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SUMMARY 

An effective aircraft collision avoidance system must incorporate a means 

to discriminate between aircraft which pose a threat of collision and aircraft which 

do not. This problem of discrimination becomes especially difficult in areas where 

the aircraft densities are high and where aircraft maneuvers occur frequently. The 

. purpose of this research was to develop a warning criterion suitable for this environ-

ment. The aircraft flight paths were considered to be stochastic processes and the 

warning criterion was therefore based on the probability of a collision. 

Information recorded from Atlanta's Hartsfield Airport radar was obtained 

from the Federal Aviation Administration. This information contained in digital 

form at frequent intervals the coordinates and velocities of the aircraft being 

tracked. It was found that the statistics concerning the movements of an aircraft 

in this environment could be reduced to a very concise form. In addition, a method 

was developed which could use these statistics to calculate the probability of a 

collision between two aircraft given certain initial conditions. 

This collision probability was used as the basis of a warning criterion which 

determines if a maneuver can reduce the collision probability sufficiently enough 

to warrant its execution. Previous criteria have dealt primarily with one avoid-

ance maneuver, but this criterion has the capability of incorporating any number 

of avoidance maneuvers. Also previous criteria have relied upon intuitive judge-

ment rather than a consideration of actual cost and benefit. 



A complete warning criterion suitable for direct implementation was not 

developed, but the results presented show significant differences between this 

and previously developed criteria. 



NOMENCLATURE 

distance related to collision volume, feet 

distance related to collision volume, feet 

distance related to collision volume, feet 

set of tracks that contain collisions 

set of initial conditions 

distance along arc, nautical miles 

d/V, seconds 

distance along arc, nautical miles 

d /V, seconds 
c 

2 
unit of acceleration, 32.2 ft/sec 

gain associated with i maneuver 

one-half the height of the collision volume, feet 

inverse of radius 

.th 
1 maneuver 

number of collision 

th 
penalty associated with i maneuver 

th 
collision probability associated with i maneuver 

point in state space 
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X 

r relative position vector, nautical miles 

* * * 

R region in x , y , z and t space 

S set of flight tracks of aircraft A 
a 

S, set of flight tracks for aircraft C 
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S set of flight track pairs 
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* 

t time of collision, seconds 
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- > 
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x position coordinate, nautical miles 
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a ' 

x relative displacement coordinate, nautical miles 

y position coordinate, nautical miles 
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a 

y relative displacement coordinate, nautical miles 

z position coordinate, nautical miles 

z z/V, seconds 

* 
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a(t) collision rate 
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£(t) derivate of collision probability 

y azimuth, degrees 
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0 heading, degrees 

k inverse of radius 
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/Li miss distance, feet 

p radius, nautical miles 

T r / r , seconds 

r minimum time to collision, seconds 
m 
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CHAPTER I 

INTRODUCTION 

Soon after the beginning of commercial air service, the need for a method 

of assuring adequate separation between aircraft became apparent. Since the 

terminal area contained the most dense traffic, the first air traffic control (ATC) 

system was established in the terminal area. As densities increased, the ATC 

system was extended to include enroute traffic as well. Today, nearly the entire 

airspace over the United States is under radar surveillance. The air traffic con-

troller can therefore direct radar traffic from the ground in such a way as to 

maintain safe separations between the aircraft operating in the system. 

Even though this system has operated satisfactorily for many years, 

attention is being given to ways to improve the system. And again because of 

high densities, the terminal area is considered to be the most critical. One 

method for improvement which has been receiving considerable attention is the 

collision avoidance system (CAS). The term CAS refers to a class of devices 

that monitor the behavior of other aircraft operating in the vicinity of the protec-

ted aircraft and evaluate the danger of a midair collision between the other air-

craft and the protected aircraft. This threat evaluation by the CAS must be carried 

out automatically and should not require any effort on the part of the pilot. When 

the CAS determines that the danger is great enough, a warning is given to the 

pilot and the pilot is instructed as to the appropriate avoidance maneuver. The 
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CAS is considered to be a backup system to the present ATC and is not to be 

considered a replacement. 

