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Recycling waste products is an environmental-friendly activity that can result inmanufacturing cost saving and economic e�ciency
improving. In the beer industry, recycling bottles can reduce manufacturing cost and the industry’s carbon footprint. 
is paper
presents a model for a collection-distribution center location and allocation problem in a closed-loop supply chain for the beer
industry under a fuzzy random environment, in which the objectives are tominimize total costs and transportation pollution. Both
random and fuzzy uncertainties, for which return rate and disposal rate are considered fuzzy random variables, are jointly handled
in this paper to ensure a more practical problem solution. A heuristic algorithm based on priority-based global-local-neighbor
particle swarm optimization (pb-glnPSO) is applied to ensure reliable solutions for this NP-hard problem. A beer company case
study is given to illustrate the application of the proposed model and to demonstrate the priority-based global-local-neighbor
particle swarm optimization.

1. Introduction

Due to resource scarcity and environmental concerns, re-
sponsible companies are beginning to pay attention to the
future of the planet and the global environment. Recycling
used products for remanufacturing is, therefore, becoming
of greater importance in supply chain management, a move
that can dramatically reduce carbon emissions [1]. Closed-
loop supply chain (CLSC) combines the forward supply chain
with a reverse supply chain to cover the whole product
life cycle [2], with the manufacturing of new products and
the transportation to customers via distribution centers and
retailers as the forward supply chain and recycling, sorting,
disposal, and remanufacturing as the reverse supply chain. In
recent years, the CLSC has received a great deal of academic
and business attention because of the need to be socially
responsible, global environmental concerns, and government
legislation [3, 4], all of which have motivated companies to
pay more attention to recycling to reduce costs and lessen
their carbon footprint.

Facility location and allocation problems (FLAPs) have
been widely studied. Subramanian et al. [5] developed

priority-based simulated annealing to solve a CLSC network
design problem, in which the distribution center (DC) and
the centralized return collection center (CC) were set. Amin
and Zhang [6] presented facilities location model for man-
ufacturing and remanufacturing plants and CLSC collection
centers, which included demand and return uncertainties.
Subulan et al. [7] developed a CLSC network design model
for the lead/acid battery industry that considered both
nancial and collection objectives. CLSC network design in
a competitive environment with price-dependent demand
was examined by Rezapour et al. [4], in which the DC
and CC were separately built. Zeballos et al. [8] proposed a
model for a multiperiod CLSC design and planning problem
with demand uncertainty that had ten echelons in which
the DC and CC were considered. Wang et al. [9] developed
a granular robust model for a two-stage waste-to-energy
feedstock �ow planning problem with uncertain capacity
expansion costs. Tokhmehchi et al. [10] developed a hybrid
approach to solve a closed-loop supply chain location and
allocation problem that considered the minimization of total
cost. Vahdani and Mohammadi [11] proposed capacitated
bidirectional facilities for CLSC conduct distribution, in
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which a multipriority queuing system was studied. As a
growing number of companies are now engaging in recycling
activities due to economic and environmental concerns,
distribution and collection activities using the same vehicle
have been found to reduce carbon emissions and transporta-
tion costs as empty loads can be avoided. In this paper, to
benet company operation and reduce construction costs, a
distribution center (DC) is combined with a collection center
(CC) into a collection-distribution center (CDC). In practice,
as the recycled product owners are usually at the same
location as the potential new product buyer [12], a DC/CC
combination has lower construction and operating expenses
and can signicantly reduce environmental pollution.

Ramkumar et al. [13] developed a multiechelon, mul-
tiperiod, multiproduct closed-loop supply chain network
model which was solved using a genetic algorithm with xed
variables. Kaya and Urek [12] presented a facility location-
inventory-pricing model without uncertainty to determine
optimal facilities locations. Barz [14] proposed an optimiza-
tion model for a two-stage capacitated facility location and
allocation problem with additive manufacturing, in which
all variables were certain. Jindal and Sangwan [15] devel-
oped a multiobjective model for a CLSC network design
problem with the economic and environmental factors being
fuzzy uncertain variable and the DC and CC were separate.
Ramezani et al. [16] conducted research into a CLSC network
design problem that only considered of fuzzy variables. In
recent years, uncertainty has attracted more research atten-
tion [17–19]. Stochastic programing, robust optimization, and
fuzzy set theory have been used to present uncertainty in
FLAPs [20, 21]. Wang et al. [22] used prediction sets to solve
an expansion planning problem for waste-to-energy (WtE)
systems facing future waste supply uncertainty. Keyvan-
shokooh et al. [23] proposed a novel hybrid robust-stochastic
programing (HRSP) approach to simultaneously model two
di�erent types of uncertainties by using stochastic scenarios
for the transportation costs and polyhedral uncertainty sets
for the demand and returns. However, the DC and the CC
were separate and the collection disposal rate was a certain
variable.

Uncertainties exist in both forward and reverse supply
chains. However, the uncertainties in the reverse �ow are
higher than in the forward supply chain [7, 24, 25] as
returned product quantity is generally seen as uncertain [23,
26]. Subjective uncertainties such as the decision maker’s
choices and environmental coe�cients can be dealt with
using fuzziness, while objective uncertainties such as unit
transportation costs, product prices, and the quantity of
unusable products can be dealt with using randomness. In
this paper, to re�ect the study problem, the return rate and
disposal rate are considered fuzzy random variables, which
are concurrently handled using triangular fuzzy numbers [7].
Based on the above, a model is formulated to determine
the optimum CDC number and location and the allocation
strategies for the di�erent facility types.

