus, the immutability and reliability of information
transfer and dissemination are worthy to be considered,
more so in fully distributed systems.

B. Blockchain and Security

Since Satoshi Nakamoto founded Bitcoin in 2008 [22],
blockchain, the underlying technology architecture of
Bitcoin, has attracted widespread interest. A blockchain
is a continuously growing list of records, called blocks,
which are linked and secured using cryptography. When
a new block is added to the blockchain, it must be
approved by the verification of all nodes. The schematic
diagram of a blockchain is shown in Fig. 2.

As a typical distributed data storage technology,
blockchain covers a variety of technologies, such as de-
centralization, cryptography, and consensus algorithms.

January 30, 2019 DRAFT



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS VOL. X, NO. X, MONTH 2018 3

Blockchain

Hash(Bn-1) Timestamp Hash(Bn)... ...
Block Bn Block Bn+1

Nonce Merkle Root Nonce

Timestamp

Merkle Root

Hash 12 Hash 34

Hash 1 Hash 2 Hash 3 Hash 4

Tx 1 Tx 2 Tx 3 Tx 4

Figure 2. A schematic diagram of a blockchain.

In the absence of a trusted third party or centralized
node, a new consensus mechanism is formed. Due to
the advantage of establishing the secured, trusted, and
decentralized autonomous ecosystems for various sce-
narios, blockchain has been investigated in both research
and applications [23].

As a novel and fundamental technical framework,
blockchain is suitable for applications in the security
protection of cyber-physical systems (CPSs). Most cur-
rent applications of blockchain are in the field of data
security for ensuring that data is traceable and not easily
tampered. For example, it is demonstrated [24] that the
integration of blockchain, smart contracts and Internet of
Things (IoT) technologies is powerful. With the ability
to interact with peers in a trustless, auditable manner,
blockchain could give us resilient, truly distributed peer-
to-peer systems. Blockchain has the fundamental role
to register and authenticate all operations performed on
Internet of Things (IoT) devices data [25]. Consortium
blockchain is explored for a secure energy trading system
named energy blockchain [26]. It is suitable for P2P
energy trading, such as microgrids.

Other research efforts use the consensus mechanism
to implement distributed and collaborative scheduling
decisions or intrusion detection. For managing billions
of devices deployed worldwide, a fully distributed access
control system based on blockchain is proposed for
arbitrating roles and permissions in IoT [27]. As the
operation of the future Energy Internet would also be
more decentralized and self-executing, it is suggested
that blockchain be applied in operational framework
of Energy Internet [28]. This could promote a con-
sensus among the decentralized institutions of various
energy entities. A distributed blockchain-based pro-
tection framework is proposed to enhance the self-
defensive capability of modern power systems against
cyber-attacks [29]. Moreover, a blockchain framework

is discussed in [30] for collaborative intrusion detection.
In summary, blockchain has been used in several

domains to date. This motivates us to investigate this
technique in the security of MMG systems by using the
the consensus and incentive mechanisms. Similar to the
storage of transaction information in cryptocurrency, the
detection results of CID with consensus will be stored
on the blockchain.

III. THE PROPOSED ARCHITECTURE OF OUR CID
USING BLOCKCHAIN

The architecture of our CID using blockchain is shown
in Fig. 3. In each microgrid, our CID approach has a
proposal generation component and a CID component.
Their functions are described below.

The proposal generation component aims to propose
proposals for CID. The proposals are obtained period-
ically under normal circumstances. They can also be
triggered when abnormal state of microgrid is found out
by its own IDS, whose content is defined as the state of
a microgrid.