In 1955 the scheduled airlines, working through the Air Transport 

Association (ATA), requested industry to propose or produce a CAS. Following 

this request several companies began development of collision avoidance systems. 

Some of the earlier developers were Bendix Aviation Corporation (1), Boeing 

Company (2), Hughes Aircraft Company, the Army Ordnance Corps (3), and 

Collins Radio. 

Much of the initial work was directed to the development of airborne 

equipment to detect and determine the relative flight paths of intruding aircraft. 

The problem proved to be more difficult than originally thought and several of 

the first systems were found unacceptable (4). The primary difficulty is obtain-

ing sufficient data accuracy at reasonable cost. Equipment development is still 

continuing today and many feel that the newer techniques can be successfully 

applied (5, 6). 

In addition to the equipment development, analytical studies of the problem 

have been conducted. These studies were directed toward such topics as when 

to give a warning (7), escape maneuver required (8, 9, 10), effects of air turbu-

lence on measured parameters (11), and the effects of data measurement errors 

(12). Of primary concern has been the development of a threat prediction crite-

rion that gives a high degree of success in predicting impending collision and yet 

does not generate excessive false alarms. 

Previous criteria have been for the large part based on deterministic 
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flight paths. Statistical analyses have been performed on these deterministic 

criteria by introducing random measurement error; also statistical analyses 

have been conducted to evaluate these criteria in a realistic environment. The 

criteria themselves,however,are deterministic in nature. The criterion investi-

gated in the present work considers the aircraft flight paths to be stochastic 

processes. In this way a warning criterion which incorporates the behavior of 

actual aircraft can be developed. The theoretical basis for this criterion, which 

is based on the probability of a collision occurring, is presented. Then by using 

actual radar data taken by the Federal Aviation Administration and by making 

extensive use of a digital computer, the probability of a collision was computed. 

The probability of a midair collision was considered to be dependent on 

six independent initial conditions. These initial conditions were the airspeeds 

of both aircraft; the range of the intruding aircraft; and the bearing, heading, 

and altitude of the intruding aircraft relative to the protected aircraft. For the 

collision probability results given in Chapter V, the airspeeds of both aircraft 

were fixed at 160 knots and the initial altitude separation was fixed at zero. The 

remaining three initial conditions (range, relative heading, and relative bearing) 

were expressed in terms of miss distance, time to closest approach,and relative 

bearing. The collision probability was then calculated as a function of these 

three variables as initial conditions. 

The scope of this work did not include the development of a complete 

avoidance criterion which could be directly implemented. The mathematical 

basis was developed and the computational feasibility was established by giving 
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sample results. These sample results do, however, point out fairly significant 

differences between this criterion and previously proposed criteria. 



5 

CHAPTER n 

THREAT PREDICTION CRITERIA 

A number of threat prediction criteria have previously been developed 

and analyzed. The mathematical development of these criteria is usually straight-

forward and therefore will not be included. However, the results and underlying 

assumptions will be discussed. 

Previous Criteria 

The simplest criterion are based on the assumption of straight-line flight. 

With this assumption, it is possible to compute the closest approach distance, 

or miss distance, and the time to the closest approach by knowing certain para-

meters concerning the aircraft's positions and movements. These criteria differ 

primarily by the input information required. 

Consider one aircraft to be the protected aircraft. All measurements 

will be made relative to this protected aircraft. If the relative position vector 

r and relative velocity vector v of an intruding aircraft are known, then the miss 

distance \x is 

M = ™ (2-D 

and the time to closest approach, t , is 



-+ -> 
r* v 

*,= - — r (2-2) 
" H 

If only the range r of the intruding aircraft is known and the aircraft are 

co-altitude, then 

3 .. 

f r+ r 

and 

r r 

V —Ta <2-4> 
r r+r 

From a hardware viewpoint,r and r are fairly easy for a CAS to obtain; however, 

r is much more difficult. Therefore, the use of equation (2.4) for finding t is 
M' 

of limited application since f is required. For collision courses, the ratio 

r = -r (2.5) 
r 

gives the time to a collision. 

