
A Collection of Tools for Making Automata Theory and
Formal Languages Come Alive

Anna O. Bilska, Kenneth H. Leider, Magdalena Procopiuc, Octavian Procopiuc,
Susan H. Rodger, Jason R. Salemme and Edwin Tsang

Duke University, Durham, NC
rodger@cs.duke.edu

Abstract

We present a collection of new and enhanced tools for exper-
imenting with concepts in formal languages and automata
theory. New tools, written in Java, include JFLAP for cre-
ating and simulating finite automata, pushdown automata
and Turing machines; Pˆaté for parsing restricted and unre-
stricted grammars and transforming context-free grammars
to Chomsky Normal Form; and PumpLemma for proving
specific languages are not regular. Enhancements to previ-
ous tools LLparse and LRparse, instructional tools for pars-
ing LL(1) and LR(1) grammars, include parsing LL(2) gram-
mars, displaying parse trees, and parsing any context-free
grammar with conflict resolution.

1 Introduction

The majority of computer science courses have a hands-on
approach, since they have a natural programming compo-
nent. In the introductory courses, students learn a program-
ming language and write programs to experiment with the
language. In many later courses, students work on program-
ming projects related to the topic, such as writing compo-
nents of an operating system, or using libraries to solve sci-
entific computing problems. Theoretical computer science
courses, algorithms and formal languages, are an exception,
traditionally taught with no programming assignments, but
rather students write homework assignments using pencil
and paper and do not receive feedback until the assignments
are graded.

With the development of algorithm animation tools such
as AACE [5], Xtango [11], and Zeus [4], algorithms courses
are demonstrating animations of algorithms and data struc-
tures during lectures [8], which the students can recreate out-
side of lectures. For example, inserting elements into a red-
black tree and watching the changes (rotations) to the data

structure at one’s own pace is helpful in learning the algo-
rithm. In [1], a study showed that students learned algo-
rithms better if they had hands-on experience. In this study,
students wrote the code for the animations in order to learn
the algorithms.

The formal language and automata theory course has
lagged behind in integrating hands-on materials into lec-
tures and assignments. In this paper, we describe a col-
lection of tools we have developed for experimenting with
many concepts in this course. JFLAP is for experiment-
ing with automata, pushdown automata and Turing ma-
chines; LLparse and LRparse are for experimenting with
top-down and bottom-up parsing; Pˆaté is both a brute force
parser for restricted and unrestricted grammars and a gram-
mar transformer from a context-free grammar to CNF; and
PumpLemma is a tool for experimenting with the pumping
lemma. LLparse and LRparse are written in C++ and X Win-
dows and the remaining tools are written in Java.

In Section 2 we describe recent enhancements we have
made to the tools LLparse and LRparse, and in Section 3
we describe new tools we have developed. In Section 4 we
describe the use of these tools in teaching. In Section 5 we
describe additional automata tools developed by others, and
in Section 6 conclude and discuss future work.

2 Enhancements to LLparse and LRparse

LLparse and LRparse [3] are instructional tools for con-
structing LL(1) and SLR(1) parse tables through a series of
steps, and then animating the stack in parsing input strings.
In LLparse, the user enters a grammar and can proceed if the
grammar is an LL(1) grammar. The user then enters FIRST
sets of variables and then enters FOLLOW sets of variables.
If a set is incorrect, the set is highlighted and the user must ei-
ther change the set or selectShowto see the answer. Finally,
the user fills in an LL(1) parse table with the appropriate en-
tries. Once correct, a parsing window appears. The user can
enter any input string and then step through its parsing.

Enhancements to LLparse include handling LL(2) gram-

�This material is based upon work supported by the National Science
Foundation’s Division of Undergraduate Education through grants DUE-
9596002 and DUE-9555084.

mars and presenting the parse tree when parsing a string.
When a user enters a grammar, he/she can select to con-
struct either an LL(1) or LL(2) parse table In constructing
the LL(2) parse table, the user enters FIRST sets, FIRST2
sets (for 2 lookaheads), FOLLOW sets and FOLLOW2 sets.
The LL(2) parse table shown will automatically compress
columns where only 1 lookahead instead of 2 are needed, re-
ducing the size of the table. A partial LL(2) table from LL-
parse is shown in Figure 1. In the parsing window, the user
enters an input string and steps through the parsing process.
In addition to a stack trace, when a variable is replaced by its
right hand side, the right hand side is added to the picture of
the parse tree.