The CID component realizes the transmission and con-
sensus of detection results among MMGs. Firstly, as the
microgrid involved in the proposal is the detection target,
each microgrid that has energy or cyber interdependency
with it obtains the result of detection independently
based on One-Class SVM. Secondly, a consensus on
the proposal is reached based on an improved DPoS
algorithm, which utilizes the degree of correlation and
detection coefficient instead of stake in this paper. The
results of CID are obtained and stored on blockchain
in sequence to ensure its immutability and reliability.
Thirdly, with the help of an incentive mechanism, when
the Block Bn proposed by a microgrid is recorded,
the level of the detection coefficient of a microgrid is
promoted, so as to make it be accepted more easily in the
next Block Bn+1 generation process. In contrast, other
microgrids which put forward the orphan blocks will be
suspected as attacked nodes.

IV. MULTI-PATTERN BASED PROPOSAL

GENERATION

This section presents the process of generating the ob-
ject of consensus in the proposal generation component.
It begins with an introduction of multi-pattern including
trigger pattern and periodic pattern. Then, an algorithm
is developed to implement the whole process.
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Figure 3. The architecture of our CID using blockchain.

A. Multi-Pattern

The initial proposal is not only triggered when ab-
normal event is detected by each microgrid’s IDS under
trigger pattern, but also generated in turn under periodic
pattern.

1) Trigger Pattern: The IDS of each microgrid de-
tects the abnormal state mainly from the perspective of
communication and power flows. The alert, context of
proposal, will be generated at the same time.

Detection of Communication Flow: The white list of
access-control mainly monitors medium-access control
(MAC) addresses, IP addresses and ports in the data link,
network and transport layers, respectively.

ac * ACwl → Alert, (1)

where ac indicates the set of {MACsrc, MACdst,
IPsrc, IPdst, Portsrc, Portdst}, and ACwl represents
the white list of access-control. In addition, because
MAC and IP addresses are unique when identifying
a communication subject, there is an unique match
〈IP,MAC〉 generally. If the match 〈IP,MAC〉 has

been changed, a spoofing attack , e.g., an address reso-
lution protocol (ARP) attack, may take place.

The white list of protocol-based mainly confirms that
the protocol used is suitable for the grid in the appli-
cation layer, such as DNP3, IEC61850, IEC61870 and
other proprietary protocols.

pb * PBwl → Alert, (2)

where pb indicates the used communication protocol,
and PBwl represents the white list of protocol-based.

Detection of Power Flow: Unknown and new attack
types will be detected by behavior-based rules [31],
which are mainly reflected in the constraints of power
flow. For instance, there is an upper limit (vi.max) and
a lower limit (vi.min) of each nodal voltage (vi), and
a maximum allowable apparent power (sl.max) of the
branch.

v /∈ {vi | vi ∈ (vi.min, vi.max)} → Alert, (3)

s /∈ {sl | sl ∈ (0, sl.max)} → Alert, (4)

where sl represents the apparent power of branch l.
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2) Periodic Pattern: Due to the existence of false
negatives, it is insufficient to rely on its own IDS. To
tackle this problem, periodic pattern is integrated. This
allows the state of a microgrid to regularly become the
target of detection and also enables other microgrids to
judge it.

Under periodic pattern, as system runtime Trun is an
integer multiple of polling cycle time Tperiod, we select
a relevant microgrid m as a new proposal. Different from
a proposal generated under trigger pattern, the content of
this proposal is ‘Microgrid m: normal’.

m = (Trun/Tperiod) mod N, (5)

where N represents the total number of microgrids.

B. Algorithm for the Proposal Generation

The detailed steps of the proposal generation process
is shown in Algorithm 1. In the pseudo code of the
algorithm, Pro′ and Pro represents pre-proposal and
proposal, separately. Firstly, each microgrid is detected
from the perspective of communication flow and power
flow according to Section IV-A1. Then, the judgement
(Pro 6= Pro′) aims to remove redundant results. As
soon as Trun/Tperiod ∈ Z, the proposal (Microgrid m:
normal) is generated.

Finally, through fusion and de-redundancy, the ul-
timate proposal is obtained and delivered to the CID
component for the determination of the detection target.