Even though r equals t only for unaccelerated collision courses, in most 
V-

instances r gives a reasonable approximation of r . This approximation forms 

the basis for the Mtau" criterion. A warning is given whenever r becomes less 

than some specified value. Britt (14) has determined, using the same radar data 

as used for this study, that in a realistic environment the probability of a false 

alarm using the tau criterion is . 49 during a 13 minute flight. A warning thres-

hold of r = 60 sec. was used and only aircraft within an altitude range of + 500 

feet were considered. Although the threat prediction criteria using equation (2.5) 
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has several advantages, it seems that the high false alarm rate will detract from 

its acceptability. 

Another criterion which has been developed allows for the consideration 

of accelerated flight paths. This criterion assumes some maximum aircraft 

acceleration and then uses this maximum acceleration to calculate the minimum 

time to collision. This time is then used to determine when a warning should be 

given. In terms of range and range-rate, the minimum time to collision, r is 

= -r+(r*-2Urf 
m U 

where U is the maximum range acceleration considered. This has been termed 

the "modified tau" criterion. Using the modified tau criterion, Britt has also 

determined that the probability of a warning is equal to . 59 during a 13 minute 

flight when the value r =35 sec. was used with U = ^g. Again only aircraft 

within an altitude range of + 500 ft. were considered. This false alarm rate 

again seems high. 

A New Criterion 

This present work intends to investigate a different structure for the 

threat prediction criteria. It considers the possibility of basing the threat pre-

diction criterion on the probability of a collision occurring. This new criterion, 

then, will not only take into account the possibility of a maneuver occurring, but 

it will also consider the probability that this particular maneuver occurs. The 

criterion itself is fairly simple in that a warning is given and, consequently, a 



maneuver is initiated only when the benefit gained from making the maneuver 

outweighs the unde sir ability of making the maneuver. 

A more precise statement of the criterion is as follows. Consider an 

aircraft in flight. At any time there are n different maneuvers it may make over 

some time interval AT. Let the i maneuver be denoted by M.. Associated with 

each maneuver is a penalty p.. Let there be one maneuver, M , for which the 

associated penalty is always zero. The maneuver, M , is therefore the maneu-

ver the pilot would make if left to proceed normally. All maneuvers other than 

M are considered to be evasive maneuvers. Notice that maneuvers as used here 

refer to any possible actions the aircraft can take including flying straight. 

For each maneuver there is also a benefit b. defined as 
1 

b = a(Pn - P ) (2.7) 
O 1 

where P is the probability of a collision occurring during AT given that the 
c 
o 

maneuver M is initiated, P is the probability of a collision occurring during 
o c. 

1 

AT given that the maneuver M. is initiated, and a is the proportionality constant. 

The gain g. is defined as 

g. = b . - p . (2.8) 

The warning criterion is established by maximizing the gain and initiating 

the maneuver when this maximum gain becomes greater than zero. Therefore, 

th 
the i maneuver is initiated when 

max[g.] > 0 (2.9) 
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The American Transport Association (ATA), which has been very active 

in specifying what type of CAS would be acceptable to the commercial airlines, 

has already established certain maneuvers to be used. This may be viewed as 

determining a priori which maneuver maximizes the gain. In order to make 

this criterion compatible with the ATA system, the set of all possible maneuvers 

contains only the climb maneuver defined by the ATA. The criterion for giving 

the warning will then be when the gain from making this maneuver is greater 

than zero. 

Perhaps one disturbing aspect of this criterion is that even after the 

avoidance maneuver is taken,a finite probability of a collision could still exist. 

