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A collective risk dilemma 
for tourism restrictions 
under the COVID‑19 context
Manuel Chica 1,2*, Juan M. Hernández 3,4 & Jacques Bulchand‑Gidumal 4

The current COVID‑19 pandemic has impacted millions of people and the global economy. Tourism 
has been one the most affected economic sectors because of the mobility restrictions established 
by governments and uncoordinated actions from origin and destination regions. The coordination 
of restrictions and reopening policies could help control the spread of virus and enhance economies, 
but this is not an easy endeavor since touristic companies, citizens, and local governments have 
conflicting interests. We propose an evolutionary game model that reflects a collective risk dilemma 
behind these decisions. To this aim, we represent regions as players, organized in groups; and 
consider the perceived risk as a strict lock‑down and null economic activity. The costs for regions 
when restricting their mobility are heterogeneous, given that the dependence on tourism of each 
region is diverse. Our analysis shows that, for both large populations and the EU NUTS2 case study, 
the existence of heterogeneous costs enhances global agreements. Furthermore, the decision on 
how to group regions to maximize the regions’ agreement of the population is a relevant issue for 
decision makers to consider. We find out that a layout of groups based on similar costs of cooperation 
boosts the regions’ agreements and avoid the risk of having a total lock‑down and a negligible tourism 
activity. These findings can guide policy makers to facilitate agreements among regions to maximize 
the tourism recovery.

�e pandemic of coronavirus disease 2019 (COVID-19) is one of the most shocking global crisis in the recent 
history. From Wuhan, China, to all over the world, COVID-19 has a�ected more than 100 million people and 
caused more than 2 million deaths as of January 31,  20211. �e e�ects of the pandemic originated by COVID-
19 are not limited to the public health. Mobility restrictions and the halt of the economy have caused historical 
declines in every nation worldwide. In the EU, the GDP is forecast to decrease almost by 8% in  20202, and most 
of the tourism-dependent countries have su�ered a dramatic drop forecast in their GDP (e.g., 12% in Spain, 
10% in Italy, and 9% in Greece, just to mention three of the most tourism-dependent economies in Europe)3.

A similar precedent to this COVID-19 pandemic is the 1918 Spanish Flu but in those days the world was 
not as connected as it is now. Since then, the travel and tourism sector has grown from being a marginal niche 
industry to one of the main industries worldwide. Notwithstanding tourism accounts for approximately 10% 
of the global  GDP4, its contribution by country and region is far from homogeneous. Only in Europe there is a 
wide range of variation. Tourism accounts for less than 5% of the GDP in some countries (e.g., Poland) where, 
in other countries such as Croatia, the tourism contribution to GDP excesses 25%. Worldwide di�erences are 
even higher, with several countries where tourism accounts for more than half of their  GDP5,6.

Many studies have been recently conducted to analyze the best policies and non-pharmaceutical interventions 
to contain the pandemic while reducing the economic  damage7–11. Common conclusions are: the e�ectiveness 
of interventions depends on the local context such as  timing8, they should be treated with caution with regard to 
policy-making  decisions9, and must be focused on speci�c points of  interest11. �is myriad of policies have led to 
the fact that the majority of tourism destinations have implemented travel  restrictions12 and have gone through 
di�erent stages during the COVID-19 pandemic: from being able to accept tourists to have a complete lock-down 
and not being able to accept one single visitor. Consequently, �nding the best conditions for the tourism sector 
under this COVID-19 context has gained attention in the tourism academic  community13,14.
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Additionally, researchers found that another key factor in controlling the COVID-19 pandemic is the role of 
coordination among regions and countries for the optimal performance of the proposed  policies10. Private and 
public organizations must be coordinated to preserve pre-COVID-19 operational levels of the tourism and travel 
 sector15. Tourism is an ecosystem that needs to bring together many actors from di�erent geographic  places16 
and the tourist needs to be con�dent about the safety of her/his trip (i.e., a low perceived risk)17. �erefore, the 
coordination among restrictions and reopening between origin and destination tourism regions is nowadays 
necessary to control the epidemic and ameliorate the economic cost.