Algorithm 1 Multi-Pattern Based Proposal Generation.

Input: Detect information of microgrids, Pro′
Output: Pro

1: Pro← ∅
2: while Trun/Tperiod /∈ Z do
3: for each n ∈ {1, 2, ..., N} do
4: a← ac * ACwl | pb * PBwl

5: b← v /∈ (vi.min, vi.max) | s /∈ (0, sl.max)
6: if a& (Pro 6= Pro′) then
7: Pro = ‘Microgrid n: abnormal comm.’
8: else if b& (Pro 6= Pro′) then
9: Pro = ‘Microgrid n: abnormal power’

10: end if
11: end for
12: end while
13: m← (Trun/Tperiod) mod N
14: Pro = ‘Microgrid m: normal’

V. CONSENSUS-BASED CID

After generating the proposal, the next step is to
achieve CID. This section begins with an introduction
of independent detection of proposal by each microgrid.

This is followed by discussions of the achievement of
consensus. Then, the application of an incentive mech-
anism is developed to reward or punish the recording
microgrid.

A. Independent Detection of Proposal

The smart grid is a complex cyber-physical system
(CPS) [32]. The interaction between MMGs is mainly
reflected in both energy and cyber interdependencies,
which are chosen as the basis of intrusion detection in
this paper. Through a calculation of load flow [33] [34],
we aim to judge whether the voltage magnitude, cur-
rent, power and other interactive electrical quantities are
within the normal range from the perspective of power
flow. If not, the detection target will be suspected to have
been attacked.

In view of intrusion detection at the communica-
tion system, the rationality of the control strategy as
well as the real-time synchronization of information
transmission are mainly considered. For instance, it is
judged whether or not the breaking of the line breaker is
unreasonable under the goal of optimal scheduling, and
whether or not the transmission delay of data between
the nodes exceeds the threshold. An abnormal alarm is
issued once discovered.

Normal behaviors are modelled by one-class SVM in
this paper. This is because abnormal data of the grid
is more difficult to obtain during actual operations, and
one-class SVM is suitable as an unsupervised learning
algorithm. Moreover, the algorithm has been widely
accepted as a classification algorithm for detecting ab-
normal states [35].

The detection process can be divided into three parts:
data training, model establishment, and data testing.

The one-class SVM algorithm can be summarized as
mapping the data into a feature space, and then trying
to separate the mapped vectors from the origin with
maximum margin, because the origin is the only original
member of the second class [36]. In the modelling
process of power system, there is no hyperplane in
the original sample space that can correctly classify
two types of samples. Thus, we use a nonlinear kernel
function (Φ(x)) to map samples from the original space
to a higher-dimensional feature space [37], such as radial
basis function

κ(xi,xj) = exp(−‖xi − xj‖2

2σ2
). (6)

It is always possible to find a hyperplane that solves
the separation problem. Finding the maximum margin
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to separate the dataset can be converted to the following
optimization problem:

min
w,ζi,ρ

1

2
‖w‖2 +

1

νn

n∑
i=1

ζi − ρ (7)

s.t. wTΦ(xi) > ρ− ζi, i = 1, · · · , n, ζi > 0 (8)

where parameters w is a vector orthogonal to the hyper-
plane, ρ represents the margin, ζi is the slack variables,
the role of ν is similar to penalty factor C in Two-class
SVM, representing the fraction of training patterns that
are allowed to be rejected, and n is the total number of
training patterns.

This optimization problem can be solved by using the
Lagrange multiplier method to transform (7) to a dual
optimization problem as follows

min
α

1

2

∑
ij

αiαjκ(xi,xj), (9)

s.t. 0 ≤ αi ≤
1

νn
,
∑
i

αi = 1. (10)

Finally, the decision function of one-class SVM can
be expressed as

f(x) = sgn
(
(wTΦ(x)− ρ)

)
= sgn

(∑
i

αiκ(xi,x)− ρ)

)
, (11)

The types of data collected and analyzed include
measurement information, state information, transaction
log, etc. Thus, one detection model based on one-class
SVM has finished. If N is the number of microgrids,
we will get at most N(N − 1) models according to
the relationship matrix between microgrids for intrusion
detection. It is worth mentioning that the detected data
which is different from data of microgrid’s own IDS.

