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A Collection of Benchmark Examples for the NumericalSolution of Algebraic Riccati Equations II:Discrete-Time CasePeter Benner� Alan J. Lauby Volker Mehrmann�AbstractThis is the second part of a collection of benchmark examples for the numerical solutionof algebraic Riccati equations. After presenting examples for the continuous-time casein Part I, our concern in this paper is discrete-time algebraic Riccati equations. Thiscollection may serve for testing purposes in the construction of new numerical methods,but may also be used as a reference set for the comparison of methods.1 IntroductionWe present a collection of examples for discrete-time algebraic Riccati equations (DARE) ofthe form 0 = ATXA�X � (ATXB + S)(R+ BTXB)�1(BTXA+ ST ) + Q (1)where A;Q;X 2 IRn�n, B; S 2 IRn�m, and R = RT 2 IRm�m. The matrix Q = QT may begiven in factored form Q = CT ~QC with C 2 IRp�n and ~Q = ~QT 2 IRp�p.As it will be described below, (1) can be solved using its relationship to the symplectic pencilde�ned by L� �M = " Â 0�Q̂ In # � � " In G0 ÂT # (2)where Â = A� BR�1ST ;G = BR�1BT ;Q̂ = Q� SR�1ST = CT ~QC � SR�1ST :�Fakult�at f�ur Mathematik, Technische Universit�at Chemnitz{Zwickau, 09107 Chemnitz, FRG. e-mail:benner@mathematik.tu-chemnitz.de, mehrmann@mathematik.tu-chemnitz.de. These authors have been sup-ported by Deutsche Forschungsgemeinschaft, research grant Me 790/7-1 Singul�are Steuerungsprobleme.yDepartment of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106-9560, e-mail: laub@ece.ucsb.edu. This author has been supported by National Science Foundation GrantECS-9120643 and Air Force O�ce of Scienti�c Research Grant F49620-94-1-0104DEF.1



If Â is invertible, this pencil is equivalent to the symplectic matricesZ = M�1L = " Â+ GÂ�T Q̂ �GÂ�T�Â�T Q̂ Â�T # ; (3)or ~Z = LM�1 = " Â �ÂGÂ�T�Q̂ Q̂GÂ�T + Â�T # : (4)The DARE (1) arises, e.g., in (a) stochastic realization problems, and (b) linear-quadraticcontrol problems. In case (a), R is the measurement noise covariance and it is not uncommonfor this kind of matrix to be singular. For (b), R is the control weighting matrix and in thediscrete-time case, occasionally such a matrix can be singular, too. In these cases, the pencilformulation (2) is not possible. An extended symplectic pencil (ESP) can then be formed by~L� � ~M = 264 A 0 BQ �In SST 0 R 375� �264 In 0 00 �AT 00 �BT 0 375 : (5)To illustrate a problem where the DARE (1) arises, we consider the discrete-time linear-quadratic control problem (case (b) from above).Minimize J(x0; u) = 12 1Xk=0 �yTk ~Qyk + 2xTk Suk + uTkRuk� dt (6)subject to the di�erence equationxk+1 = Axk + Buk ; k = 0; 1; : : : ; x0 = �; (7)yk = Cxk; k = 0; 1; : : : : (8)If, for example, ~Q � 0, R > 0, (A;B) stabilizable1 , and (A;C) detectable2, then the solutionof the optimal control problem (6){(8) is given by the feedback lawuk = �(R+BTXB)�1(ATXB + S)Txk; k = 0; 1; : : : ;where X is the unique stabilizing, positive semide�nite solution of (1) (see, e.g., [21, 28]).One common approach to solve (1) is to compute the stable invariant subspace of the sym-plectic matrix Z or the stable de
ating subspace of the (extended) symplectic pencil givenabove, i.e., the invariant/de
ating subspace corresponding to the generalized eigenvalues ofL � �M , ~L � � ~M , respectively, inside the unit circle (e.g., [18, 21, 24]). If this subspace isspanned by " U1U2 # gngn or 264 U1U2U3 375 gngngm ; respectively;and U1 is invertible, then X = U2U�11 is the stabilizing solution of (1), i.e., all the eigenvaluesof F = A� B(R+ BTXB)�1(ATXB + S)T (9)lie inside the unit circle.1(A;B) is (d-)stabilizable, if rank [A� �I; B] = n for all � with j�j � 1.2(A,C) is (d-)detectable, if (AT ; CT ) is (d-)stabilizable.2