As facilities location and allocation problems are seen
as nonconvex, nondi�erentiable, strongly NP-hard problems,
a collection and distribution center location and allocation
problem (CDCLAP) in a closed-loop supply chain under

a fuzzy random environment is even more complicated. Sev-
eral di�erentmethods have been used to solve NP-hard prob-
lems [27–29]. While particle swarm optimization (PSO) has
been found to be generally e�ective [30–32], when the local
optimal solution is found, the particle behavior in a basic PSO
is directly in�uenced and therefore frequently falls into a local
optimum [33–35]. Because of this problem, several advanced
PSOs have been developed to more accurately solve supply
chain management problems. Ai and Kachitvichyanukul [36]
proposed a global-local-neighbor PSO which was found to
be more e�ective. Based on this innovation, Xu et al. [33]
proposed a fuzzy random simulation-based bilevel global-
local-neighbor particle swarm optimization (frs-bglnPSO).
In this paper, a priority-based global-local-neighbor particle
swarm optimization (pb-glnPSO) is applied to solve the
CDCLAP.

In summary, this paper proposes a mathematical model
to solve a collection-distribution center location and allo-
cation problem in a closed-loop supply chain that con-
siders economic and environmental factors and includes
fuzzy random variables for return and disposal rates. 
e
remainder of this paper is organized as follows. Section 2
presents the problem statement and model assumptions,
a�er which a description of the model and its formula-
tions is given in Section 3. 
e proposed hybrid solution
based on the developed pb-glnPSO is described in Sec-
tion 4 and case study is presented in Section 5 to illustrate
model formulation and the proposed method. Finally, Sec-
tion 6 gives conclusions and indications for future research
extensions.

2. Research Problem Statement

In this paper, a company with factories in certain locations
and retailers in di�erent customer zones is considered. 
e
company needs to decide the locations for their integrated
collection and distribution centers (CDCs), at which both
a used product collection network and a new product
distribution network are to be jointly [12]. As CDCs reduce
construction and transportation costs because the same
vehicles are used for both distribution and recycling, in this
paper, only CDCs are considered.

A general illustration of the classical CDCLAP for a
closed-loop supply chain is shown in Figure 1, with the CLSC
framework shown in Loop 1. 
e CLSC framework has four
echelons: factories, CDCs, retailers, and disposal centers [11].

e forward supply chain begins with new production, a�er
which the nished products are transported from the facto-
ries to the retailers via the CDCs. In the reverse supply chain,
returned products are collected and transported to the CDCs,
where the recycled products are inspected, consolidated, and
sorted into those that are available for remanufacturing,
which are sent to the factories, and those that are unsuitable
for remanufacturing, which are transported to the disposal
centers [23]. A CDC supplies products to multiple retailers;
however, retailer demand is fullled by only one production
site. A CDC can also handle products from di�erent factories
and dispatch returned products to multiple factories for
remanufacturing.
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Figure 1: 
e closed-loop supply chain network.

In the CLSC examined in this paper, the retailers’
demand is estimated based on preorders. However, the
return rate is considered to be a fuzzy random variable as
customers may not return the used product or the product
may be broken. Consequently, the availability of recycled
products is unsure because of unsure transportation and
carrying losses. Another fuzzy random variable considered
in this paper is the returned product disposal rate, which
is dependent on the inspection and consolidation at the
CDC.


e assumptions for the proposed problem investigation
are as follows: (1) only one product in one period is consid-
ered; (2) all alternative CDC locations have been identied;
(3) recycling a used product costs less than manufacturing a
new one; (4) the CDCs and factories have capacity limits [37–
39]. As considering incapacitated facilities is an unrealistic
assumption in many LAPs, many researchers have assigned
a maximum capacity level to facilities to model more realistic
decisions; (5) the factories’, retailers’, and disposal centers’
locations are known; (6) new product and returned product
storage are allowed at the CDCs [21].


e initial problem is decidingwhichCDCs to select from
the candidate sites and which allocation strategies to select
to minimize total CDC costs: operating costs, transportation
costs, and transportation pollution costs, while also consid-
ering �ow constraints, capacity limits, and retailer demand.

3. Modelling

In this section, the mathematical formulations are given for
the CDCLAP in the CLSC and the notations are given in the
Notations to facilitate the problem description.

3.1. Objective Functions. Based on the variables mentioned
in the Notations, the objectives are to minimize total costs

and to minimize the environmental e�ects with the primary
objective being minimizing total cost.

3.1.1. Economic Objective. In general, decisionmakers seek to
minimize total costs, which are made up of transportation
costs, xed costs, and operating costs. 
e minimization
objective can be described as

min �1

=
�
∑
�=1

�
∑
�=1
������� +

�
∑
�=1

�
∑
�=1
�	����� (1 + 	̃�)

+
�
∑
�=1



∑
�=1

�
∑
�=1
�����̃�	̃����

+
�
∑
�=1

�
∑
�=1

�
∑
�=1



∑
�=1
����	̃���� (1 − �̃�) +

�
∑
�=1
����

+
�
∑
�=1

�
∑
�=1
�� ��� +

�
∑
�=1

�
∑
�=1

RV� 	̃�.

(1)

Equation (1) calculates the total cost, in which

∑��=1∑��=1 ������� is the new product transport costs from

the factories to the CDC, ∑��=1∑��=1 �	�����(1 + 	̃�) is the
transport costs between the CDCs and the retailers, and

∑��=1∑
�=1∑��=1 �����̃�	̃���� is the returned product delivery
costs from the CDCs to the disposal centers. 
e returned
product transportation costs from the CDCs to disposal

centers are measured as∑��=1∑
�=1∑��=1∑
�=1 ����	̃����(1− �̃�).

e xed costs for opening a new CDC are ∑��=1 ����.
∑��=1∑��=1 �� ��� denotes the new product variable costs.
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∑��=1∑��=1 RV� 	̃� calculates the returned product operating
costs.