B. Consensus on the Proposal

Considering that each detector has its own insight
about the proposal, these distributed detection results
need to achieve consensus. In order to achieve this
purpose without any trusted authorities or central servers,
one microgrid is selected as the recording node firstly.
Its detection results will be stored in a new block and
be submitted to the network as the process of ‘mining’
in Bitcoin [22].

Then, as every node in a decentralized system has a
copy of the blockchain, a microgrid with similar insights
for detection results will confirm that the detection result
is correct and add the new block to the end of the chain.

New Block

The recording node

Dectctor 1 Dectctor 2

Dectctor 3

Dectctor 5 Dectctor 4

Main 

chain

Orphan 

chain

Consensus

Figure 4. A schematic diagram of the consensus process.

On the other side, the microgrid that has objection to
the detection results will generate another block and add
the block to the end of its own chain. The schematic
diagram of the consensus process is shown in Fig. 4.

Finally, as main chain consists of the longest series
of blocks which require a consensus of the network
majority, wrong detection results will be meaningless
to become an orphan block. In other words, there is
a reward for generating each block. The corresponding
incentive mechanism will be described in detail later.

According to the different selection ways of recording
node, the algorithms aiming to achieve consensus mainly
include: Proof of Work (PoW), Proof of Stake (PoS)
and DPoS [23]. Combining system characteristics and
application requirements, the DPoS algorithm is adopted
to achieve CID in MMGs due to its lower energy
consumption and shorter time in the process of reaching
consensus.

Each microgrid has a different probability of being
selected as a recording node based on the stake it owns.
In the hash operation process of generating a new block,
it is embodied in the difference of target and difficulty.
A different recording node k has a different value of the
difficulty indicator D(k). A modified version of DPoS
algorithm uses a condition of

SHA256(SHA256(HashBn−1) + Timestamp

+Nonce+MerkleRoot)

< ST (k)Targetmax/D(k), (12)

where ST (k) means the elapsed time holding these
stakes by recording node k, and its maximum value
cannot exceed 72 hours. The larger the value of ST (k)

or the smaller the value of D(k), the easier the Inequal-
ity (12) can be established. To ensure real-time detection,
Targetmax can be set to 0xFFFF0000 ×24×56.
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DPoS selects a recording node by trusting a small
number of honest nodes as representatives. For example,
in the rating of 1 to 4, the honest nodes of level 2 and
above could be selected as representatives, as shown in
Fig. 5 intuitively. However, stake-based selection will
result in undesirable centralization. This is because the
single richest member may have a permanent advantage.
To overcome this defect, in this paper, the degree of cor-
relation as well as the detection coefficient are utilized as
the basis for electing nodes instead of stake innovatively.

By adopting this method, the greater energy or cyber
interdependency with the target of detection, the larger
probability of the microgrid will be selected as a record-
ing node. This is experssed as

Pij =

∫ T
0
θij(t)dt

T
× Iij

=

∫ T
0
θij(t)dt

T
× (γEij + (1− γ)Cij), (13)

where Pij means probability of selecting node i as a
recording node, j means the target node for detection,
θij represents the detection coefficient of node i on j

which is related to the accuracy of previous detection
results,

∫ T
0
θij(t)dt/T means the cumulative mean of

θij over time, Iij indicates interdependency of microgrid
node i on j, and Eij , Cij represent energy and cyber
interdependency of microgrid node i on j, respectively.
A detailed example of correlation model, and the for-
mation of Eij , Cij , can be seen in Section VI-B. γ
indicates the adjustment factor, which is different in
different conditions. For instance, γ is 0.8 in the case of
abnormality of communication flow, is 0.2 on condition
of abnormality of power flow, and is 0.5 when proposal
is normality. All above-mentioned index coefficients are
within the interval [0, 1]. The correspondence between
selection probability (Pij) and the level of difficulty
(P̂ij) is shown in Table II.