At this point it should be noted that it is possible to transform a continuous-time algebraicRiccati equation (CARE) into a DARE (and vice versa) via a (generalized) Cayley trans-formation, i.e., the Hamiltonian matrix corresponding to the CARE is transformed into asymplectic matrix/pencil. From this symplectic pencil it is possible to derive the coe�cientmatrices of a corresponding DARE under certain regularity assumptions; see [22]. In thisway, it is possible to obtain DARE examples from the �rst part of our benchmark collection.We do not use this approach here, though, and restrict ourselves to data arising naturally ina discrete-time setting and/or highlighting some of the properties of discrete-time algebraicRiccati equations.In the sequel we will use the following notation. Let A 2 IRn�n. By �(A) we denote the setof eigenvalues or spectrum of A. The spectral norm of a matrix is given byjjAjj = qmaxfj�j : � 2 �(ATA)gand the given matrix condition numbers are based upon the spectral norm,�(A) = jjAjjjjA�1jj:The Frobenius norm of a matrix will be denoted by jjAjjF and is given byjjAjjF =vuut nXi;j=1 a2ij :All norms and condition numbers given in the sequel were computed by the MATLAB3functions norm and cond.The examples are grouped in three sections. The �rst section contains parameter-free ex-amples of �xed dimension while the second has parameter-dependent problems of �xed size.Section 4 contains examples of scalable size.The coe�cient matrices of the presented examples are usually given in the same form as theyappear in the literature. Since in most cases S = 0, we omit S in all examples where thisproperty holds.All presented examples may be generated by the FORTRAN 77 subroutine DAREX (seeAppendix A) and the MATLAB function darex (see Appendix B). Appendix C describeshow to obtain the software.The description of each example contains a table with some of the system properties. Thisinformation is summarized in Appendix D. For all parameters needed in the examples thereexist default values that are also given in the tables. These default values are chosen in sucha way that the collection of examples can be used as a testset for the comparison of methods.The tables contain information for one or more choices of the parameters. Underlined valuesindicate the default values.For each example, we provide the condition number �(Â) which shows if the symplecticmatrix Z in (3) can be formed safely (though it is still favorable to use the pencil approachand thereby avoiding a matrix inversion unless Â�1 is \easy" to form). The column j�Cmaxjindicates the absolute value of the closed-loop eigenvalue of largest modulus, i.e.,j�Cmaxj = maxf j�j : � 2 �(F ) g3MATLAB is a trademark of The MathWorks, Inc.3



with F as in (9). These are the (generalized) eigenvalues of the symplectic matrix (pencils)in (2), (3), and (5) inside the unit circle. Further, we give norms and condition numbers ofthe stabilizing solution X . For examples without analytical solution available, we computedapproximations by the generalized Schur vector method [3, 24]. If possible, these approxima-tions were re�ned by Newton's method [3, 12, 21] to achieve the highest possible accuracy.We then chose the approximate solution with smallest residual norm and recomputed thesolution using the optimal scaling strategy proposed in [11]. This computed solution wasthen used to determine the properties of the example.The \right" condition number of algebraic Riccati equations is still an open problem althoughthe problem has been attacked by several papers during recent years, see, e.g., [11, 15, 26,30]. For simplicity, here we use the condition number proposed in [11]. This conditionnumber measures the sensitivity of the stabilizing DARE solution with respect to �rst-orderperturbations by means of the Fr�echet derivative of the DARE at X . In [11] it is shown that,assuming Q � 0, R > 0, the so de�ned condition number is given byKDARE = jj [Z1; Z2; Z3 ] jjjjX jjF ;where Z1 = jjAjjFP�1 �In 
 FTX + (FTX 
 In)T� ; (10)Z2 = �jjGjjFP�1 �ÂTX(In +GX)�1 
 ÂTX(In +GX)�1� ; (11)Z3 = jjQjjFP�1: (12)Here, denoting the jth unit vector by ej , the permutation matrix T is de�ned byT = nXi;j=1 eieTj 
 ejeTi ;and P is the matrix representation of the Stein (discrete Lyapunov) operator
(Z) = Z � FTZF:The computation of KDARE therefore requires the solution of the linear equations (10){(12).Since Kronecker products are involved, these systems get very large even for small numbersof n. For larger n, an inverse power iteration can be employed to estimate jj [Z1; Z2; Z3 ] jjF(see [11]). This approach requires in each iteration step the solution of two Stein equationscorresponding to 
.
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2 Parameter-free problems of �xed sizeExample 1 [17, Example 2]n m p parameter �(A) j�Cmaxj jjXjj �(X) KDARE2 1 2 { 114.99 0.50 21.03 1 18.85This is an example of stabilizable-detectable, but uncontrollable-unobservable data. We have thefollowing system matrices:A = � 4 3�92 �72 � ; B = � 1�1 � ; R = 1; Q = � 9 66 4 �with stabilizing solution X = 1+p52 � 9 66 4 �and closed-loop spectrum f�1=2; (3�p5)=3 g.Example 2 [17, Example 3], [16, Example 6.15]n m p parameter �(A) j�Cmaxj jjXjj �(X) KDARE2 2 2 { 1.05 0.69 5:07� 10�2 4.97 4.74This example illustrates a linear-quadratic control problem as de�ned by (6){(8). The coe�cientmatrices are A = � 0:9512 00 0:9048 � ; B = � 4:877 4:877�1:1895 3:569 � ;R = � 13 00 3 � ; Q = � 0:005 00 0:02 � :In [16, 17], solution matrices are given. We omit reproducing them here since they are not derivedanalytically.Example 3 [31, Example II]n m p parameter �(A) j�Cmaxj jjXjj �(X) KDARE2 1 1 { 5.83 0.00 1.00 1.00 1This example was used in [31] to demonstrate a compression technique for the extended pencil (5).The data are given byA = � 2 �11 0 � ; B = � 10 � ; Q = � 0 00 1 � ; R = 0:If interpreted in terms of a linear system as in (7){(8), Q can be written asQ = CT ~QC; C = [ 0 1 ]; ~Q = 1:The exact stabilizing solution isX = I2, and the closed-loop spectrum is f 0; 0 g. Due to the singularityof R, the condition number KDARE is not de�ned here (represented by a value \1" in the table).This example can be used, e.g., as a �rst test of any solver to deal with a singular weighting/measure-ment noise covariance matrix. 5