As will be determined later this aspect of the stochastic approach can be fairly 

easily avoided by initiating a maneuver that will reduce the collision probability 

to such a small level that it is indistinguishable from zero. However, even if 

the probability could not be reduced to zero, any system that offers some reduc-

tion would definitely be beneficial. The benefit appears to be even greater when 

one considers that the CAS apparatus is a backup to an already good ATC. If a 

CAS could reduce the number of mid-air collisions, say by a factor of 100, 

then mid-air collisions would be virtually eliminated. 
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CHAPTER IH 

THEORY OF COLLISION PROBABILITY 

Several methods have been used to determine the probability of a collision 

between two aircraft. These methods have, however, been developed primarily 

for evaluation of air traffic control (ATC) regulation rather than for collision 

avoidance applications. For instance, the proper separation for airways and the 

proper separation for parallel runways have been examined by calculating the 

collision probability. Even though the methods and assumptions for calculating 

the collision probability for ATC applications can not be applied directly to the 

calculation of collision probabilities for CAS applications, there are several 

aspects common to both applications. Therefore, the previously developed 

methods form a good basis for starting the development of the methods and 

assumptions for the present collision avoidance problem. 

Definition of Collision Probability 

The probability that two aircraft will collide during some time interval 

given certain initial conditions is the probability needed for collision avoidance 

threat prediction. The important aspect for collision avoidance application is 

that the probability be conditional on the initial conditions. Thus the probability 

of a future collision can be calculated from knowledge of the current situation. 

If t* is the time at which a collision between two aircraft occurs, and C 
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represents the initial conditions, then the desired probability can be expressed 

as 

P{a collision occurs on [0, T] given C ) = 
o 

P{0 < t* < T | C } 
- - • o 

(3.1) 

Even though only one collision between two aircraft is possible physically, 

multiple collisions are possible mathematically. As used in equation (3.1), t* 

can be the time at some collision other than the first since it is only important to 

convey that a collision, not necessarily the first, has occurred prior to T. How-

ever, if any collision does occur before T, then it is also true that the first col-

lision occurred before T. If t* denotes the time at the first collision, then 

equation (3.1) can be written as 

P{a collision occurs on [0, T] given C } = 
o 

P { 0 < t * < T | C } = P [ 0 < t * < T | C } (3.2) 

This probability can also be written in the form 

P { 0 < t * < T|C } = £(t)dt 
o «J 

o 

(3.3) 

The interpretation of £(t) is rather fundamental to the difficulty in calculating the 

collision probability. The function j3(t) should properly be defined by the relation 

£(t)dt = P(t < t* < t + dt | C Q ] (3.4) 
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where the time at the first collision is used. Equation (3.4) indicates that the 

last form of the probability defined in equation (3.2) is preferable even though 

either definition is accurate. Unfortunately, the function /J(t) is not easy to 

obtain. A function a (t) defined by 

a(t)dt= P{t < t* < t + dt|C 3 (3.5) 

is easier than £(t) to obtain. The only difference between a(t) and j8(t) is that the 

time of the collision is defined in a(t) to be the time at a collision,not necessarily 

the first, and is defined in £(t) to be the time of the first collision. The integra-

tion of a(t) gives the expected number of collisions rather than the collision prob-

ability. This distinction is made at this point to more precisely define the 

probability needed. These concepts are dealt with again later in this chapter and 

the discussion concerning the availability of a(t) and 0(t) will be deferred until 

then. 

Previous Methods of Calculation 

In one of the first papers to consider the probability of a collision between 

two aircraft, Taylor (15) examines the case of aircraft flying in the same direc-

tion along parallel flight paths at the same altitude. Let y be the distance along 

the track and let x be the across track distance. Taylor assumes that the two 

aircraft maintain their zero separation in the y direction and zero separation in 

the z direction, but drift randomly from the nominal flight paths in the x direction. 