C. Rewards and Penalties

Analogous to the fact that cryptocurrency can be
obtained by the behaviour of mining in Bitcoin, the

TABLE II
CORRESPONDENCE BETWEEN Pij AND P̂ij

Pij [0.6,1] [0.3,0.6) [0.1,0.3) [0,0.1)
P̂ij 1 2 3 4

D(P̂ij) 16 162 163 164

D(P̂ij) is the corresponding difficulty indicator in Inequality (12).

incentive mechanism of blockchain when a new block
reaches consensus is also modified and adopted in
this paper. The form of reward is expressed not only
by financial incentives but also the improvement of
detection coefficient θij . Therefore, the probability that
the node will be selected as a recording node in the
next block generation process will increase. A higher
coefficient θij will bring benefits and more influence
on distributed management and decision-making for a
microgrid. Conversely, if the detection result presented
by i for target j does not reach consensus, the level of
detection coefficient θij will decrease in a similar way.

θ′ij =

{
max{−θ2ij + 2θij + αIij , 1}, consensus-reached,
min{1−

√
1− θij + βIij , 0}, consensus-unreached,

(14)
where θij means the previous detection coefficient
whereas θ′ij signifies the detection coefficient after
exaltation. The greater interdependency Iij , the faster
the change in detection coefficient θij . Parameters α

and β are added as adjustment factors.

VI. EXPERIMENTAL STUDIES

To evaluate the detection performance of our CID
approach using blockchain, this section conducts sim-
ulation experiments on a typical MMG platform.

A. Simulation Setup

A typical MMG scenario is set up in this section. The
co-simulation platform of a cyber-physical power system
is depicted in Fig. 6. The power distribution system is
considered to be a set of interconnected microgrids that
may be connected to the utility grid through PCC and
CB. The radial distribution feeders contain 6 microgrids,
which are divided according to different laterals. Each
microgrid has corresponding renewable energy resources
and distributed load.

In order to establish a decentralized experimental
environment, we presume that the isolation switch (CB0)
is open and interconnected microgrids are running in
island mode without the support of the utility grid. The
microgrid adopt the master-slave control method. This
implies that there is one distributed grid adopts U/f
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Figure 6. Typical MMG model of the simulation.

control to guarantee not only the balance of power sup-
plies and demand but also the uniformity of frequency as
the master unit in each microgrid. All other microgrids
adopt P/Q control to make the active power and reactive
power of the inverter output equal to the reference. Two
color nodes, green and red, are used to represent master
unit and slave unit, respectively.

To build a communication environment of the power
system, the function of remote terminal unit (RTU) and
power management unit (PMU) is simulated on the
host in a substation. Overall scheduling is achieved in
the control center, which is not used actually due to
island mode without the support of the utility grid. The
transmission of measurement information and operating
instructions is via a wide area network (WAN).

In this paper, four common types of attacks [38] are
considered, and the attack secnarios are described in
details as below.

1) Tampering Attack: Typical tamper attack, such
as false data injection [39], is often occured in power
systems. In our simulations, control instructions of load
switch is set as being tampered in microgrid.

2) Man-in-the-Middle (MITM) Attack: MITM attack
means that the attacker secretly relays and possibly alters
the communication between two parties who believe they
are directly communicating with each other. Which is

conducted by ARP poisoning and the modification of
operating instructions.

3) Replay Attack: Replay attack is a form of attack
in which a valid data transmission is maliciously or
fraudulently repeated or delayed. To conduct this kind
of attack, the machine of substation is hacked into by
an attacker who continues to intercept all data sequence
from sensors and then retransmits it.