Example 4 [13]n m p parameter �(A) j�Cmaxj jjXjj �(X) KDARE2 2 2 { 1 0.69 126.99 2:84� 103 1This is another example with a singular R{matrix. Furthermore, we have a nonzero S{matrix. Thecoe�cients of (1) are given byA = � 0 10 �1 � ; B = � 1 02 1 � ; R = � 9 33 1 � ;Q = 111 � �4 �4�4 7 � ; S = � 3 1�1 7 � :Again, the DARE condition number KDARE can not be computed due to the singular R.Example 5 [14], [22, Example 2].n m p parameter �(A) j�Cmaxj jjXjj �(X) KDARE2 1 2 { 1 0.38 5.19 114.13 1.88This example shows one of the major di�erences between the properties of continuous-time algebraicRiccati equations and their discrete counterparts. Consider the DARE de�ned byA = � 0 10 0 � ; B = � 01 � ; Q = � 1 22 4 � ; R = 1:The spectrum of the pencil L � �M in (2) is f 0; 1; �(3 � p5)=2 g. The DARE has exactly twosolutions, X1 = � 1 22 2 +p5 � ; X2 = � 1 22 2�p5 � :but neither of them is negative semide�nite. On the other hand, (A; B) is controllable. In the case ofa continuous-time system, this property would assure the existence of a negative semide�nite solution.The stabilizing solution in the control-theoretic sense is the positive de�nite solution X1.Example 6 [1]n m p parameter �(A) j�Cmaxj jjXjj �(X) KDARE4 2 4 { 1.01 0.94 35.36 3.34 30.58The data of this example represent a simple control problem for a satellite. The system is givenby equations describing the small angle altitude variations about the roll and yaw axes of a satellitein circular orbit. These equations originally form a second-order di�erential equation. A �rst-orderrealization of this model and sampling every 0:1 seconds yields the system matricesA = 2664 0:998 0:067 0 0�0:067 0:998 0 00 0 0:998 0:1530 0 �0:153 0:998 3775 ; B = 2664 0:0033 0:020:1 �0:00070:04 0:0073�0:0028 0:1 3775 :The weighting matrices used in the performance index J(x0; u) in (6) are given byQ = ~Q = 2664 1:87 0 0 �0:2440 0:744 0:205 00 0:205 0:589 0�0:244 0 0 1:048 3775 ; R = I2:6



Example 7 [19]n m p parameter �(A) j�Cmaxj jjXjj �(X) KDARE4 2 4 { 19.86 0.99 2.06 183.33 790.37This is a simple example of a control system having slow and fast modes.A = 10�3 � 2664 984:75 �79:903 0:9054 �1:076541:588 998:99 �35:855 12:684�546:62 44:916 �329:91 193:182662:4 �100:45 �924:55 �263:25 3775 ;B = 10�4 � 2664 37:112 7:361�870:51 0:093411�11984:0 �4:1378�31927:0 9:2535 3775 ; R = I2; Q = 0:01I4:One complex conjugate pair of the computed closed-loop eigenvalues is located on a circle with radius� 0:99 around the origin, i.e., is relatively close to the unit circle. Requiring that this distance shouldnot cause any problems for any DARE solver seems to be reasonable.Example 8 [20, Example 4.3]n m p parameter �(A) j�Cmaxj jjXjj �(X) KDARE4 4 4 { 378.60 � 1� 1:8� 10�5 65.77 6:18� 1011 5:12� 104Here, the coe�cient matrices of (1) are constructed as follows. GivenA0 = 2664 0:4 0 0 01 0:6 0 00 1 0:8 00 0 0 �0:999982 3775 ; Q0 = 2664 2 �1 0 0�1 2 �1 00 �1 2 00 0 0 0 3775 ;V = 2664 1 �1 �1 �10 1 �1 �10 0 1 �10 0 0 1 3775 () V �1 = 2664 1 1 2 40 1 1 20 0 1 10 0 0 1 3775 ;we obtain A = V A0V �1 = 2664 �0:6 �2:2 �3:6 �5:4000181 0:6 0:8 3:3999820 1 1:8 3:7999820 0 0 �0:999982 3775 ; B = V I4 = V;Q = V �TQ0V �1 = 2664 2 1 3 61 2 2 53 2 6 116 5 11 22 3775 ; R = I4:A factorization in the control-theoretic sense, Q = CT ~QC, is therefore given by C := V �1 and~Q := Q0.All the generalized eigenvalues of L��M are real. The distance of the largest closed-loop eigenvalue tothe unit circle is � 1:8�10�5. The problem is designed so that �(L+M ) � 4�1011. Due to this largecondition number and the eigenvalues close to the unit circle, problems with the convergence of theiteration process are to be expected when the DARE is solved via a method based on the sign functioniteration (e.g., the methods in [4, 9]). Note that KDARE signals only a very mild ill-conditioning ofthe DARE. 7