Our aim here is to analyze the conditions to achieve coordination among groups of regions or countries (we 
use the term “regions” from now) taking into account both the economic costs and the risk of a global lock-
down because of a severe epidemiological situation. Some regions will implement restrictions on mobility and 
leisure activities to avoid the risk of extreme infection rates that would originate a global economic collapse. 
But consequently, these restrictions would lead to economic losses for those regions. �erefore, regions could 
be tempted not to cooperate to take advantage of the stable public health conditions which were achieved from 
the restrictions imposed by other regions.

Evolutionary game theory helps to represent the expected individual decisions to engage in economic costly 
restrictions in the COVID-19 pandemic  context18. Speci�cally, we propose to frame the coordination problem 
above as a collective-risk dilemma (CRD)19–21. Collective risks arise when preserving common or public goods 
hinges on individual endowments and an investing failure hurts all the individuals of the  population22. Speci�-
cally, CRDs are multiplayer public good games (PGGs) where every participant voluntarily contributes with 
part of her/his endowments to achieve a target, but they may su�er from a total loss with certain probability if 
the target is not achieved. �e adoption of policies to prevent climate change by the global community has been 
the paradigmatic CRD game illustrated in the recent scienti�c  literature23. �e proposed CRD model will serve 
to analyze the conditions of cooperation (i.e., coordination on mobility restrictions and reopening policies) 
among di�erent regions. As the level of tourism dependence in the region is heterogeneous, the economic loss 
derived from the implementation of these policies is heterogeneous as well. �is heterogeneity is included in the 
evolutionary game by means of di�erent contribution costs for the common good.

We analyze how this heterogeneity in�uences achieving a minimum level of cooperation. Speci�cally, we will 
answer to the question whether the heterogeneity of tourism-dependence among regions favors cooperation 
level. Additionally, the way regions are grouped to cooperate may also determine the global game outcome in 
terms of regions’ agreement. For example, groups can be formed at random without considering their tourism-
dependent nature. Alternatively, groups can be formed according to similar tourism dependence (i.e., groups just 
having high dependent regions and groups having non-dependent regions). �erefore, a second question arises 
here: Is cooperation enhanced or detracted if groups are formed by regions having similar tourism-dependence?

In order to answer the above-mentioned questions we study the e�ects of adding heterogeneity to the cooper-
ating costs of the players in the CRD. We de�ne regions’ agreement (RA) as a cooperation indicator of the whole 
population of regions. We conduct a set of experiments to �nd the most bene�cial group formation in terms of 
RA and global cooperation. For all the cases, the experiments evaluate di�erent initial conditions, group sizes, 
and risk levels of a collective tourism and mobility shutdown. Finally, we apply the model to a case study based 
on the 312 regions of the EU NUTS2 classi�cation. �e regions at the NUTS2 level, that will be described in 
detail later in this manuscript, are a paradigmatic case of decentralized response to COVID-19. Although gen-
eral EU policy recommendations have been recently laid  down24,25, every country in the Union is autonomous 
to implement restrictions to free movement within its territory and with other countries or regions in the EU. 
�e decentralized governance system in many countries (e.g. Spain, Italy, and Germany) makes a CRD model 
suitable to analyze coordination policies.

Background
We address this problem of coordination for tourism in a COVID-19 context by proposing a collective risk 
dilemma (CRD) model. �e CRD arises because the highest payo� of every participant is obtained by free-riding 
the contributions of other participants. Instead, if this strategy is followed by all players, the target would not be 
achieved and the risk of losing everything would be high.

�e CRD has been formalized from the evolutionary game theory as a variation of public good game (PGG) 
where a threshold must be achieved to produce the public  good26. In addition, a certain risk of losing a big part 
of the remaining endowment of every participant is assumed in case of the threshold is not  achieved20,21,27. Sev-
eral general �ndings in this kind of games have been revealed in previous studies. For example, Wang et al. �nd 
that increasing risk levels of big loss favors  cooperation20. In the CRD models, players are organized in groups 
of a certain size and the game is restricted to every group. In general, the studies show that the group size works 
against cooperation in the sense that achieving threshold is more di�cult for large  groups21. Larger groups are 
harder to coordinate because of their overall lower success  frequencies22. �ese general results are found in the 
subsequent CRD models proposed in the last decade.