4) Denial of Service (DoS) Attack: This type of attack
is simulated by totally obstructing the communication
channels of sensor nodes, such as RTU.

B. Establishment of the Correlation Model

For achieving consensus and CID among MMGs, a
correlation model is established according to the energy
and cyber interdependency of microgrids. Relationship
matrix EM and CM are formed, respectively. Energy
relationship matrix EM means the magnitude of the
impact of one microgrid on another. With the MMG
platform, the experimental data is generated by the
floating load up and down below 10% in each single
microgrid. Active power and reactive power are selected
as features. For instance, we fit the active power of
the microgrid whose load is dynamically changing with
active power of other microgrids, and get the linear
regression equation y = aix + bi, (i = 1, · · · , N) and
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∑N
i=1 ai = 1. So, Eij is defined as the correlation

coefficient ai for microgrid j.

EM =

1 0.287 0.208 0.191 0.151 0.163

0.242 1 0.221 0.203 0.161 0.173

0.224 0.281 1 0.187 0.148 0.160

0.220 0.276 0.200 1 0.146 0.158

0.211 0.265 0.192 0.177 1 0.155

0.214 0.269 0.196 0.179 0.142 1


.

The cyber relationship matrix CM reflects the trans-
mission of measurement information (MI) and operating
instructions (OI) between microgrids. It is also related
to the geographical location (Distance) of the microgrid
in the radial distribution feeders.

Cij =
σ1MIij/MIi + σ2OIij/OIi

Distance
, (15)

where MIi and OIi indicate the total of measurement
information and operate instructions from other micro-
grids. For example, CM1 is calculated according to
Eq. (15) as σ1 = σ2 = 1.5

CM1 = {1, 0.45√
1
,

0.45√
2
,

0.3√
3
,

0.15√
4
,

0.15√
5
}.

The CM of the MMG model in Fig. 6 is

CM =

1 0.450 0.318 0.173 0.075 0.067

0.450 1 0.450 0.318 0.173 0.075

0.318 0.450 1 0.450 0.318 0.173

0.173 0.318 0.450 1 0.450 0.318

0.075 0.173 0.318 0.450 1 0.450

0.067 0.075 0.173 0.318 0.450 1


.

The relationship matrix between microgrids is obtained
as IM = γEM+(1−γ)CM , and the correlation model
is established.

C. Reach Consensus Based on DPoS Algorithm

Now, let us explain the implementation process of the
DPoS algorithm through three typical attack scenarios:
tampering attack on microgrid 4, MITM attack on micro-
grid 6, and replay attack on microgrid 6. Due to the dif-
ferent characteristics of attack types, tampering control
instructions and the change in match 〈IP,MAC〉 may
be easily found by the abnormality of power flow and
communication flow, while replay attack could spoof the
monitor of substation. Thus, after ignoring other insignif-
icant proposals, these three proposals are considered
in our experiments: A) Microgrid 4: abnormal power,

B) Microgrid 6: abnormal comm., and C) Microgrid 6:
normal.

1) Proposal A: Using the consensus algorithm of
DPoS, the recording node needs to be selected. For
proposal A, the relationship is Iij = γEij + (1− γ)Cij
where γ is 0.8. For Microgrid 4, its relationship vector

IM4 = {0.211, 0.284, 0.250, 1.000, 0.207, 0.190}.

Only some representative nodes whose relationship is
beyond 0.2 will be selected to participate in the process
of consensus. As the initial value of detection coefficient
(θij) of node j on i all is 0.5, microgrid 2 will be selected
as the recording node due to its maximum relationship.
Then, for proving its computing power, microgrid 2 has
to put forward the new block in a limit time by hash
operation process (12). Otherwise, it will be replaced by
the microgrid whose relationship after its relationship.
The selection probability

P24 =

∫ T
0
θ24(t)dt

T
× I24 = 0.142 ∈ [0.1, 0.3).