Let x be the x position of one of the aircraft and x be the x position of the other 



Figure 1. Distribution Function for x and 3^. 

aircraft. The density functions Taylor assumed for the x positions of the two 

aircraft are (the bar below a variable will distinguish it as a random variable) 

2 

(3.6) f (X ) = 
x v a' 
- a 

1 
X 

a f (X ) = 
x v a' 
- a a ^2TT a \ ' 

%y-
1 <vs/ 

%y- e 
0\V2tT • * 

(3.7) 

where S is the nominal separation between the tracks. The probability that the 

separation between the two aircraft is less than W is 
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2 
x 

a 
oo x + W n 2 
- n

 a x 1 - 2<^a 

Pfea-xb!<Wx}= J J — e 
-oo x -W aV27T 

a x 

<vsx>2 

2a. 2 

e " u b dx,dx (3.8) 

V27 b a 
1' 

Taylor does not include time as a parameter, but a simple extension of equation 

(3.8) gives the more general form, 

00 x +W 

P t i y t ) - 2 ^ ) 1 <Wx3 = J J ^ \ (xa;t)f (xb;t)dxbdxa (3.9) 
-co x -W —a ^b 

a x 

Equation (3.9) assumes that the deviations from the nominal flight paths are 

random processes with f (x ;t) and f (x^;t) as the corresponding density func-
x a a 2Eb b 

tions. The idea of the aircraft being able to maintain separations less than the 

physical dimensions of the aircraft is possible, of course, only mathematically. 

The probability given in equation (3.9) is the probability at any instant that the 

separation is less than W . 

The expected length of time that the aircraft would spend in contact is the 

integral of the probability in equation (3.9). Therefore,the expected value of the 

contact time over the interval [0,T] is 
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i 

E {contact time}= f P [ | x (t) -_s_ (t) | < W }dt (3.10) 
b 

Neither the probability in equation (3.9) nor the expected length of time in contact 

given by equation (3.10) is equal to the collision probability in equation (3.1) and 

should not be used for collision avoidance applications. 

Koetsch (16), also working with parallel flight paths, performs an analysis 

similar to Taylor's in order to find the probability of a collision. Koetsch rea-

sons that if the aircraft are only separated in the x direction then it would also 

be undesirable to have an orientation of the two aircraft such that their positions 

are the reverse of the orientation of the parallel tracks. This reversal of position 

means of course that the aircraft must have crossed through each other to have 

arrived on opposite sides. This analysis is true,however,for aircraft that have 

a separation in only one direction. Where the aircraft are not flying parallel 

at the same altitude this assumption would not be appropriate. 

Marks (17) developed a more general procedure which first finds the rate 

of collision and then the expected number of collisions. This method was used by 

Reich (18) to find the probability of a collision over the North Atlantic and again 

by Steinburg (19) to find the probability of landing accidents. The collision rate 

a(t) is the apparent frequency at which the separation between the aircraft becomes 

less than the dimensions of the aircraft. Integrating a(t) over an interval of time 

gives the expected number of collisions. Thus 

T 

E{n} = f a(t)dt (3.11) 
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where n is the number of collisions in the interval [0, T] and E jh] is the expected 

number of collisions. 

The quantity a (t) is interpreted as the apparent frequency of collision, but 

can also be interpreted as the collision probability per unit time. Hence 

a(t)dt = P(t < t* < t + dt} (3.12) 

where t* is the time at which the separation between the aircraft becomes less 

than the physical dimensions. Equation (3.12) is therefore the same as equation 

(3.5) except for the conditionality on C which Marks does not use. 

If the expected number of collisions on the interval [0, T] is small com-

pared to one, then the expected number of collisions in equation (3.11) is approxi-

mately equal to the probability of a collision occurring on the interval. 