As it is very di�cult to handle objective functions with
fuzzy random factors, Kruse and Meyer [40] demonstrated
that the fuzzy expected value could be represented by a single
fuzzy number. Based on the theory proposed by Heilpern
[41], without a loss of generality, the expected value operator
is used to convert the uncertain model into a deterministic
model, which can then be used to transform the fuzzy
random objective functions into their crisp equivalences, as
shown in
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Note that EV[	̃�] or EV[�̃�] above represents two expected
values: the rst is used to convert the fuzzy random variables
into fuzzy numbers based on Kruse and Meyer’s 1987 theory,
and the second is used to transform the fuzzy numbers into
deterministic numbers based on Heilpern’s 1992 theory.

3.1.2. Environmental Objective. 
e secondary objective is
to minimize the transportation carbon emissions associated
with the CLSC operations, an area that has attracted signi-
cant recent research attention [42]. 
e following expression
represents the transportation carbon emissions between the
CDCs and the factories, the CDCs and the retailers, and the
CDCs and the disposal centers.
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∑��=1∑��=1 ������ is the environmental pollution caused

by the transportation activities from the factories to the

CDCs. ∑��=1∑��=1 ������(1 + EV[	̃�]) is the summation of
the carbon footprints for transporting products between the

CDCs and retailers. ∑��=1∑
�=1∑��=1 ���EV[�̃�]EV[	̃�]��� is

the total carbon footprint from the CDCs to the disposal

centers, and∑��=1∑
�=1∑��=1∑
�=1 ���EV[	̃�]���(1 − EV[�̃�]) is
the carbon footprint from the CDCs to factories for returned
products.

3.2. Constraints. Note that as each CDC has its own capacity
limit, it is unable to service goods beyond capacity; therefore,
the capacity limit restriction can be written as follows:

�
∑
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	̃�� is a fuzzy random variable indicating the used product
return rate transported from the retailer � to CDC �. ���
indicates the product quantity from CDC � to retailer �. ���
indicates the product quantity transported from factory � to
CDC �. �� is the capacity of CDC �.

Within the capacity constraint, the factory is able to
manufacture new products to meet retailer needs as well as
deal with the returned products from the CDCs.
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�� is the demand from retailer � and �� is the capacity of

factory �.∑��=1∑��=1∑
�=1 ����EV[	̃�]���(1−EV[�̃�]) calculates
the returned product quantity transported to factory � for
remanufacturing.

All products for the retailers are processed through the
CDCs. 
e recycled product quantity is always less than the
product quantity transported from the factory to the CDC,
which can be described as follows:

�
∑
�=1
��� ≥

�
∑
�=1

EV [	̃�]���. (6)

��� is a variable indicating the new product quantity trans-

ported from factory � to CDC �. 	̃���� refers to the returned
product quantity transported from retailer � to CDC �.


e products provided to the retailers should meet their
demand.

�
∑
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��� ≥

�
∑
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��. (7)

��� is the product quantity CDC � sends to retailer �. 
e
stochastic variable �� is the retailer �’s demand based on
order quantity.


e returned product quantity transported to the CDCs
is more than the product quantity transported to disposal
centers.
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EV[	̃�]��� is the expression for the returned product quantity
from retailer � to CDC �, and EV[�̃�]EV[	̃�]��� is the product
quantity transported from CDC � to retailer �.


ere should be at least one CDC and there should be no
more CDCs than the specied upper limit.

1 ≤
�
∑
�=1
!�, (9)

�
∑
�=1
!� ≤ ". (10)

" is the upper limit for the number of CDCs, which is
dependent on demand, returned product quantity, and xed
capacity constraints.

Each retailer must be serviced by only one CDC.

�
∑
�=1
#�� = 1. (11)

Since !� and #�� are binary variables, the following
constraints are required:

!� = {0, 1} , ∀� ∈ Ω,
#�� = {0, 1} , ∀� ∈ Ω, ∀� ∈ Φ. (12)

!� is a binary variable indicatingwhether aCDC is opened
at point �. If location � is chosen to open a CDC, then !�;
otherwise, !� = 0. #�� is a binary variable indicating whether
retailer � is serviced by CDC �. If #�� = 1, then retailer � is
serviced by CDC �; otherwise, #�� = 0.

3.3. Global Model. From the formulation above, the model
for the CDCLAPwith capacity, �ow, and quantity constraints
is developed with the aims of minimizing total costs and total
transportation pollution with the primary objective of min-
imizing the total cost. In the CLSC, both new and returned
products are considered. 
e product can be reproduced to
save raw materials and reduce waste and pollution. In our
model, all costs involved in the CDCLAP are considered as
well as the in�uence of the transportation activity pollution.
Fuzzy random theory is used to deal with the real world
complex uncertainties and ensure more scientic decisions.

erefore, this CDC situation is closer to the real situation as
it can deal with complicated practical problems. Finally, the
global model is given:
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(13)

3.4.Model Transformation. 
e two objectives are believed to
be some similar ones to some extent.
eminimization of the
environmental objective requires low transportation carbon
emissions which could be similar to the transportation costs
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of the economic objective, which are mainly a�ected by
transportation distance. Based on previous research [33, 43,
44], the secondary environmental impact reduction objective
can be transformed into a constraint to reduce the complexity
of themultiple-objectivemodel (13). By the acceptable carbon
emissions level, the decision makers are concerned much
more about the total cost, namely, the primary objective.
Suppose that there is a maximum average environmental
impact level * which is acceptable to the decision maker;
therefore, the secondary objective can be transformed to be
a constraint as follows:
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Namely,