Example 9 [8, Section 2.7.4]n m p parameter �(A) j�Cmaxj jjXjj �(X) KDARE5 2 5 { 23.52 0.98 73.90 73.73 100.81The �fth-order linearized state-space model of a chemical plant presented in [10, 29] is discretizedby sampling every 0:5 seconds, yielding a discrete-time linear-quadratic control problem of the form(6){(7) de�ned byA = 10�4�266664 9540:70 196:43 35:97 6:73 1:904084:90 4131:70 1608:40 446:79 119:711221:70 2632:60 3614:90 1593:00 1238:30411:18 1285:80 2720:90 2144:20 4097:6013:05 58:08 187:50 361:62 9428:00 377775 ; B = 10�4�266664 4:34 �1:22266:06 �104:53375:30 �551:00360:76 �660:0046:17 �91:48 377775 :The weighting matrices in the cost functional (6) are chosen as identities, i.e., we have Q = ~Q = I5and R = I2.If we modify the optimal control problem (6){(8) by allowing the observation to depend uponthe control, we obtain the following problem:Minimize J(x0; u) = 12 1Xk=0 �yTk ~Qyk + uTk ~Ruk� dt (13)subject to the di�erence equationxk+1 = Axk + Buk ; k = 0; 1; : : : ; x0 = �; (14)yk = Cxk +Duk ; k = 0; 1; : : : :; (15)then we can rewrite the cost functional (13) asJ(x0; u) = 12 1Xk=0 �xTQx+ xTSu+ uTSTx+ uTRu� dt (16)where Q = CT ~QC, R = ~R+DT ~QD, and S = CT ~QD.The data of the following example come from such a problem.Example 10 [7]n m p parameter �(A) j�Cmaxj jjXjj �(X) KDARE6 2 2 { 1 0.67 2.53 37.38 3.94The matrices of the linear system (A;B;C;D) are given byA = 26666664 0 1 0 0 0 00 0 1 0 0 00 0 0 0 0 00 0 0 0 1 00 0 0 0 0 10 0 0 0 0 0 37777775 ; B = 26666664 0 00 01 00 00 00 1 37777775 ;C = � 1 1 0 0 0 00 0 0 1 �1 0 � ; D = � 1 01 0 � :8



With ~Q = ~R = I2, we obtain the following coe�cient matrices for the DARE: A, B, C, ~Q are de�nedabove, andQ = CT ~QC = 26666664 1 1 0 0 0 01 1 0 0 0 00 0 0 0 0 00 0 0 1 �1 00 0 0 �1 1 00 0 0 0 0 0 37777775 ; R = � 3 00 1 � ; S = 26666664 1 01 00 01 0�1 00 0 37777775 :The system properties are good-natured. The system can easily be transformed to a standard systemas in (2). Therefore, this example is helpful for �rst veri�cations of any DARE solver based on theextended formulation given in (5) since the results can be compared to those obtained by any othersolver based on the formulation by the symplectic pencil (2).Example 11 [25]n m p parameter �(A) j�Cmaxj jjXjj �(X) KDARE9 3 2 { 1:58� 106 0.96 607.66 1 74.23This is the data for a 9th-order discrete state-space model of a tubular ammonia reactor. It should benoted that the underlying model includes a disturbance term which is neglected in this context.The continuous state-space model of this problem was presented as Example 5 in the �rst part ofthe benchmark collection [5]. Sampling every 30 seconds yields the following system matrices for thediscrete model:A = 10�2 � 26666666666664 87:01 13:50 1:159 0:05014 �3:722 0:03484 0 0:4242 0:72497:655 89:74 1:272 0:05504 �4:016 0:03743 0 0:4530 0:7499�12:72 35:75 81:70 0:1455 �10:28 0:0987 0 1:185 1:872�36:35 63:39 7:491 79:66 �27:35 0:2653 0 3:172 4:882�96:00 164:59 �12:89 �0:5597 7:142 0:7108 0 8:452 12:59�66:44 11:296 �8:889 �0:3854 8:447 1:36 0 14:43 10:16�41:02 69:30 �5:471 �0:2371 6:649 1:249 0:01063 9:997 6:967�17:99 30:17 �2:393 �0:1035 6:059 2:216 0 21:39 3:554�34:51 58:04 �4:596 �0:1989 10:56 1:986 0 21:91 21:52 37777777777775 ;BT = 10�4 � 24 4:76 0:879 1:482 3:892 10:34 7:203 4:454 1:971 3:773�0:5701 �4:773 �13:12 �35:13 �92:75 �61:59 �36:83 �15:54 �30:28�83:68 �2:73 8:876 24:80 66:80 38:34 20:29 6:937 14:69 35 :In the discrete model, only the �rst and �fth state variables are used as outputs, i.e.,C = � 1 0 0 0 0 0 0 0 00 0 0 0 1 0 0 0 0 �and the weighting matrices are chosen as ~Q = 50I2 and R = I3.9



3 Parameter-dependent problems of �xed sizeExample 12n m p parameter �(A) j�Cmaxj jjXjj �(X) KDARE2 1 2 " = 100 1 0.00 1:00� 104 1:00� 104 2.65" = 106 1 0.00 1:00� 1012 1:00� 1012 2.65Here, the matrix A has a parameter and the coe�cient matrices of the DARE (1) areA = � 0 "0 0 � ; B = � 01 � ; R = 1; Q = I2:The stabilizing solution is given by X = � 1 00 1 + "2 �and the closed-loop spectrum is f 0; 0 g.For " = 100, this is Example 2 from [11]. As " ! 1, this becomes an example of a DARE which isbadly scaled in the sense of [27] due to the fact that jjAjjF � jjGjjF ; jjQjjF . Obviously, the norm (andcondition) of the stabilizing solution X grow like "2 whereas the DARE condition number KDAREremains constant.Example 13 [27]n m p parameter �(A) j�Cmaxj jjXjj �(X) KDARE3 3 3 " = 1 1 0.38 9.11 9.11 2.51" = 106 1 0.38 9:11� 106 9.11 2.51This example is constructed as follows. LetA0 = diag(0; 1; 3); V = I � 23vvT ; vT = � 1 1 1 � :Then A = V A0V; G = 1"I3; Q = "I3:A factorization Q = CT ~QC can be obtained by setting C := V and ~Q := Q; a factorization G =BR�1BT is given by B = I3 and R = ". This is used in both the FORTRAN 77 and MATLABimplementations if a factored form is required.As solution we get X = V diag(x1; x2; x3)Vwhere x1 = ";x2 = " �1 +p5�2 ;x3 = " �9 +p85�2 :The closed-loop spectrum is given by �1 = 0, �2 = �3�p5�2 , and �3 = �11�p85�6 .For growing ", the corresponding symplectic pencil (2) becomes more and more badly scaled which leadsto a signi�cant loss of accuracy in all DARE solvers based on eigenvalue methods. This demonstratesthe need to use an appropriate scaling as proposed in [11].10