Figure 1: Partial LL(2) Table

In LRparse, the user enters an LR(1) grammar, followed
by FIRST and FOLLOW sets. Then in a drawing window,
the user draws a transition diagram of a FA that models the
stack. For each state in the FA, the user enters the item set
(marked rules). As in all windows, the user must enter the
correct information before proceeding. There is aShowbut-
ton if the user wants to see the answer. Next, the user fills
in the LR(1) parse table. Finally, a parsing window appears
and the user can step through the parsing of an input string.

Enhancements to LRparse include parsing any context-
free grammar with conflict resolution and showing the parse
tree when parsing an input string. If a grammar is not LR(1),
there will be multiple items in at least one entry of the parse
table. The first item in the entry will be selected in parsing.
Thus the user can experiment with choosing different items
as the first item. In the parsing window, the user enters an
input string and steps through the parsing process. In addi-
tion to a stack trace, when a rule is reduced, the reduction is
shown by joining the right hand side of the rule in the parse
tree.

3 New Java Tools for Formal Languages

We have developed a set of tools written in Java for exper-
imenting with concepts in formal languages and automata
theory. JFLAP (Java Formal Languages and Automata Pack-
age) allows one to construct automata, pushdown automata
and Turing machines, and run traces on input strings. Pˆaté
(Parsing And Transforming Engine) contains two parts for
experimenting with grammars, a brute force parser that
shows the derivation and parse tree for an input string, and
a transformer for converting a context-free grammar to CNF
through several steps. PumpLemma allows one to experi-
ment with the regular pumping lemma. We describe these
tools in the following sections.

3.1 JFLAP, New Version of FLAP

JFLAP[10] is a Java implementation of FLAP[7]. In JFLAP,
one can graphically construct a transition diagram for nonde-
terministic versions of finite automata, pushdown automata,
and 1-tape and 2-tape Turing machines. Figure 2 shows a
1-tape Turing machine in JFLAP that adds unary numbers.
Once constructed, an input string is entered and either fast or
step run is selected. In fast run, a message quickly responds
indicating the acceptance of the string. In step run mode, all
current configurations (there is more than one if the machine
is nondeterministic) are shown at each step and the user must
control the trace by freezing or killing configurations if there
are more than 15.

Figure 2: Turing Machine Example

3.2 Pâté - Brute Force Parser

The brute force parser part of Pˆaté is an exhaustive search
parser for restricted (regular and context-free) and unre-
stricted grammars. Given a grammar and an input string, the
parser builds a derivation tree (not displayed) of all possible
derivations in a breadth-first manner. Each node in the tree
contains a sentential form and the production number used
to get from its parent node to itself. The start symbol S is
the root of the tree. A derivation of the input string is found
when the input string appears as a sentential form (a node).
To speed up the creation of the derivation tree, the user can
choose to allow only one such node for each sentential form
in the tree. Thus, each new sentential form generated is first
looked up to see if the sentential form already exists, and if
so it is not added. For restricted grammars, additional prun-
ing of nodes is accomplished by eliminating nodes whose
prefix, suffix or substring of terminals do not match in the
input string. Once a derivation is found, a message indicates
the acceptance of the string and the size of the derivation
tree. The user can choose to display the actual derivation in
textual format or in the form of a parse tree (for restricted

grammars only). If all nodes in the derivation tree are ex-
hausted and the string is not found, a message indicates that
the string is not in the language of the grammar.

Pâté is an instructional tool to experiment with small
grammars and small input strings, and works well for most
assignments given to beginning students. Obviously, for
some strings and grammars, the parsing may take a long
time. For large sizes of the derivation tree, messages appear
indicating to the user the size of the tree and asking if they
want to continue. The user can also pause the parsing at any
time for the same information.

Figure 3: Grammar in Pˆaté

We give an example of Pˆaté parsing a string in a grammar.
Figure 3 shows a portion of the initial Pˆaté window. Either
a restricted or unrestricted grammar is entered. In this case,
a context-free grammar is entered (; represents the empty
string). There are two buttons at the bottom of the window
(not shown) for selecting eitherParseror Transform Gram-
mar, and a message window to indicate if the grammar is
in the correct format. TheParserbutton is selected and the
parsing window in Figure 4 appears (except the string and
window are blank). The user enters an input string at the top
and selectsParse. While the parser is busy, animations of
fractals appear on theParsebutton. When the parser com-
pletes, the derivation and information are displayed in the
bottom half of the window. Figure 4 shows the derivation
for the stringabbcca. The derivation tree was quite large,
containing 2114 nodes or sentential forms. Alternatively for
restricted grammars only, one can select graphical output and
the parse tree is shown. The parse tree forabbcca is shown
in Figure 5.