�2 ≤ *. (15)

As the economic costs for the primary objective and
the secondary environmental objective are transformed into
a constraint, the global model can be transformed into its
corresponding equivalent model as follows:
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4. The Heuristic Algorithms
Based on Pgln-PSO

Particle swarm optimization (PSO) is an evolutionary algo-
rithm which simulates social behavior such as birds �ocking
and sh schooling [45]. Using a xed population of individ-
uals, the PSO searches the feasible zone to seek solutions,
which are then updated to achieve an optimal solution. 
e
particles [46], characterized by their position and velocity,
are decided on by their �ying experience, their discoveries,
or the discoveries of their companions. 
ey �y through the
problem spaces following the currently optimum particles
to nd the best solution between the populations and the
best solution for each population. Even though the PSO
has been widely used to solve NP-hard problems [45, 47],
in the basic PSO, as the particles in the swarm are weak,
they tend to cluster rapidly toward the global best particle
[31]. However, the global-local-neighbor particle swarm opti-
mization (glnPSO) developed by Ai and Kachitvichyanukul
[36] has been found to improve the weakness in the basic
PSO. Xu et al. [43] proposed an even more advanced global-
local-neighbor particle swarm optimization with exchange-
able particles (GLNPSO-ep). In this section, a priority-
based global-local-neighbor particle swarm optimization
(pb-glnPSO) is proposed to solve the CDCLAP in the
CLSC.

4.1. Notations for the pb-glnPSO. 
e basic elements of
the PSO are particles, population, velocity, inertia weight,
individual best, and global best. 
e notations needed for the
pb-glnPSO are shown in the Notations.
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4.2. Encoding andDecoding Algorithm. 
edecoding process
is based on the priority-based encoding developed by Gen
and Cheng and the priority-based decoding and encoding
proposed by Gen et al. [48]. 
e priorities for the CDCs
and the retailers are equal to the total number of retailers
and CDCs. At each step, the CDC (retailer) with the highest
priority is selected and connected to a retailer (CDC) under a
minimum transportation cost constraint. Procedure 1 shows
the decoding algorithm for the priority-based encoding
and its trace table, with the priority-based encoding being
random. 
e CDCLAP is solved in two stages [14]. In the
rst stage, the CDC location is chosen and the transportation
between the CDCs and retailers calculated. In the second
stage, the allocations between the factories and CDCs are
dealt with.

4.3. �e Fitness Value Function. 
e CDCLAP considered
in this paper has a primary objective, the minimization
of total costs, and a secondary objective, the minimization
of environmental pollution, with the tness value of each
particle re�ecting the objective value of the total cost. As
the second objective has been transformed into a constraint,
when the transportation carbon emissions are beyond the
acceptable level [33, 43], a penalty function is assigned
according to the actual situation. If the transportation carbon
emissions are within the acceptable level �2 ≤ *, the tness
value function in the pb-glnPSO is as follows:

Fitness = min
�
∑
�=1

�
∑
�=1
������� +

�
∑
�=1

�
∑
�=1
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∑
�=1



∑
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�
∑
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����EV [�̃�]EV [	̃�]���
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�
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�
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�
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�=1



∑
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���� +
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�=1
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(17)

If the transportation carbon emissions are beyond the
acceptable level, a penalty function is assigned and the tness
function is

Fitness = min
�
∑
�=1
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�	����� (1 + EV [	̃�])

+
�
∑
�=1



∑
�=1

�
∑
�=1
����EV [�̃�]EV [	̃�]���

+
�
∑
�=1

�
∑
�=1

�
∑
�=1



∑
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∑
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∑
�=1
�� ��� +

�
∑
�=1
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∑
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RV�EV [	̃�]

+ � (* − �2)

(18)

in which � is a large enough penalty factor.

4.4. Update. Based on the notations of pb-glnPSO men-
tioned in the Notations and the glnPSO proposed by Ai
and Kachitvichyanukul [36], the inertia weight, velocity, and
position are updated using the following equation:

4 (5) = 4 (6) + 5 − 6
1 − 6 [4 (1) − 4 (6)] , (19)

V
�
	 (5 + 1) = 4 (5) V�	 (5) + 7�81 [9best

�	 (5) − 9�	 (5)]
+ 7�82 [9best

�	 (5) − 9�	 (5)]
+ 7�83 [9best

�	 (5) − 9�	 (5)]
+ 7�84 [9best

�	 (5) − 9�	 (5)] ,

(20)

9�	 (5 + 1) = 9�	 (5) + V
�
	 (5 + 1) . (21)


eglnPSOhas beenwidely used in solvingNP-hard facilities
location and allocation problems.

4.5. Overall Process of the pb-glnPSO. In this paper, the
glnPSO presented in Procedure 1 is used to solve a location
and allocation problem. Due to uncertainties and envi-
ronmental changes, a priority-based global-local-neighbor
particle swarm optimization (pb-glnPSO) is proposed to
solve this model. As the company pays close attention to
economic costs, the environmental factor is dealt with as a
constraint that has upper limits. 
e algorithmic details are
as follows.

Step 1. Initialize � particles as a swarm: : = 1, 2, . . . , < (the
particle is the priority).

Step 2 (constraints check). If in the feasible region, go to
Step 3; otherwise, return to Step 1.

Step 3. Calculate the tness according to the decoding algo-
rithm in Procedure 1.

Step 4. Update the particle positions and velocities.

Step 4.1. Acquire the expected value for > from the above
algorithm.

Step 4.2. For : = 1, 2, . . . , <, decode each particle to an
installment group. Calculate the tness value of each particle
and set the position of the :th particle as its personal best.

e global best position is chosen from these personal best
positions.