Example 14 [6, 24]n m p parameter �(A) j�Cmaxj jjXjj �(X) KDARE� = 2:0, D = 1:0,K = 2:0, r = 0:25 1 9:62� 10�2 1.05 1.05 6.204 1 1 � = 108, D = 1:0,K = 1:0, r = 0:25 1 � 1�p5� 10�8 3:09� 107 3:09� 107 1:79� 108� = 10�6, D = 1:0,K = 1:0, r = 0:25 1 2:0� 10�7 1.25 1.25 4:21� 1012The following system describes a very simple process control of a paper machine. The continuous-timemodel with a time delay is sampled at intervals of length D which yields a singular transition matrixA. The time delay is equal to the length of three sampling intervals. The other parameters de�ningthe system are a �rst-order time constant � and the steady-state gain K. The linear system (7){(8) isthen given byA = 2664 1�D=� 0 0 01 0 0 00 1 0 00 0 1 0 3775 ; B = 2664 KD=�000 3775 ; C = � 0 0 0 1 � :The weighting matrices used in this example are R = r and ~Q = 1. De�ning� = 1� D� ; � = KD� ;it can be shown that the solutions of the DARE (1) are given byX = diag (xi; 1; 1; 1 )where xi, i = 1; 2, solve the scalar quadratic equation(�2 � 1)x+ 1� �2�2r + �2xx2 = 0;whence xi = 12�2 �r(�2 � 1) + �2 �q(r(�2 � 1) + �2)2 + 4�2r� : (17)The stabilizing positive semide�nite solution of (1) is thus de�ned by the unique positive solution x1of (17) and the closed-loop eigenvalues are�1 = �rr + �2x1 = (� �D)�r�2r + (DK)2x1 ; �2 = �3 = �4 = 0:Due to the variety of parameters in this example, it is possible to investigate DAREs with criticalproperties in many aspects. Since these properties merely rely on �, �, and r, these e�ects can beproduced by keeping K and D constant and varying � (and r). Since j�Cmaxj = �1, for � � D;K thelargest closed-loop eigenvalue approaches the unit disk. For � � D;K the norm and condition of Xbecome large and the DARE becomes ill conditioned with respect to KDARE .11



4 Examples of scalable sizeExample 15 [24, Example 3]n m p parameter �(A) j�Cmaxj jjXjj �(X) KDAREn 1 n n = 10, r = 1 1 0.00 10.00 10.00 11.01n = 100, r = 1 1 0.00 100.0 100.0 279.75Consider the DARE de�ned byA = 2666664 0 1 0 : : : 0... . . . . . . . . . ...00 0 10 : : : 0 0 3777775 2 IRn�n; B = 26664 0...01 37775 ; R = r; Q = In:The stabilizing solution has a very simple form, namely,X = diag ( 1; 2; : : : ; n ):The closed-loop eigenvalues are all zero, that is, the spectrum of the symplectic pencil L� �M in (2)is given by the generalized eigenvalues �1 = : : : = �n = 0 and �n+1 = : : : = �2n =1.This example can be used to test any DARE solver for growing dimension of the problem. The DAREcondition number KDARE increases only slowly and for any order of the DARE, jjXjj = �(X) = n.Note further that the choice of r does not in
uence the stabilizing solution X but for r < 1, thecondition number KDARE behaves like 1=r.
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A The FORTRAN 77 subroutine DAREXThis is the prolog of a FORTRAN 77 subroutine for generating all presented examples. Thesubroutine was documented according to standards for SLICOT4 [23].Besides calls to LAPACK and BLAS [2], DAREX calls the subroutines SP2SY and SY2SPwhich are used to convert symmetric matrices from general storage mode to packed storagemode and vice versa. These subroutines are provided together with darex.f. If you have noaccess to LAPACK and BLAS, please contact the authors.For some of the examples, DAREX reads the data from data �les delivered together withdarex.f. These are Examples 6{9 and 11. The corresponding data �les (in ASCII format) areDAREX6.DAT, DAREX7.DAT, DAREX8.DAT, DAREX9.DAT, and DAREX11.DAT.Note that the references given in the prolog of DAREX refer to those given at the end of theprolog and do not correspond to the references of this paper.SUBROUTINE DAREX(NO, N, M, P, NPAR, DPARAM, A, LDA, B, LDB, C,1 LDC, Q, LDQ, R, LDR, S, LDS, X, LDX, NOTE,2 STORE, WITHC, WITHG, WITHS, RWORK, IERR)CC PURPOSECC To generate the benchmark examples for the numerical solution ofC the discrete-time algebraic Riccati equation (DARE)CC T T T -1 T TC 0 = A X A - X - (A X B + S) (R + B X B) (B X A + S ) + Q.CC as presented in [1]. Here, A,Q,X are real N-by-N matrices, B,S areC N-by-M, and R is M-by-M. The matrices Q and R are symmetric and QC may be given in factored formCC TC (I) Q = C Q0 C .CC Here, C is P-by-N and Q0 is P-by-P. If R is nonsingular, the DAREC can be rewritten equivalently asCC -1C 0 = X - A X (I_n + G X) A - QCC where I_n is the N-by-N identity matrix andCC -1 TC (II) G = B R B .C 4Subroutine LIbrary in COntrol and Systems Theory13