Other contributions extend previous models by including the role of punishment institutions. Pacheco et al. 
�nd that local institutions (those restricted to participants in every group) are more e�cient to promote coopera-
tion than global  institutions23. Following this line, the optimal combination of punishment and reward policies 
was analyzed  in28, whereas the e�ect of di�erent tax and �ne strategies was studied by Couto et al.29. �e latter 
contribution �nds that a graduated punishment/tax strategy enhances global cooperation rates more than having 
a �xed amount. Other interesting factors analyzed in the previous literature are the role of  migration30 and the 
timing of the contribution of every  participant31. Recently, the classical CRD model framework has been extended 
by de�ning two environmental states (prosperous and degraded) which evolve and interact to each  other32. �e 
general results agree with previous �ndings and extend them by analyzing the e�ect of time preferences and 
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magnitude of collapse. Finally, behavioral studies showed that the best mechanisms to avoid collective risks 
depend on an interaction between behavioral type, communication, and  timing22.

Previous contributions have analyzed the role of heterogeneity in CRD models from di�erent points of view. 
For example, Santos et al. analyze how cooperation arises in PGG with heterogeneous social network  structures33. 
Results point that cooperation is favored in scale-free structures with respect to homogeneous regular graphs. As 
it is the case in this paper, several previous contributions assume di�erent types of participants in the CRD. Spe-
ci�cally, Wang et al. include the e�ect of wealth inequality in n participants in games with in�nite population and 
a �xed contribution per  participant34 . �e main conclusion is that rich contributors con sustain cooperation level 
above threshold. Abou Chakra and Traulsen assume two di�erent types of contributors (rich and poor) in a CRD 
model with two rounds, where the rich ones can contribute with two di�erent positive amounts every  round35. 
�e results show a strategic behavior of poor contributors who mostly cooperate once the rich contributors have 
contributed in the �rst round. Vasconcelos et al. also propose a model with two types of participants (rich and 
poor) with dissimilar  contributions36. �e main result is that wealth inequality enhances global cooperation if 
players revise strategies from comparison with any other player, but this is not the case if players only take into 
account players belonging to her/his own type when revising strategies. �e impact on how groups are formed 
in a game with heterogeneous players has not been analyzed in the CRD relevant literature yet.

Methods
Model definition and groups of regions. �e proposed CRD model is formed by a �nite set of Z players 
which represent the regions that make decisions about adopting or not public health recommendations. Each 
player i chooses, at every time step t, a strategy s from two possibilities ( s(i) = {C,D} ): being a cooperator, which 
means assuming the restrictions and public health recommendations (C), or being a defector and ignore those 
recommendations (D). �us, regions adopting a cooperation strategy C will su�er from a direct drop in their 
income from tourism and free mobility conditions.

�e model also includes, as in previous CRDs, a risk parameter r ∈ [0, 1] for a global disaster. �is risk means 
falling in a global lock-down for the members of the group because of the high incidence of the COVID-19 for 
the regions of the group. Note again that the goal of the proposed model is not the virus contagion modeling 
and the collective risk is a critical epidemiological situation for the regions and therefore, an economic collapse 
for the regions involved. �is risk value r also measures the di�culty of the social dilemma. Lower values of r 
correspond to less perceived risk for the public health and economic collapse and therefore, cooperation becomes 
more di�cult.

Players of the population make agreements and cooperate in invariable groups of size N which represent 
groups of regions (i.e., inside a country or within an international alliances or international work-groups). By 
default in CRDs, these groups are formed at  random36 but we will investigate the role and heterogeneity of the 
groups’ formation in the experiments of this work. A group of regions or players is successful when its number 
of cooperators achieves a minimum threshold, de�ned by a ratio m ∈ [0, 1] . �e number of cooperators in a 
group k, denoted by Ck , must be equal or greater than mN for a group of regions to be successful and obtain an 
agreement that implement the COVID-19 restrictions to prevent the economic breakdown. We call this achieve-
ment, for all the formed groups, as regions’ agreement ( RA ∈ [0, 1] ). RA is the ratio of groups which obtain the 
required number of cooperators and will be the performance cooperation indicator for the model during our 
experimental analysis.