Step 4.3 (update 9best). For : = 1, 2, . . . , <, if Fitness(��) <
Fitness(�best

� ), �best

� = ��.
Step 4.4 (update @best). For : = 1, 2, . . . , <, if Fitness(��) <
Fitness(�best

� ), �best

� = ��.
Step 4.5 (update :best). For : = 1, 2, . . . , <, among all 9best
ofA neighbors around the :th particle, set the personal best

which has the best tness value as ��best� .
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Input. Ω: set of CDCs, � ∈ Ω = {1, 2, 3, . . . , C}; Φ: set of retailers, and � ∈ Φ = {1, 2, 3, . . . , D}
��: demand of retailer �, � ∈ Φ,
��: the capability of the CDCs �, � ∈ Ω; EV[	̃�]: the return rate of retailer �, � ∈ Φ
�	��: unit transportation cost between the CDC � and retailer �, � ∈ Ω, � ∈ Φ;
9(� + �): the priority settled, � ∈ Ω = {1, 2, 3, . . . , C}, � ∈ Φ = {1, 2, 3, . . . , D}

Output. ���: the product quantity transported from CDC � to the retailer �.
���: the product quantity transported from the retailer � to CDC �.

Step 1. ��� ← 0, � ∈ Ω, � ∈ Φ, ��� ← 0, � ∈ Ω, � ∈ Φ,
Step 2. F ← argmax9(:), : ∈ |Ω| + |Φ|; select a node
Step 3. If F ∈ Ω, then �∗ ← F; select a CDC,

�∗ ← argmin�	�� | 9(�) ̸= 0, � ∈ Φ; select a retailer with the lowest cost
else, �∗:; select a retailer
�∗ ← argmin�	�� | 9(�) ̸= 0, � ∈ Φ; select a CDC with the lowest cost

Step 4. ��� ← min��(1 + EV[	̃�]), ��: assign the available amount of units
Update the availabilities on CDC (�∗) and retailer (�∗)
��∗ = ��∗ − ��∗�∗ , �� = �� − ��∗�∗

Step 5. If��∗ = 0 then 9�∗ = 0
If ��∗ = 0 then 9�∗ = 0

Step 6. If 9(|�| + �) = 0, � ∈ Φ, then calculate transportation cost, nd the chosen CDC and return, else go to Step 1.

Procedure 1: Decoding of the priority for the location and allocation problem.

Step 4.6 (generate &best). For : = 1, 2, . . . , < and H =
1, 2, . . . , �, nd 9o	 ensuring that the FDR takes a maximum

value, and set 9�	 as ��best� .

Step 4.7. Update the position and the velocity of each :th
particle using (20) and (21).

Step 4.8. Check whether the particles are beyond the mark.
If 9�	 > �max, 9�	 = �max; otherwise, if 9�	 < �min, then
9�	 = �min.

Step 5. Based on the above calculation, replace the ranking
vector using the new numbers.

Step 6. If the stopping criterion is met, stop; otherwise, 5 =
5 + 1 and return to Step 2.


e overall process can be clearly seen in Figure 2.

5. Case Study

5.1. Case Presentation. 
is model is based on a beer com-
pany in a developing country that bottles beer in glass bottles.

e supply chain allows customers to return empty bottles
to the retailers, which are then sent to the CDCs where
they are inspected, consolidated, and sorted. A�er processing
and disinfecting, the bottles are relled and sold again. 
e
company is now considering the construction of several
CDCs to allow for bottle recycling as producing new bottles
is far more expensive than recycling used bottles.

To illustrate the validity of the model and the usefulness
of the solutionmethod, the data needed to examine the CLSC
performance for the four echelons is presented here. Based
on the market analysis, ten alternative CDC coordinates are
suggested, which are to be assessed based on location, capac-
ity, xed costs, new product variable costs (NPV cost), and

recycled product variable costs (RPV cost). 
e assessments
for the ten possible CDCs are shown in Table 1. Supermarkets
and restaurants are considered to be the beer retailers with
�exible demand. Table 2 presents the information regarding
the retailers, factories, and disposal centers. It can be seen
from Table 2 that �1 to �30 represent 30 di�erent retailers, �1
to �4 are the 4 di�erent factories in di�erent locations, each of
which has a di�erent capacity, and &1 indicates the location
and capacity of the disposal center. 
erefore, 30 retailers,
4 factories, and 1 waste disposal center are considered in
this study. 
e unit transportation costs and pollution are
related to the distances between the facilities. 
e retailers’
return rates, which are fuzzy random variables, are shown in
Table 3.

5.2. Maximum Generation and Population Size. With an
increase in the maximum iterations, computer time may
increase or the optimal result may improve. For the pb-
glnPSO in this case study, the maximum generation is set at
6 and the population size is set atJ; therefore, the maximum
iteration is 6 × J. In the test, J is set from 20 to 60 with a
step-length of 10, and 6 is set from 100 to 500 with a step-
length of 100, while 7� = 7� = 7� = 7� = 2, from which 25
di�erent groups are obtained, and then pb-glnPSO was run
20 times for each group.

Figures 3 and 4 show the test results, the computing time,
and the optimal results. For the horizontal ordinate 6J (e.g.,
“0–5” represents ve di�erent groups) [49], whenJ = 20, 6
increases from 100 to 500 with a step-length of 100, with the
remainder following the same analogy. From Figure 3, it can
be seen that the maximum iterations signicantly in�uenced
the computing time. When the population size J was the
same, there was a positive correlation between the maximum
generation and the computing time. For the optimal result,
the maximum generation had an obvious in�uence on the
result, as shown in Figure 4. As can be seen, the results
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Table 1: CDCs information (unit: 1 × 102 RMB).