C ARGUMENT LISTC ARGUMENTS INCC NO - INTEGER.C The number of the benchmark example to generate accordingC to [1].CC N - INTEGER.C This integer determines the actual state dimension, i.e.,C the order of the matrix A as follows:C N is fixed for the examples of Sections 2 and 3 of [1],C i.e., currently Examples 1-14.C NOTE that N is overwritten for Examples 1-14 and for theC other example(s) if N is set by default.CC M, P - INTEGER.C M is the number of columns in the matrix B and the orderC of the matrix R (in control problems, the number ofC inputs of the system).C P is the number of rows in the matrix C from (I) (inC control problems, the number of outputs of the system).C Currently, M and P are fixed or determined by N for allC examples and thus are not referenced on input.C NOTE that M and P are overwritten and M .LE. N andC P .LE. N for all examples.CC NPAR - INTEGER.C Number of input parameters supplied by the user.C Examples 1-11 (Section 2 of [1]) have no parameters.C Examples 12-13 (Section 3 of [1]) each have one DOUBLEC PRECISION parameter which may be supplied in DPARAM(1).C Example 14 has 4 DOUBLE PRECISION parameters which mayC be supplied in DPARAM(1) - DPARAM(4).C Example 15 has one INTEGER parameter which determines theC size of the problem. This parameter may be supplied inC the input argument N. Besides, this example has oneC DOUBLE PRECISION parameter which may be supplied inC DPARAM(1).C If the input value of NPAR is less than the number ofC parameters of the Example NO (according to [1]), theC missing parameters are set by default.CC DPARAM - DOUBLE PRECISION array of DIMENSION at least ndp.C Double precision parameter vector where ndp is theC number of DOUBLE PRECISION parameters of Example NOC (according to [1]). For all examples, ndp <= 4. ForC explanation of the parameters see [1].14



C DPARAM(1) defines the parameters 'epsilon' for theC examples in Section 3 (NO = 12,13), the parameter 'tau'C for NO = 14, and the parameter 'r' for NO = 15.C For Example 14, DPARAM(2) - DPARAM(4) define inC consecutive order 'D', 'K', and 'r'.C If NPAR is smaller than the number of used parameters inC Example NO (as described in [1]), default values areC used and returned in corresponding components of DPARAM.C NOTE that those entries of DPARAM are overwritten whichC are used to generate the example but were not supplied byC the user.CC LDA - INTEGER.C The leading dimension of array A as declared in theC calling program.C LDA .GE. N where N is the order of the matrix A, i.e.,C the output value of the integer N.CC LDB - INTEGER.C The leading dimension of array B as declared in theC calling program.C LDB .GE. N (output value of N).CC LDC - INTEGER.C The leading dimension of array C as declared in theC calling program.C LDC .GE. P where P is either defined by default orC depends upon N. (For all examples, P .LE. N, where N isC the output value of the argument N.)CC LDQ - INTEGER.C If full storage mode is used for Q, i.e., STORE = 'F'C or 'f', then Q is stored like a 2-dimensional arrayC with leading dimension LDQ. If packed symmetric storageC mode is used, then LDQ is not referenced.C That is, if STORE = 'F' or STORE = 'f', thenC LDQ .GE. N if WITHC = .FALSE.C LDQ .GE. P if WITHC = .TRUE.CC LDR - INTEGER.C If full storage mode is used for the array R, i.e.,C STORE = 'F' or 'f', then R is stored like a 2-dimensionalC array with leading dimension LDR. If packed symmetricC storage mode is used, then LDR is not referenced.C That is, if STORE = 'F' or STORE = 'f', thenC LDR .GE. M if WITHG = .FALSE.C LDR .GE. N if WITHG = .TRUE.15



CC LDS - INTEGER.C The leading dimension of array S as declared in theC calling program.C LDS .GE. N if S is to be returned (see MODE PARAMETERC WITHS). Otherwise, LDS is not referenced.CC LDX - INTEGER.C The leading dimension of array X as declared in theC calling program.C LDX .GE. N if an exact solution is available (ExamplesC 1,3,5,12-15). Otherwise, X is not referenced.CC ARGUMENTS OUTCC N - INTEGER.C The order of the matrix A.CC M - INTEGER.C The number of columns of matrix B and the order of theC matrix R.CC P - INTEGER.C The number of rows of the matrix C from (I).CC DPARAM - DOUBLE PRECISION array of DIMENSION at least 7.C Double precision parameter vector. For explanation of theC parameters see [1].C DPARAM(1) defines the parameters 'epsilon' for theC examples in Section 3 (NO = 12,13), the parameter 'tau'C if NO = 14, and the parameter 'r' if NO = 15.C For Example 14, DPARAM(2) - DPARAM(4) define inC consecutive order 'D', 'K', and 'r'.CC A - DOUBLE PRECISION array of DIMENSION (LDA,N).C The leading N by N part of this array contains theC coefficient matrix A of the DARE.CC B - DOUBLE PRECISION array of DIMENSION (LDB,M).C If WITHG = .FALSE., then array B contains the coefficientC matrix B of the DARE.C Otherwise, B is used as workspace.CC C - DOUBLE PRECISION array of DIMENSION (LDC,N).C If WITHC = .TRUE., then array C contains the matrix C ofC the factored form (I) of Q.C Otherwise, C is used as workspace.16