D(P̂24) given in Table II is 163 and the initial value of
ST (2) is 72. On the basis of Inequality (12),

SHA256(SHA256(HashBn−1) + Timestamp+

Nonce+MerkleRoot) < 72× Targetmax/163,

where HashBn−1 is 0x00 . . . 00︸ ︷︷ ︸
64

as the genesis block,

and timestamp is the generation time of block. By the
anomaly detection model based on one-class SVM, mi-
crogrids 1, 2, 3 and 5 all believe power flow of microgrid
4 is indeed abnormal by confirming the abnormal action
of load switch and abnormal nodal voltage. So the block
proposed by microgrid 2 will reach a consensus and
these two abnormal states will be recorded as a and b,
respectively. Since Merkle Root is implemented by using
algorithm SHA-256 twice, the stored detection results
are shown in Fig. 7.

MerkleRoot = dhash(dhash(a) concat dhash(b)).

(16)
Then, based on the incentive mechanism, the detection

coefficient (θ24) of microgrids 2 on 4 will get an upgrade
from 0.5 according to (14) when coefficient α = 0.1.

θ′24 = max{−θ224 + 2θ24 + αI24, 1} = 0.7784,

2) Proposal B: In contrast to proposal A, the content
of proposal B is an abnormal communication flow. As
γ is 0.2, the relationship vector IM6 of microgrid 6 is

IM6 = {0.097, 0.114, 0.177, 0.290, 0.388, 1.000}.
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Figure 7. Consensus-induced detection results are stored on blockchain.

Similar to the previous process, nodes 4 and 5 whose
relationship beyond 0.2 are selected as representative.
Microgrid 5 is chosen as the recording node. The selec-
tion probability

P56 =

∫ T
0
θ56(t)dt

T
× I56 = 0.194 ∈ [0.1, 0.3).

D(P̂56) given in Table II is 163, too. According to
the collaborative anomaly detection model, microgrids
4 and 5 justify the abnormal communication flow of
detection target. The results will be recorded as abnormal
states c. Moreover, they also dig out that the abnormal
apparent power of branch still exists in microgrid 6
(abnormal states d). Analogous to the generation of block
1, detection coefficient (θ56) will also get an upgrade as

θ′56 = max{−θ256 + 2θ56 + αI56, 1} = 0.7888,

3) Proposal C: About the proposal C ‘Microgrid 6 is
normal’, similar to the previous analysis process, they
will put forward their own different opinions and reach
a consensus since not being deceived. The detection
results will be stored as ‘e: Abnormal action of load
switch in microgrid 6’ and ‘f : Abnormal nodal voltage
in microgrid 6’. The new detection coefficient (θ56) of
microgrid 5 on 6 will changed to

θ′56 = max{−θ256 + 2θ56 + αI56, 1} = 1,

which means when detection object is microgrid 4, the
probability of microgrid 2 as the recording node will
increase.

D. CID Performance Evaluation

First, we test the detection rates of our CID approach
for different types of attacks. The overall accuracy (OA)
depends on true positive rate (TPR) and false positive
rate (FPR). It describes how correctly an IDS works by

TABLE III
THE OA FOR DIFFERENT TYPES OF ATTACKS.

Category Tampering MITM Replay DoS
Single IDS 90.3% 85.6% × 100%
CID 97.9% 94.3% 91.2% 100%

OA = (TPR+ 1−FPR)/2 [40]. Based on the various
attack scenarios introduced in Section VI-A, the results
of the experiment are shown in Table III.

It is seen from Table III that the OA of our CID
approach has improvement over traditional single IDS
for different types of attacks. In particular, in the MITM
attacks scenario, CID not only verifies the abnormality
of communication flow in microgrid 6, but also checks
out its power abnormality. In the replay attacks scenario,
CID is able to detect the abnormal state whereas a single
IDS fails to do so. Furthermore, the results suggest that
replay attacks and MITM attacks are more difficult to
detect than others. That may be interpreted by the fact
that the attacks sometimes do not cause abnormal state
of power grid.