Node Location Capability Fixed cost NPV cost RPV cost �̃� Parameters K
1 (23, 23) 900 12300 0.01 0.05 (0.18, K1, 0.25) K1 ∼ J(0.21, 0.02)
2 (25, 35) 550 12100 0.02 0.06 (0.23, K2, 0.28) K2 ∼ J(0.25, 0.02)
3 (34, 29) 1050 15600 0.01 0.05 (0.14, K3, 0.24) K3 ∼ J(0.18, 0.04)
4 (32, 25) 650 11300 0.01 0.07 (0.16, K4, 0.22) K4 ∼ J(0.18, 0.03)
5 (35, 37) 1050 17800 0.01 0.05 (0.25, K5, 0.30) K5 ∼ J(0.28, 0.02)
6 (36, 31) 1050 22400 0.01 0.06 (0.17, K6, 0.26) K6 ∼ J(0.22, 0.03)
7 (29, 28) 1050 16300 0.02 0.07 (0.15, K7, 0.23) K7 ∼ J(0.20, 0.02)
8 (18, 21) 800 14900 0.01 0.06 (0.19, K8, 0.28) K8 ∼ J(0.24, 0.03)
9 (29, 23) 1100 26500 0.01 0.06 (0.12, K9, 0.22) K9 ∼ J(0.17, 0.04)
10 (35, 26) 1050 2200 0.02 0.05 (0.17, K10, 0.23) K10 ∼ J(0.20, 0.02)

No

No

No

Yes

Yes

Yes

Start

Initialize L

Encoding

Decoding

Calculate F1

Calculate F2

� = � + 1

Fitness (P1) < Fitness (Pbest
1 )

Fitness (P1) < Fitness (Pbest
g )

Pbest
1 = P1

Pbest
g = P1

Update PLbest
1 and generate PNbest

1d

� > T

End

Figure 2: 
e heuristic algorithms based on pb-glnPSO.

were better when 6 was from 300 to 500 and J was from
40 to 60. 
us, for the above 6 and J group, the optimal
results, the standard deviation of 20 optimal results, and
the average computing time have been given in Table 4 for
better analysis. From Table 4, it can be seen that the result
was stable and reliable and that any further increase in the
maximum iterations resulted in a longer computing time but
no improvement in the optimal result, with the best result
beingwhenJ= 50 and6= 400.
erefore, the suitable values
for 6 andJ in the pb-glnPSO for this case were found to be
400 and 50.

5.3. Sensitivity Analysis on the Parameters. To nd the best
solution to the proposed model, a series of experiments were
conducted, all of which were performed using MATLAB 7.0

on a workstation with an Intel(R) Core(TM)i7, a 2.59GHz
clock pulse with 8GB memory, and a Windows 10 operating
system. A sensitivity analysis was performed to examine
the e�ectiveness and behavior of the proposed algorithm,
as shown in Table 5. Several parameters were changed: the
population size J, the maximum generation 6, and the
acceleration constants 7�, 7�, 7�, and 7�. A�er trying various
values for the population size andmaximum generations, the
results were found to be better when 6 was from 300 to 500
andJwas from40 to 60.
e di�erent tness values obtained
using the pb-glnPSO with the di�erent parameters J, 6, 71,
and 72 are shown in Table 5.

As can be seen from Table 5, when the parameters 7�,7�, 7�, and 7� increased, the tness value improved except
for 7� = 7� = 7� = 7� = 2.5 with the same generation
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Table 2: Retailers, factories, and disposal center.

Node Location Demand

�1 (27, 28) 50

�2 (30, 19) 60

�3 (32, 22) 40

�4 (37, 16) 80

�5 (23, 29) 30

�6 (27, 17) 40

�1 (13, 22) 920

�7 (33, 26) 80

�8 (34, 32) 40

�9 (37, 22) 100

�10 (17, 22) 90

�11 (26, 39) 60

�12 (38, 26) 40

�2 (31, 44) 530

�13 (38, 34) 50

�14 (36, 25) 70

�15 (41, 19) 40

�16 (27, 33) 30

�17 (25, 39) 20

�18 (38, 37) 40

�3 (32, 15) 850

�19 (36,27) 50

�20 (39, 28) 60

�21 (25, 31) 70

�22 (29, 35) 90

�23 (18, 29) 50

�24 (18, 14) 60

�4 (42, 31) 940

�25 (35, 11) 80

�26 (23, 33) 50

�27 (36, 37) 60

�28 (28, 26) 40

�29 (25, 24) 30

�30 (32, 19) 80

&1 (18, 47) 800

and population size, with the tness value increased from
7� = 7� = 7� = 7� = 2 to 7� = 7� = 7� = 7� = 2.5.

erefore, when 7� = 7� = 7� = 7� = 2, the result was
found to be optimal. For6, given the same 7�, 7�, 7�, and 7� and
population size, it was found that when 6was 400, the tness
value was better than for any other generation. Finally, forJ,
the results improved as the population size increased and it
was found to be optimal when J is 50. 
e most e�ective
and e�cient results were gained with 6 at 400, J at 50, and
7� = 7� = 7� = 7� = 2.
5.4. Result Analysis. In this section, the pb-glnPSO is con-
ducted to solve the model using the above data. 
e param-
eters for the problem were set as follows: population size:
popsize = 50; maximum generation: maxGen = 400; inertia
weight: 4(1) = 1 and 4(6) = 0.1; acceleration constant:
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Figure 3: 
e computing time.

Table 3: Retailers’ return rate.