When a region cooperates and restricts mobility, tourism activity critically stops and the income losses from 
these restrictions occur in the region. �ese losses or costs for a cooperating region i are denoted by ci ∈ [0, 1] . 
�e dependence of regions to tourism is heterogeneous and thus, this cost ci in our evolutionary model is higher 
for tourism dependent regions. If a region is fully dependent on tourism, its income will be zero when the region 
adopts the public health restrictions and thus, its cost ci is set to 1 (i.e., its initial tourism endowment is totally 
lost). When a region i is not cooperating to the common good to stop the spread of the disease (i.e., a free rider 
with strategy D), its cost is set to 0.

�e payo� wi of a region or player i depends on its strategy s(i) at the last time step within its group. If 
s(i) = D , then the payo� of region i, belonging to a group k, is given by wi = �D (see Equation 1). N stands for 
the size of the group, Ck is the number of the cooperators in the group k, and m is the minimum ratio of coop-
erators in the group to achieve the regions’ agreement. �(x) is a Heaviside function returning 1 when x ≥ 0 , 0 
otherwise. If the region is cooperating for its group k (i.e., s(i) = C ), then the region pays a cost ci for adopting 
the public health restrictions. �e payo� of a cooperating region i is wi = �C = �D − ci . As previously stated, 
the cost ci is di�erent for each player as it depends on the tourism dependency of each region.

Evolutionary dynamics. A�er playing the game and calculating their payo�s at every time step t, the 
regions or players can update their strategies according to the payo�s received from its invariable group. Regions 
(players) then decide which strategy to choose based on the strategies followed by other regions of the popula-
tion in the previous time step (i.e., t − 1 ) and their own  payo�37. �e strategy update follows an evolutionary 
procedure based on the imitation in a well-mixed population. It means a given region or player i can imitate any 
other region from the population, even from other groups, but this region i plays the coordination game with 
the same group of regions for all the time steps of the simulation. �is process can be seen as a social learning 
 process38 to build the collective behavior of the  population39.

We have considered the Fermi function as the evolutionary update rule, which is applied synchronously. 
�e Fermi rule is a stochastic pairwise comparison rule, where regions or players can make mistakes during 

(1)�D = �(Ck
− mN) + (1 − r)[1 − �(Ck

− mN)].
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the imitation process. �is means that a region can copy the strategy of another region having a worse payo�. 
Mathematically, a region i having strategy X adopts strategy Y of region j (randomly selected from the population) 
with a probability given by Equation 2. β is the intensity of selection parameter, set to 0.5 in all the experiments 
of this work. Additionally, players can also change their strategies by adopting a strategy at random, following a 
mutation mechanism with probability µ equals to 0.01, as done in other  CRDs36,40.

EU NUTS2 real data and model setup. We feed the heterogeneous costs of the regions of the model by 
taking into account the real context of the EU regions. We use the EU NUTS2  classi�cation41, de�ned as “basic 
regions for the application of regional policies” which is precisely the interest of this research. �is classi�ca-
tion includes 312 administrative regions in Europe (see Fig. 1 where the reader can see these regions within 
their respective countries). Most of the well-known tourist regions in Europe are de�ned through this NUTS2 
classi�cation (e.g., Canary Islands, Sicily, Tuscany, Algarve and Tirol, among others). In many European coun-
tries, these NUTS2 regions are responsible for their health and tourism policies. In fact, EU countries such as 
Germany, Spain, Belgium, and Italy are among the �ve most decentralized countries in the world, together with 
 USA42.

We have collected data from the EU NUTS2 classi�cation with respect to nights spent at tourist accommoda-
tion establishments per inhabitant. �is data is used to set the ci values of the model as these values represent a 
measure of the economic costs when a lock-down and/or restrictions are applied for tourism-dependent regions. 

(2)probi(Y) =
1

1 + e
−β(wt−1

j −wt−1

i )
.

Figure 1.  Map showing the EU NUTS2 regions colored by their tourism dependence. Regions in blue are those 
with the highest tourism dependence while regions in orange have the lowest tourism dependence. If tourism 
information is not available, the region is colored in gray. Source: Eurostat.
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As can be seen in the map of Fig. 1, regions have a diverse tourism-dependence for all the countries (groups). We 
have generated two clusters of regions by taking into account the number of night stays per inhabitant for each 
region. We set a cut-o� value of 4 ( α = 0.04 ), meaning that regions with a ratio of more than 4 night stays per 
inhabitant were considered as tourism-dependent while those with a ratio of less than 4 were considered non-
dependent. �e cut-o� value of 4 was set since it splits the regions in two clusters: 20% of dependent having more 
than 4 stays per inhabitant and 80% of non-dependent with less than 4 stays. �e cluster of tourism-dependent 
regions has an averaged cost of cT = 0.158 . In contrast, the cluster of non tourism-dependent regions has an 
averaged cost of cNT = 0.013 . �e averaged cost value of all the regions of the data is ĉ = 0.04.