Then, we evaluate the real-time performance of our
CID approach. The real-time performance of our CID
mainly depends on the execution time of the DPoS
consensus algorithm. Thus, we plan to analyze the re-
lationship between the influencing factors (P̂ij , ST (k))
and the computing time of generating a new block, and
find the apposite setting of difficulty.

By running the ‘mining’ process for 500 times at
different P̂ij values under ST (k) = 1, the minimum,
mean, and maximum computing times are displayed in
Fig. 8. It is noted that the expression of the correlation
is shown in (17). This correlation indicates that with the
increase of difficulty (P̂ij), the computing time grows
exponentially. To ensure the real-time performance of
our CID approach, the nodes with a difficulty of 3 or
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Figure 9. Computing time versus Elapsed Time.

less are generally selected as recording node.

lg y ≈ 1.1932x− 3.5038. (17)

As a difficulty of 3 remains unchanged, running 500
times at different ST (k) values, the computing time
display in Fig. 9. The elapsed time (ST (k)) holding
detection coefficient (θij) exponential growth with base
2, the computing time will also grow exponentially. The
exponential correlation is expressed as

lg y ≈ −0.2748 log2 x− 0.0872. (18)

E. Discussions

Through the above experiments, the proposed CID ap-
proach is able to efficiently detect intrusions for MMGs
in island mode. Using blockchain well solves the col-
laborative problem of IDS in distributed systems through
consensus of detection results. Proposal generation based
on multi-pattern reduces the false negative rate (FNR) by
generating new proposals constantly. The achievement
of consensus could increase the OA. Table IV presents
the comparison of our CID with several previous studies
on CID. According to Table IV, it suggests that our
approach can achieve CID in the absence of a trusted
third party or centralized node by using the consensus
and incentive mechanisms of blockchain, more so in
MMG systems, the representative of fully distributed
scenario.

TABLE IV
PERFORMANCE COMPARISON OF CID APPROACHES.

CID Category Year TPR
System ar-
chitecture

Incentive
Participant
safety

Without
CA

[12]
Smart
grid 2017 88.9%

Fully
distributed

× × –

[13] AMI 2015 100% Centralized × × –

[15] Internet 2004 – Fully
distributed

√
× –

[17]
Computer

net-
works

2013 >93% Fully
distributed

√ √
×

[41]
HIDS
net-
work

2010 – Fully
distributed

√ √
×

Our
CID

MMG 2019 96.3%
Fully

distributed
√ √ √

Note: ‘
√

’ shows that the ability was considered in the literature;

‘×’ indicates that the ability was not available;

‘–’ means that the item was not mentioned and could not be inferred.

VII. CONCLUSION

A new CID approach using blockchain has been
presented in this paper for distributed intrusion detec-
tion in MMG systems without a trusted authority or
central server. It guarantees the consistency and non-
repudiability of detection results of IDS in each micro-
grid in the process of distributed data transmission. The
novelty of this paper lies in the following three aspects.
Firstly, a new CID approach is proposed for MMG
systems by incorporating the consensus and incentive
mechanisms in blockchain. Secondly, a multi-pattern
proposal generation method is developed to reduce the
FNR of intrusion detection. Thirdly, an improved DPoS
algorithm is designed as the consensus mechanism to
overcome the defect of one single richest member.

There are a few aspects worth investigating in our
future work. Our method utilizes consensus and incentive
mechanisms of blockchain to achieve CID. To address
the uncertainties in the propagation of distributed detec-
tion results, how to design a fuzzy consensus algorithm
is a direction for future work. In addition, in response
to the increasingly complex and distributed attacks, the
above method proposed for intrusion detection can be
considered in collaborative risk assessment and decision
making.
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