3.3 Pâté - Grammar Transformer

The grammar transformer part of Pˆaté is an instructional tool
for converting a context-free grammar to Chomsky Normal
Form (CNF) through a series of steps. At each step the user
is requested to enter information and cannot proceed until
the information is correct. There is aShowbutton to show
the answer in case the user is stuck.

To use the transformation tool, the user enters a context-
free grammar in the original Pˆaté window and selectsTrans-

Figure 4: Derivation ofabbcca

form Grammar. The first step is to remove lambda produc-
tions. A window appears and the user first enters the vari-
ables that derive lambda productions. Once verified these
are correct, the user enters the new grammar without lambda
productions. No windows are removed, so the user can look
at the grammar window to see the original grammar. The
new grammar without lambda productions for the grammar
in Figure 3 is shown in Figure 6. The user would click on
the buttonNext Transformationat the bottom of the window
(not shown in the figure) to move to the next transformation.

The next two steps remove unit productions and useless
productions. Both of these steps include a window to draw a
graph modeling how unit productions are connected (in the
first case) and which variables can be replaced by other vari-
ables (in the second case). The final step is a window for
constructing the CNF grammar. In this window, the user is
informed of the format for additional variables, B(x) for a
new variable deriving the single terminalx and D(#) (where
is an integer) for other new variables. Informative error
messages tell the user which rules are typed incorrectly or
have not yet been replaced. For some grammars, all steps
in the conversion process may not be needed. A user is in-
formed if a step does not apply and can skip the step (if a
grammar does not have unit productions, none need to be
removed).

3.4 PumpLemma

PumpLemma is a tool for experimenting with the regular
pumping lemma. The user enters a non-regular language L

Figure 5: Parse Tree forabbcca

and through steps, tries to prove that L is not regular. The
user chooses the stringw such thatw 2 L and jwj � m.
This stringw should be partitioned into three parts:x, y and
z such thatjxyj � m, jyj > 0, and for alli � 0, xyiz is
in the language. If the string cannot be partitioned to meet
these conditions, then the language L is not regular.

PumpLemma begins with the user typing in a language.
Figure 7 shows the top portion of the PumpLemma window
in which the user has typed in the languagean=2bn. Cur-
rently language selection is limited to ordered languages (i.e.
anbn(ab)n, but not “the number ofa’s equals the number of
b’s”). When the user presses return, the language is parsed,
and the user can continue if the language is legal. Next, the
user can define the ranges of variables. For conventional pur-
poses the only legal variables aren-s. If a language fails
parsing due to poorly defined variables, an error message
will appear.

The stringw is entered in the same manner as the lan-
guage, except the only legal exponents are combinations of
m and integers. If the string is syntactically correct, it’s
length is then checked before proceeding. If the string is
long enough, then the case list is automatically generated. In
Figure 7 the user entered the stringw = am=2bm and three
cases were generated. The case list represents all the pos-
sible values for they field. A well chosen string will yield
fewer cases. (Note that in Figure 7, if the user had chosen
w = amb2m there would be only one case.)

The user now selects a case (the case is highlighted) and
fills in values for the substringsx, y andz. The contents
of the substrings are stored for each case, so the user can

Figure 6: Removing Lambda Productions

Figure 7: PumpLemma foran=2bn

switch between cases without losing information. Thex, y,
andz fields have their own set of exponents, ranging fromh
throughl. After they string is typed in, it is checked against
all possible cases for a match. If it does not match any case,
then thexyz cannot possibly equalw, and an error is gen-
erated. Otherwise, the case it matches becomes the current
case. Figure 8 shows the bottom of the PumpLemma win-
dow for the example in Figure 7.

After the final substring field is entered the substrings are
concatenated together and verified that they formw. The
user then choosesi, the value to pump, and presses the run
button andxyiz is generated in theResulting Stringbox to
the right. A message displays whether the resulting string is
in the language. The case is colored red if the string is not
in the language, and green if it is. The user then proceeds
through all cases, trying to disprove them. When all cases
are red, the language has been proven not to be regular.