An exponential and log-normal distributions are �tted to the real costs data of the NUTS2 regions. Figure 2 
shows the histogram of the real costs data c, a vertical dotted line for the α = 0.04 cut-o� to generate two clusters 
of tourism dependent and non-dependent regions, and the two �tted distributions. �e �rst is a �tted exponential 
distribution c ∼ Exp(�) , shown in the �gure as a red dashed line, with � = 24.30 . �e second is a �tted log-normal 
distribution ln(c) ∼ N (µ, σ 2) , shown in the �gure as a blue solid line, with parameters µ = −4.39 and σ = 1.63.

For the experimental study we run the model for 30 independent Monte-Carlo (MC) realizations and 
Z = 3, 000 players to have robust results but when applying the model to the real NUTS2 case study we use 
Z = 312 . �e model is fed with heterogeneous costs from the �tted distributions. When using two clusters of 
regions, tourism dependent and non-dependent, having costs cT = 0.158 for 20% of the regions and cNT = 0.013 
for the remaining 80% for them. Finally, we use a homogeneous cost of ĉ = ci = 0.04,∀i , which is the averaged 
cost of all the regions of the distribution.

�e simulation results were obtained by averaging the last 25% of the simulation time steps in the independ-
ent MC runs. Finally, each model is run for 200 time steps, where all the realizations reach a stationary stable 
state and deviation from the MC realizations is low, as seen in Fig. 3. In this plot we see the evolution of the 
model for Z = 3, 000 players, m = 0.5 , groups assigned at random of size N = 5 and r = 0.5 and N = 25 with 
r = 0.1 . We see how stationary state is reached easily for all the instances of models having heterogeneous costs 
generated by exponential and log-normal distributions and two clusters of regions (i.e., tourism dependent and 
non-dependent).

Analysis of the results
�e analysis starts by comparing the dynamics’ di�erence and levels of cooperation when using heterogeneous 
costs with respect to two clusters of regions and homogeneous costs. Later, the analysis focuses on the groups 
formation where we compare the impact of grouping regions with similar costs on cooperation. Finally, we show 
the application of the model to the real case of 312 NUTS2 regions with their real heterogeneous costs.

Figure 2.  Cumulative distribution of the real costs for the 312 regions of the EU NUTS2 (circles). Blue solid 
line represent the �tted log-normal distribution and red dashed line the �tted exponential distribution. �e 
vertical line α = 0.04 divides the regions in two clusters: non tourism-dependent and tourism-dependent.
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Impact of considering heterogeneity in the regions’ tourism costs. �e goal here is to see coop-
eration di�erences when introducing heterogeneous costs for regions when applying public health restrictions 
for the common good of their groups. �en, we compare three di�erent model speci�cations for costs while 
maintaining the rest of the model’s parameters. First, we run the model with heterogeneous costs ci following a 
log-normal distribution, �tted to the real NUTS2 regions’ data. Second, we use the two clusters of regions with 
two costs values, distinguishing them by tourism dependent and non-dependent. �ird, we assume that all 
the regions are cooperating, and that the cost for all of them is an average global cost. For all the scenarios, the 
groups formation is done at random and for three group sizes N.

Figure 4 shows a panel of pairs of heatmaps with a double comparison. Each pair of heatmaps has a �rst one 
showing the regions’ agreement (RA) of the heterogeneous version of the model and a second one, ranging from 
white to red colors, with a relative increase with respect to the second and third scenario. �e �rst two columns 
compare the heterogeneous costs generated by a log-normal distribution �tted to the real NUTS2 tourism data 
with respect to having the same cost for all the regions (an averaged cost of ĉ = 0.04 ). �e third and fourth 
columns of the panel show the comparison between the generated log-normal distribution costs with respect to 
two groups of regions (20% of tourism dependents with a cost of cT = 0.158 and 80% of non-dependents with 
a cost of cNT = 0.013 ). �e heatmaps are built from a sensitivity analysis on the initial number of cooperators 
(x-axis) and risk parameter r (y-axis). Finally, we also investigate three di�erent groups sizes ( N = 5 in the �rst 
row, N = 10 in the second row, and N = 25 in the third row).