CC Q - DOUBLE PRECISION array of DIMENSION at least qdim.C If STORE = 'F' or 'f', then qdim = LDQ*nq.C If STORE = 'U', 'u', 'L' or 'l', then qdim = nq*(nq+1)/2.C If WITHC = .FALSE., then nq = N and the array QC contains the coefficient matrix Q of the DARE.C If WITHC = .TRUE., then nq = P and the array Q containsC the matrix Q0 from (I).C The symmetric matrix contained in array Q is storedC according to MODE PARAMETER STORE.CC R - DOUBLE PRECISION array of DIMENSION at least rdim.C If STORE = 'F' or 'f' then rdim = LDR*nr.C If STORE = 'U', 'u', 'L' or 'l' then rdim = nr*(nr+1)/2.C If WITHG = .FALSE., then nr = M and the array RC contains the coefficient matrix R of the DARE.C If WITHG = .TRUE., then nr = N and the array R containsC the matrix G from (II).C The symmetric matrix contained in array R is storedC according to MODE PARAMETER STORE.CC X - DOUBLE PRECISION array of DIMENSION (LDX,xdim).C If an exact solution is available (NO = 1,3,5,12-15),C then xdim = N and the leading N-by-N part of this arrayC contains the solution matrix X. Otherwise, X is notC referenced.CC NOTE - CHARACTER*70.C String containing short information about the chosenC example.CC WORK SPACECC RWORK - DOUBLE PRECISION array of DIMENSION at least N*N.CC MODE PARAMETERSCC STORE - CHARACTER.C Specifies the storage mode for arrays Q and R.C STORE = 'F' or 'f': Full symmetric matrices are stored inC Q and R, i.e., the leading N-by-NC (M-by-M, P-by-P) parts of theseC arrays each contain a symmetricC matrix.C STORE = 'L' or 'l': Matrices contained in arrays Q and RC are stored in lower packed mode, thatC is, the lower triangle of a k-by-k17



C (k=N,M,P) symmetric matrix is storedC by columns, i.e., the matrix entryC Q(i,j) is stored in the array entryC Q(i+(2*k-j)*(j-1)/2) for j <= i.C STORE = 'U' or 'u': Matrices contained in arrays Q and RC are stored in upper packed mode, thatC is, the upper triangle of a k-by-kC (k=N,M,P) symmetric matrix is storedC by columns, i.e., the matrix entryC G(i,j) is stored in the array entryC G(i+j*(j-1)/2) for i <= j.C Otherwise, CAREX returns with an error.CC WITHC - LOGICAL.C Indicates whether the matrices C, Q0 as in (I) are to beC returned as follows.C WITHC = .TRUE., C is returned in array C and Q0 isC returned in array Q.C WITHC = .FALSE., the coefficient matrix Q of the DARE isC returned in array Q, whereas C and Q0C are not returned.CC WITHG - LOGICAL.C Indicates whether the matrix G in (II) or the matrices BC and R are returned as follows.C WITHG = .TRUE., the matrix G from (II) is returned inC array R, whereas the matrices B and RC are not returned.C WITHG = .FALSE., the coefficient matrices B and R of theC DARE are returned in arrays B and R.CC WITHS - LOGICAL.C Indicates whether the coefficient matrix S of the DAREC is returned as follows.C WITHS = .TRUE., the coefficient matrix S of the DARE isC returned in array S.C WITHS = .FALSE., the coefficient matrix S of the DARE isC not returned.CC ERROR INDICATORCC IERR - INTEGER.C Unless the routine detects an error (see next section),C IERR contains 0 on exit.CC WARNINGS AND ERRORS DETECTED BY THE ROUTINEC 18



C IERR = 1 : (NO .LT. 1) or (NO .GT. NEX).C (NEX = number of available examples.)C IERR = 2 : (N .LT. 1) or (N .GT. LDA) or (N .GT. LDB) orC or (P .GT. LDC) or (WITHS and N .GT. LDS) orC (N .GT. LDX and solution is available) orC ((STORE = 'F' or STORE = 'f') andC ((WITHC .EQ. .FALSE. and N .GT. LDQ) orC (WITHC .EQ. .TRUE. and P .GT. LDQ)) orC ((WITHG .EQ. .FALSE. and M .GT. LDR) orC (WITHG .EQ. .TRUE. and N .GT. LDR))).C IERR = 3 : MODE PARAMETER STORE had an illegal value on input.C IERR = 4 : Data file could not be opened or had wrong format.C IERR = 5 : Division by zero.C IERR = 6 : G can not be computed as in (II) due to a singular RC matrix. This error can only occur ifC (WITHG .EQ. .TRUE.).CC REFERENCESCC [1] P. BENNER, A.J. LAUB and V. MEHRMANNC A Collection of Benchmark Examples for the Numerical SolutionC of Algebraic Riccati Equations II: Discrete-Time Case.C Technical Report SPC 95_23, Fak. f. Mathematik,C TU Chemnitz-Zwickau (Germany), December 1995.C [2] E. ANDERSON ET AL.C LAPACK Users' Guide, second edition.C SIAM, Philadelphia, PA (1994).CC CONTRIBUTORCC Peter Benner and Volker Mehrmann (TU Chemnitz-Zwickau)C Alan J. Laub (University of California, Santa Barbara)CC KEYWORDSCC discrete-time, algebraic Riccati equation, Hamiltonian matrixCC REVISIONSCC 1995, December 14.CC***********************************************************************19