Figure 8: Partitioning in PumpLemma

4 Use of Tools in Teaching

The tools described in this paper can be used in a Formal
Languages and Automata Theory course, in lectures, labs
and assignments. During lecture, the instructor can use a
computer to demonstrate how to use the tools, and to solve
problems with input from the class. Students can use the
tools in labs or to work on assignments, and those students
who want more practice can use the tools to reproduce ex-
amples illustrated in lecture or to create their own examples,
receiving immediate feedback.

FLAP, LLparse and LRparse were used in CPS 140 at
Duke in the spring of 1995 and 1996. Feedback from stu-
dents in these courses was positive. They found the tools
useful for testing out their answers. We plan to integrate the
new tools into this course in the spring of 1997.

5 Related Work

In this section we describe several additional tools that have
been developed for experimenting with other aspects of au-
tomata. Automata[12] developed on Mathematica allows
one to experiment with finite automata (FA), in which one
enters an FA in the textual formal notation, a 5-tuple, and can
then automatically generate a list of strings in the language,
convert an NFA to a DFA and many other useful operations.
Hypercard Automata Simulation[6] allows one to enter an
FA in the tabular format. Turing’s World[2] allows one to
experiment with many different forms of Turing Machines in
a graphical format, including building Turing machine mod-
ules.

6 Conclusion and Future Work

We have developed a collection of instructional tools for ex-
perimenting with automata, grammars, and parsing for the
formal languages course. Future plans include expanding
PumpLemma to include the pumping lemma for context-free
languages, and converting the LLparse and LRparse tools to
Java. In addition, we plan to continue to develop new tools
for experimenting with concepts in the formal languages
area.

The tools in this paper are currently available on
http://www.cs.duke.edu/ �rodger

References

[1] A. Badre, C. Lewis, and J. Stasko, Empirically Evalu-
ating the Use of Animations to Teach Algorithms,Pro-
ceedings of the 1994 IEEE Symposium on Visual Lan-
guages,p. 48-54, 1994.

[2] J. Barwise and J. Etchemedy, Turing’s World, Stanford:
CSLI Publications, New York: Cambridge University
Press, 1993.

[3] S. Blythe, M. James, S. Rodger, LLparse and LRparse:
Visual and Interactive Tools for Parsing,Twenty-fifth
SIGCSE Technical Symposium on Computer Science
Education, p. 208-212, 1994.

[4] M. Brown, ZEUS: A System for algorithm animation
and multi-view editing.Proceedings of the IEEE 1991
Workshop on Visual Languages, p. 4-9, Kobe, Japan,
Oct. 1991.

[5] P. Gloor,AACE - Algorithm Animation for Computer
Science Education, IEEE Workshop on Visual Lan-
guages, p. 25-31, 1992.

[6] D. Hannay, Hypercard Automata Simulation: Finite
State, Pushdown and Turing Machines,SIGCSE Bul-
letin, 24, 2, p. 55-58, June 1992.

[7] M. LoSacco, and S. Rodger, FLAP: A Tool for Draw-
ing and Simulating Automata,ED-MEDIA 93, World
Conference on Educational Multimedia and Hyperme-
dia, p. 310-317, June 1993.

[8] S. Rodger, An Interactive Lecture Approach to Teach-
ing Computer Science,Proceedings of the Twenty-sixth
SIGCSE Technical Symposium on Computer Science
Education, p.278-282, 1995.

[9] S. Rodger, Integrating Hands-On Work into the Formal
Languages Course via Tools and Programming,First
International Workshop on Implementing Automata,
London, Ontario, 1996, (to appear).

[10] M. Procopiuc, O. Procopiuc, and S. Rodger, “Visual-
ization and Interaction in the Computer Science For-
mal Languages Course with JFLAP,”1996 Frontiers in
Education Conference, Salt Lake City, Utah, 1996, (to
appear).

[11] J. Stasko, Tango: A Framework and System for Algo-
rithm Animation,IEEE Computer, p.27-39, September
1990.

[12] K. Sutner, Implementing Finite State Machines, in
Computational Support for Discrete Mathematics, DI-
MACS Series in Discrete Mathematics and Theoretical
Computer Science,Vol. 15, N. Dean and G. E. Shan-
non (ed.), American Mathematical Society, p. 347-363,
1992.