First and third columns show heatmaps of absolute regions’ agreement (RA) when considering equal global 
costs and two groups of regions, respectively. �e second column shows relative RA di�erences when using log-
normal distribution costs with respect to equal costs for all the regions. Fourth column shows heatmaps with 
relative RA di�erences of log-normal distribution costs with respect to two groups of regions.

We observe from the heatmaps that results are not equivalent when considering homogeneous, two-clusters, 
and heterogeneous costs. Even if the homogeneous and two-clusters versions of the model come from averag-
ing the real costs, di�erences are clear. For all the group sizes, initial cooperation conditions, and level of risk, 
cooperation and therefore, RA is clearly higher when considering heterogeneous costs. �e RA obtained with 
heterogeneous costs is at least 30% higher than when using equal costs for all the regions in the transition phase 
from null cooperation (light yellow areas) to high cooperation (blue areas of the heatmaps). �ere is also a RA 
increase in the high cooperation area although of a lower value.

In the case of comparing against two di�erentiated groups of regions with two di�erent cooperation costs, the 
increase in RA is also signi�cant if we introduce a heterogeneous costs distribution. Again, the results are robust 
for all the group sizes, initial conditions, and levels of risk. �e higher increase is observed in the transition area 

Figure 3.  Evolution of the tourism dilemma using heterogeneous costs for the regions (players) for di�erent 
risk r values and group sizes for 200 time steps. �e solid line is the average of the MC runs and the semi-
transparent region denotes the maximum and minimum values obtained in these 30 MC runs.
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although there is a less signi�cant increase beyond this transition and towards the cooperation zone (i.e., high 
number of initial cooperators and high risk values).

Di�erent group sizes does not a�ect the increase in the RA for the heterogeneous version of the model which 
is invariant for all the N values. However, we see how increasing the group of players or regions is more di�cult 
for promoting cooperation. In view of the results of Fig. 4, there is a shi� of the transition area from null to high 
cooperation when increasing the group size. �is transition phase is also thinner when increasing the group 
size (compare for instance N = 5 and N = 25 in the relative increase heatmaps). �is behavior is expected from 
previous similar CRD  studies36.

Group formation by similarity and at random. In this section we inspect an important decision when 
organizing regions in groups for increasing their cooperation and agreement. By default in CRDs, regions or 
players are homogeneous and they are normally assigned to groups at random, as also done in the previous sec-
tion. However, given the heterogeneity of the regions or players in terms of cooperating costs because of their 
di�erent dependence to tourism, this set of experiments evaluates if grouping regions by similar cooperation 
costs ci increases cooperation and RA.

In order to answer this question we launch sensitivity analysis for the initial cooperation conditions and 
risk levels for di�erent group sizes and minimum threshold for agreement m, similarly to the experiments of 
the previous section. We compare the RA relative increase of grouping regions with similar costs (i.e., tourism 
dependence) with respect to a grouping at random. �is analysis is performed for costs generated by the �tted 
exponential distribution in panel of Fig. 5, log-normal distribution in panel of Fig. 6, and also for the two clusters 
of regions con�guration in the panel of Fig. 7.

�e panel of heatmaps for the exponential distribution of Fig. 5 and log-normal distribution of Fig. 6 show 
similar behaviors. First, the levels of RA of the heatmaps of the �rst and third columns are very similar between 
both distributions. As observed in the previous section, the cooperation area in blue shrinks as the group size 
N becomes higher. Similar behaviors are also observed for m = 0.5 (�rst group of two columns) and m = 0.7 
(second group of two columns) for both distributions, with narrower cooperation areas (heatmaps’ cells in blue) 
when the minimum ratio m is 0.7.

If we focus the analysis on the second and fourth columns of the both panels, where the relative increase 
with respect to random formation is depicted, we see how there is an increase in cooperation when regions are 
assigned to groups based on similarity in terms of costs. Although there is some variability and negative increases, 
mainly with high risk levels, the general picture is of a RA increase.