B The MATLAB function darexThe prolog of the MATLAB function darex is listed below. For all listed examples, it ispossible to return the matrices A, B, R, Q, and the factors C, ~Q = Q0. G = BR�1BT canalso be returned if R is nonsingular. Otherwise, the output argument G will contain an emptymatrix. If the solution is not available, the output argument X contains an empty matrix,too. Otherwise, X is returned as well as the DARE condition number KDARE computed bythe MATLAB function darecond.Note that the references given in the prolog of darex refer to those given at the end of theprolog and do not correspond to the references of this paper.function [A,B,Q,R,S,X,parout,G,C,Q0]=darex(index,parin)%DAREX%% Test examples for the discrete-time algebraic Riccati equation (DARE)%% -1% (I) 0 = DR(X) = A'XA - X - (A'XB + S) (R + B'XB) (B'XA + S') + Q%% Here, A,Q, and X are n-by-n matrices, B and S are n-by-m, and R is% m-by-m. Q and R are symmetric and X is the required solution matrix.% One common approach to solve DAREs is to compute a deflating subspace% of the symplectic pencil%% -1% ( A - B R S 0 ) ( I G )% (II) L - s M := ( -1 ) - s ( -1 )% ( S R S' - Q I ) ( 0 (A - B R S')')%% -1% where G = B R B' is a symmetric n-by-n matrix. Q may also be given% in factored form, Q = C' Q0 C, where C is a p-by-n and Q0 is a p-by-p% matrix.% NOTE that for DAREs, R being a singular matrix is not uncommon. In this% case, the symplectic pencil cannot be formed as in (II), but a solution% of the DARE can be computed via a deflating subspace of the extended% pencil%% ( A 0 B ) ( I 0 0 )% (III) LL - s MM := ( Q -I S ) - s ( 0 -A' 0 ) .% ( S' 0 R ) ( 0 -B' 0 )%% For examples with singular R-matrix, G can not be computed and is thus% not returned.%% Input:% - index: number of example to generate, indices refer to example20



% numbers in [1].% - parin: input parameters (optional, defaults values given in [1])% For Example number% + 1-11: not referenced ([1], Section 2).% + 12-13: parin(1) = real-valued scalar.% + 14 : parin(1:4) = [tau, D, K, r], real-valued scalars.% + 15 : parin(1) = n = problem size.% parin(2) = r = real-valued scalar.%% Output:% - A, B, Q, R, S: coefficient matrices of DARE as in (I).% - X : exact solution of DARE (if available), usually the% stabilizing solution.% If an exact solution is not available, the empty matrix% is returned.% - parout : vector with system properties,% parout(1:3) = [n, m, p].% parout(4) = 2-norm condition number of A.% The following parameters are only returned if an% solution of the DARE is available:% parout(5) = radius of smallest circle enclosing the% closed-loop spectrum.% parout(6) = 2-norm of X.% parout(7) = 2-norm condition number of X.% parout(8) = condition number of DARE as defined in [2].% - G, C, Q0 : optional output matrices as defined above. NOTE that% G can only be computed if R is nonsingular. Otherwise,% G contains on output the empty matrix.%% References:%% [1] P.BENNER, A.J. LAUB, V. MEHRMANN: 'A Collection of Benchmark% Examples for the Numerical Solution of Algebraic Riccati% Equations II: Discrete-Time Case', Tech. Report SPC 95_23,% Fak. f. Mathematik, TU Chemnitz-Zwickau (Germany), December 1995.% [2] T. GUDMUNDSSON, C. KENNEY, A.J. LAUB: 'Scaling of the Discrete-Time% Algebraic Riccati Equation to Enhance Stability of the Schur% Solution Method', IEEE Transactions on Automatic Control, vol. 37,% no. 4, pp. 513-518, 1992.% Peter Benner, Volker Mehrmann (TU Chemnitz-Zwickau, Germany),% Alan J. Laub (University of California at Santa Barbara)% 12-14-1995 21



C How to obtain the softwareThe codes corresponding to this paper may be obtained via anonymous ftp at TU Chemnitz-Zwickau. Proceed as follows.> ftp ftp.tu-chemnitz.de> Name: anonymous> Password: your complete e-mail address> cd pub/Local/mathematik/BennerObserve the capital \L" in Local !Now get the compressed FORTRAN 77 subroutines darex.f, sp2sy.f, sy2sp.f, data �les, asample Make�le, and a sample program example.f together with an introductory README�le by> get darex f.tar.Zor the compressed MATLAB function �les darex.m, darecond.m and an introductory README�le by> get darex m.tar.ZAfter exiting ftp, extracting the MATLAB codes and data �les is achieved by the followingcommands:> uncompress darex m.tar.Z> tar xf darex m.tarAnalogously, the FORTRAN 77 codes and corresponding data �les are obtained by> uncompress darex f.tar.Z> tar xf darex f.tarIn both cases, the command tar xf creates a directory containing all required �les. Fordarex m.tar.Z, this directory is called darex m and for darex f.tar.Z, it will be darex f. If anyproblems occur in obtaining or running the codes, please contact one of the authors.
22
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