Node 	̃� Parameters S
�1 (0.28, S1, 0.33) S1 ∼ J(0.31, 0.02)
�2 (0.52, S2, 0.62) S2 ∼ J(0.56, 0.02)
�3 (0.32, S3, 0.38) S3 ∼ J(0.36, 0.03)
�4 (0.62, S4, 0.73) S4 ∼ J(0.67, 0.04)
�5 (0.55, S5, 0.62) S5 ∼ J(0.58, 0.02)
�6 (0.65, S6, 0.72) S6 ∼ J(0.69, 0.02)
�7 (0.73, S7, 0.81) S7 ∼ J(0.78, 0.03)
�8 (0.72, S8, 0.78) S8 ∼ J(0.75, 0.03)
�9 (0.75, S9, 0.82) S9 ∼ J(0.80, 0.04)
�10 (0.34, S10, 0.38) S10 ∼ J(0.36, 0.02)
�11 (0.42, S11, 0.48) S11 ∼ J(0.46, 0.02)
�12 (0.46, S12, 0.50) S12 ∼ J(0.48, 0.04)
�13 (0.65, S13, 0.70) S13 ∼ J(0.67, 0.04)
�14 (0.62, S14, 0.68) S14 ∼ J(0.64, 0.03)
�15 (0.72, S15, 0.78) S15 ∼ J(0.75, 0.04)
�16 (0.74, S16, 0.79) S16 ∼ J(0.77, 0.04)
�17 (0.70, S17, 0.75) S17 ∼ J(0.73, 0.04)
�18 (0.75, S18, 0.80) S18 ∼ J(0.78, 0.02)
�19 (0.68, S19, 0.75) S19 ∼ J(0.72, 0.03)
�20 (0.55, S20, 0.65) S20 ∼ J(0.61, 0.02)
�21 (0.35, S21, 0.45) S21 ∼ J(0.39, 0.04)
�22 (0.35, S22, 0.42) S22 ∼ J(0.38, 0.03)
�23 (0.55, S23, 0.60) S23 ∼ J(0.58, 0.03)
�24 (0.52, S24, 0.62) S24 ∼ J(0.56, 0.04)
�25 (0.62, S25, 0.72) S25 ∼ J(0.66, 0.04)
�26 (0.69, S26, 0.75) S26 ∼ J(0.72, 0.03)
�27 (0.29, S27, 0.35) S27 ∼ J(0.32, 0.03)
�28 (0.40, S28, 0.46) S28 ∼ J(0.43, 0.02)
�29 (0.42, S29, 0.48) S29 ∼ J(0.45, 0.03)
�30 (0.50, S30, 0.58) S30 ∼ J(0.54, 0.04)

7� = 7� = 7� = 7� = 2. A�er running the program 20
times, the most satisfactory solution was found. Figure 6
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Table 4: pb-glnPSO result (unit: 1 × 102 RMB).

J = 40 J = 50 J = 60
6 = 300 6 = 400 6 = 500 6 = 300 6 = 400 6 = 500 6 = 300 6 = 400 6 = 500

Optimal result 82589.8 82434.4 82669.5 82102.4 81920.1 82634.9 82434.4 82189.2 82308.9

Standard deviation 512.485 627.973 407.732 565.617 306.345 527.466 543.704 526.525 678.494

Computing time 5.600 5.938 6.699 6.623 8.384 9.228 8.929 9.855 10.690

Table 5: Sensitivity analysis (unit: 1 × 102 RMB).

71 = 72 J = 40 J = 50 J = 60
6 = 300 6 = 400 6 = 500 6 = 300 6 = 400 6 = 500 6 = 300 6 = 400 6 = 500

0.5 84449.3 83447.3 83243.5 82889.4 82766.2 83859.6 82879.9 82830.6 83233.8

1 83256.4 83125.5 83128.3 82679.3 82459.0 83199.5 82596.8 82448.8 82614.4

1.5 83201.8 82765.3 82815.6 82486.5 82564.3 83041.9 82498.6 82257.8 82430.6

2 82589.8 82434.4 82669.5 82102.4 81920.1 82634.9 82434.4 82189.2 82308.9

2.5 83844.7 83102.9 82782.4 82370.5 82198.5 82792.7 82448.8 82469.9 82377.3
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Figure 4: 
e optimal result.

shows the specic objective values found by the pb-glnPSO in
di�erent iterations and shows the reductions in the total costs.

e results are presented in Figure 5. From the calculations,
at least 3 CDCs could satisfy all markets. Alternative CDC
positions 4, 5, and 8 should be chosen. CDC 4 can send
products to markets 2, 3, 4, 6, 7, 9, 14, 15, 25, and 30. CDC
5 can transport products for 1, 8, 11, 12, 13, 16, 17, 18, 19, 20,
21, 22, and 27 and retailers 5, 10, 23, 24, 26, 28, and 29 can
be serviced by CDC 8. 
e total cost was found to be 8.192
million RMB, in which the xed costs were 4.4 million RMB,
the transportation costs were 3.776 million RMB, and the
operating costs were 0.016 million RMB.

5.5. Algorithm Comparison. To better illustrate the e�ective-
ness of the proposed algorithm, a brief comparison between
the pb-glnPSO, glnPSO, and an immune algorithm (IM) is
given in this section. 
e glnPSO is a well-respected evolu-
tionary algorithm that has been successfully implemented in
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Figure 5: 
e distribution strategy.

a variety of engineering and combinatorial problems.
e IM
is also being widely used to solve facilities location problems.

To establish the solution quality for the pb-glnPSO, it was
compared with the glnPSO and the IM. Each run time for
the pb-glnPSO, glnPSO, and the IM was around 10 s. 
e
pb-glnPSO, glnPSO, and IM were run 20 times using the
same data. For a fair comparison between the groups, the
population size was set at 50 and the maximum generation at
400. In the glnPSO, the acceleration constant was designed as
7� = 7� = 7� = 7� = 2 and the inertia weight was 4(1) = 1 and
4(6) = 0.1. For the IM algorithm, the crossover probability
was 1 and the mutation probability was 0.1.