Figure 4.  First and third columns show heatmaps of absolute RA when considering equal global costs and 
two groups of regions, respectively. �e second column shows relative RA di�erences when using log-normal 
distribution costs with respect to equal costs for all the regions. Fourth column shows heatmaps with relative RA 
di�erences of log-normal distribution costs with respect to two clusters of regions. Each row of the panel shows 
results for di�erent group sizes (N) and m = 0.5.
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We also performed the same analysis but for the two clusters con�guration to compare its results with the 
continuous distributions of costs. Panel of Fig. 7 shows the same matrix of heatmaps than for the exponential 
and log-normal distributions. �e results are also similar to the previous cases. �ere is an increase in RA levels 
when grouping regions by similar costs with respect to a random assignment. Better cooperation results apply 
to the three studied group sizes N (each row of the panel), for the two m values, and for the whole range of initial 
cooperators and risk levels. �erefore, we can conclude that the bene�ts of disposing regions or players in this 
CRD by similarity in their groups facilitate the RA both with heterogeneous real costs and two clusters of tour-
ism dependent and non-dependent.

Application to the real EU NUTS2 case. In this last section of the experimental study, the direct NUTS2 
regions of the EU are used to feed the model. �e con�guration implies having Z = 312 players with groups of 
N = 6 , N = 12 , and N = 24 , and two minimum threshold of cooperation, m for 50% of the members and 70% 
of them. �e costs ci for the 312 players are directly obtained from the NUTS2 tourist night stays per inhabitant 
data, from 0 to 1. Panel of Fig. 8 shows the heatmaps for the real case study comparing the grouping by similarity 
and its relative increase with respect to a random formation. Two �rst columns are for m = 0.5 while the last two 
columns correspond to m = 0.7 Each row of the panel corresponds to a group size (N). As done in the previous 
section, we evaluate all the possible initial fraction of cooperators and risk levels de�ned by the r parameter.

Similar trends to the ones observed for the case of 3000 players can be seen although the variability both in the 
relative increase and RA of the similarity groups con�guration is higher. In the lower part of the transition phase 
of the heatmaps, where r is low, the relative increase is always positive. When the r values increase, the variability 
is higher. In the blue area of the heatmaps, where RA is high, the formation by similarity also obtains a regular 
positive increase, although with lower values. To sum up, this real case study con�rms that grouping by similar-
ity achieves higher RA and cooperation, despite the higher variability given by the lower number of regions.

Final discussion
A convenient management of lock-downs and mobility restrictions of the countries and regions in a COVID-19 
context is crucial for both public health and a�ected economic sectors such as tourism. �erefore, it is important 
for regions to cooperate for the common good to achieve an agreement. �is is the reason why we proposed here 
an evolutionary game model based on a well-known subset of PGGs, namely the collective risk dilemma (CRD), 
to model the a�ected regions’ cooperation to avoid the collective economic collapse. �is collapse comes from 
an uncontrolled virus spread that would end in strict con�nements and negligible tourist income. �e presented 
model is the �rst to consider the CRD framework for the economic problem of tourism restrictions because of 

Figure 5.  First and third columns show heatmaps of absolute RA when considering exponential distribution 
costs and grouping regions at random for thresholds m = 0.5 and m = 0.7 . �e second and fourth columns 
show relative RA di�erences when using exponential distribution costs and grouping by similarity with respect 
to random groups.
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the COVID-19 pandemic. EU NUTS2 regions are used as an inspiration for the modeling and their data is used 
to enrich the study.

�e regions are the players of the CRD and are grouped for obtaining regions’ agreements when the number 
of cooperators achieve a minimum threshold. Our proposed evolutionary game theory model employs a cost 
for regions when they cooperate because of their mobility and tourism restrictions. �is cost is directly linked 
to their tourism dependence and, given their heterogeneity among the regions, these costs are heterogeneous in 
the model. �e regions or players in the model follow an evolutionary update rule to change their strategy based 
on the payo�s obtained in their groups.