From Figure 7, it can be seen that the pb-glnPSO out-
performed both the glnPSO and the IM, and, as the glnPSO
converged faster, it had a better result than the IM. 
is
demonstrated that a better solution can be obtained using the
glnPSO, and an even better result can be obtained using the
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Figure 6: 
e Pgln-PSO iterative process.
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Figure 7: 
e iterative process of pb-glnPSO, glnPSO, and IM.

pb-glnPSO. 
e blue prole shows the convergence for the
best in history for the pb-glnPSO. It can be seen fromFigure 7
that, as the programs ran, the results become stable for the pb-
glnPSO and glnPSO a�er about the 150th generation, while
the IM became stable a�er the 175th generation. As shown in
Figure 7, the best solution for the pb-glnPSO was superior
to, more stable than, and had the smallest CPU run time
compared to the other algorithms (Table 6), with the IM
having the highest run time.

6. Conclusion

Economic development has resulted in many environmental
pollution problems, the seriousness of which has encouraged

Table 6: Results of the pb-glnPSO, glnPSO, and IM.

Item pb-glnPSO glnPSO IM

Best result 81920.1 82884.5 83315.6

Worst result 82434.9 83826.6 84585.5

Average result 82231.1 83467.6 83852.8

Di�erence between the best
and the worst

514.81 942.10 1269.90

Di�erence between the
average and the best

510.986 992.734 864.315

Standard deviation 203.82 583.08 537.27

CPU time 8.6796 10.9764 14.5000

people to recycle and reuse products. To examine this prob-
lem and seek appropriate solutions, a mathematical model
for a collection-distribution center location and allocation
problem in a closed-loop supply chain under a fuzzy random
environment was presented for the beer industry in China.
For this problem, a new model was formulated, in which
the decision makers sought to minimize costs and pollution
under capacity and quantity constraints. To more accurately
represent actual production situations, the return rate and
disposal rate were considered to be fuzzy random variables.
A heuristic algorithm, the pb-glnPSO, was then applied
to solve the problem. Based on the proposed priority, the
distribution and collection activity were shown to satisfy
retailer demand and reduce costs and pollution a�er the
CDCs start operations. A�er calculation, the best solution
was determined and the advantages of the algorithm were
illustrated. 
e proposed model and method can be applied
to the location and allocation of CDCs in the beer industry
to improve supply chain management.
emodel was shown
to assist in generating retailer demand and dealing with the
returned products, which could benet company recycling
and reuse policies. At the same time, the transportation costs
and pollution were reduced because of the reductions in
losses from empty loads.

Notations

Sets

Ω: Set of CDCs,Ω = {1, 2, 3, . . . , C}
Ψ: Set of factories, Ψ = {1, 2, 3, . . . , T}
Φ: Set of retailers,Φ = {1, 2, 3, . . . , D}
Υ: Set of disposal centers, Υ = {1, 2, 3, . . . , J}

Indices and Parameters

�: Alternative location position for the
CDCs, � ∈ Ω = {1, 2, 3, . . . , C}

�: Known position of the factories,
� ∈ Ψ = {1, 2, 3, . . . , T}

�: Known position of the retailers,
� ∈ Φ = {1, 2, 3, . . . , D}

&: Known disposal center,
& ∈ Υ = {1, 2, 3, . . . , J}
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": 
e upper limit of the CDCs
��: 
e demand of retailer �
��: 
e capability of CDC �
��: 
e capability of factory �
���: Product quantity from factory � to CDC �
���: Product quantity from CDC � to retailer �
	̃�: 
e product return rate from retailer �
�̃�: 
e product disposal rate at CDC �
�� : 
e xed costs of the CDC �
�� : 
e variable costs of the CDC � for a new

product unit
RV� : 
e variable cost of the CDC � triage for a

returned product unit

����: Unit transportation cost between CDC � and
factory �

�	��: Unit transportation cost between CDC � and
retailer �

����: Unit transportation cost between CDC � and
disposal center &

���: Environmental impact of transportation
between CDC � and factory �

���: Environmental impact of transportation
between CDC � and retailer �

���: Environmental impact of transportation
between CDC � and disposal center &

*: 
e environmental impact level accepted by
decision makers.

Decision Variables

!�: A binary variable indicating whether point
� is chosen. If point � is chosen, then
!� = 1; else, !� = 0#��: It indicates whether retailer � is served by
CDC �. If � is chosen, then #�� = 1; else,#�� = 0

Notations for pb-glnPSO

5: Iteration index, 5 = 1, 2, . . . , 6
:: Particle index, : = 1, 2, . . . , <
V�	(5): Velocity of the :th particle at the Hth

dimension in the 5th iteration

9best

�	 : Personal best position

9�best�	 : Local best position
7�: Personal best position acceleration

constant
7�: Local best position acceleration constant
�max: Maximum position value
��: Velocity vector of :th particle

�best

� : Vector personal best position of :th
particle

��best� : Vector local best position of :th particle
Fitness(��): Fitness value of ��H: Dimension index, H = 1, 2, . . . , �
4�: Inertia weight in 5th iteration

9�	(5): Position of the :th particle at the Hth
dimension in the 5th iteration

9best

�	 : Global best position

9
best�	 : Near-neighbor best position
7�: Global best position acceleration constant

7�: Near-neighbor best position acceleration
constant

�min: Minimum position value
��: Position vector of :th particle

�best

� : Vector global personal best position

81, 82, 83, 84: Uniform distributed random number within
[0, 1].
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