�e experiments were �rst focused on observing how heterogeneity in the costs for cooperating regions 
increase the cooperation, and therefore the regions’ agreement (RA) for all the evaluated conditions. Based on the 
EU NUTS2 real data, we consider three ways of cost heterogeneity: a) two clusters of regions with equal costs, b) 
a log-normal continuous distribution of costs, and c) an exponential distribution of costs. �e use of continuous 
distributions of heterogeneous costs makes the analytical treatment of the model impractical. On the contrary, 
the agent-based simulation allows studying the model outcomes for a large spectrum of initial conditions and 
values of parameters. As expected, major di�erences in the RA by assuming heterogeneous costs are observed 
in the transition phase of the initial conditions between two extreme stable cooperation values, although there is 
also a cooperation increase for high levels of �nal cooperation. �e simpli�cation of using two di�erent clusters 
of regions reduces the �nal cooperation with respect to having a continuous distribution of heterogeneous costs 
(both exponential and log-normal). Previous works considered di�erent groups of  players36 but our results show 
that, in terms of costs, a complete heterogeneity in the cooperation costs are valuable and also facilitates the 
�nal cooperation. Nevertheless, our results con�rm previous �ndings such as a positive e�ect on cooperation 
by increasing risk levels of collective failure and low number of players in the groups. As done in previous CRD 
 models21,34,36, the �nal stable cooperation levels depend on the initial cooperation of the players and the most 
frequent �nal cooperation rates are either null or high.

Second and more importantly for decision makers, we studied whether the initial formation of the groups of 
regions a�ects the cooperation and RA. We conducted a set of experiments using the above-mentioned settings of 
heterogeneous costs for di�erent initial conditions, risk levels, groups sizes, and minimum thresholds for group 

Figure 6.  First and third columns show heatmaps of absolute RA when considering log-normal distribution 
costs and grouping regions at random for thresholds m = 0.5 and m = 0.7 . �e second and fourth columns 
show relative RA di�erences when using log-normal distribution costs and grouping by similarity with respect 
to random groups.
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agreement. �e application of the model to a more reduced set of players to mimic the real case of NUTS2 312 
regions was also tested in our experimental study. �e variability of the results is higher than in the synthetic 
experiment but their dynamics are equivalent. Di�erences in the results with respect to the experimental case 
with a larger population (i.e., 3, 000 players) points to the e�ect of low and �nite population in the cooperation 
levels, as it was shown in previous analytical  studies27.

�e conclusion is that a group formation by similarity (i.e., regions with similar tourism-dependence are 
placed in the same groups) enhances the cooperation among the regions and our main cooperation indicator, 
RA, if we compare it with a traditional random formation. Again, the most signi�cant di�erences in RAs are 
observed in the transition phase of the initial conditions between two extreme stable cooperation values. �is 
�nal conclusion of the present research can be helpful for policy makers. Although the European Union was 
formed almost 30 years ago, there is still a trend for each country to consider itself relatively independent when 
it comes to policy making. However, in a global and challenging crisis like the current one, our results show that 
all regions will much better o� by cooperating. Surprisingly enough, the best case scenario of this cooperation 
takes place between regions that have a similar dependence on tourism. For instance, high tourism-dependent 
regions (e.g., Canary Islands, Ionian Islands, Sicily, Algarve, Tirol) should cooperate together even if they belong 
to di�erent countries and sometimes have a direct competition in attracting tourists.

�is work represents the �rst CRD for modeling lock-downs and mobility restrictions under the COVID-19 
context albeit presents some limitations. �e model does not include side-e�ects for defecting regions when 
their �ow of tourists are reduced because of the restrictions in the regions from which they receive tourists. 
Even if a tourism-dependent region does not follow any restrictions and is open to tourism, the drop in their 
touristic numbers will be signi�cant because other regions have a limited mobility. Spatial information was not 
included in the model but it could enrich it by adding distances and/or in-out touristic �ows among regions. 
Future works can include social networks or spatial lattices to take into account the latter e�ects. Additionally, 
punishment and reward policies can be injected into the model to see the e�ects on the �nal cooperation levels. 
And �nally, analytical studies of a more simpli�ed version of the model can also help towards the mathematical 
comprehension of the obtained outcomes and dynamics.

Figure 7.  First and third columns show heatmaps of absolute RA when considering two clusters of regions 
( α = 0.04 ) and grouping regions at random for thresholds m = 0.5 and m = 0.7 . �e second and fourth 
columns show relative RA di�erences when using two clusters of regions grouped by similarity with respect to 
random groups.
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