The problem now reduces to one of finding the collision rate a(t). The 

situation Marks was most interested in was when aircraft tried to follow straight 

level flight tracks or airways. These airways have lateral separation as well as 

altitude separation. Several aircraft are permitted on one airway and the sepa-

ration along a track is maintained by establishing a certain time separation as 

the aircraft enter the airway. The aircraft maintains the time separation by 

flying at a predetermined velocity. Because of navigational errors the aircraft 

will not be able to maintain their position exactly. Let a coordinate system be 

This apparent frequency and probability is equivalent to the apparent frequency 
and probability associated with the zero crossing problem described by 
Rice (20). 
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established such that the y axis is parallel to the tracks, and the x coordinate 

system is horizontal and perpendicular to the tracks. The z axis is vertical. 

Consider two aircraft, denoted by a and b, on the airways whose positions are 

given x , y , z , x^, y , and z . The separation between the two aircraft can 

be written 

s = Ix - x J (3.13a) 
x ' a b1 

S y = t , a - y j (3.13b) 

s z = ^ - z j (3.13c) 

where s , s , and s are the separations along the x, y, and z axes. Marks 

assumed that the error components along the three axes were independent. The 

components of the separation would also be independent since the airways are 

parallel. The collision rate can be written as the sum of the collision rates 

along the three axes as 

a(t) = a (t) + a ( t ) + a ( t ) (3.14) 
A y £i 

Because the separation components were assumed independent, the collision rates 

can be written 

ax(t) = y t ) P ( s ^ < W } P f e z < W z } (3.15a) 

ay(t) = y t j P f e ^ w x ]p{s z < w z ] (3.15b) 



az(t) = X ^ t J P ^ < W^Pfey < Wy} (3.15c) 

where X (t), X (t), and X (t) are the frequencies at which the respective separations 
•7 

become less than the physical dimensions, W , W , and W . 
x' y z 

The probabilities Pfs <W }, Pfs <W land Pfs < W } in equations 
^-x- x - y - y ^z - z 

(3.15a), (3.15b), and (3.15c) would be fairly easy to calculate if the density func-

tions f (s ;t), f (s ;t), and f (s ;t) are known. The loss of separation fre-
S X S V S Z 

- x 2 - y 
quencies are 

V t ) =
 J - X ' B B ^ X ' V ^ X

 <316a) 

-co -x-x 

o 
X(t) = f - s f . (W , s ;t)ds (3.16b) 
y -Jco y ^ y y y y 

Xz ( t ) = J " S z f s s ^ z ' V ^ z < 3 1 6 C ) 

-oo —z—z 

Assuming that the position er rors along the x,y, and z axis are indepen-

dent is fairly good perhaps when the aircraft are attempting to maintain straight 

line level flight,but this assumption becomes less accurate if the aircraft are 

involved in maneuvers. Therefore, the assumption of independence among the 

x, y, and z positions is not accurate for collision avoidance applications since 

the aircraft will in general be maneuvering. 

2 
See Bendat (21) page 125. 
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Marks1 Method for CAS Applications 

It would be of interest to determine what degree of complexity is intro-

duced into the expressions for collision rates by not assuming x and y to be 

independent. The following is for the case where x and y are not independent 

and is primarily an extension of the zero-crossing problem given by Bendat (20), 

This development is for finding a, (t). The collision rates a (t) and a (t) can be 
x y z 

found with the same approach. 

A small zero superscript will be used to denote a density function condi-

tional on specified condition at t = 0. For example 

f (u,v;t) = f (u,v|u(o) = u ,v(o) = v ;t) 
uvs ' uv ' o o 

(3.17) 

The coordinate system in Figure 2 is a coordinate system moving with 

one of the aircraft. The coordinates are the relative displacement, x, y, and z, 

instead of the separations used by Marks. The separations used by Marks are 

the absolute value of the relative displacement. 

(W-.-W^W*) 

(w~rwyrw2> 

— y 

rWy.Wy.W*) 

<wflwfl-wr) 

Figure 2. The £ Plane with an Incremental Volume, 
X 



Let the plane £ w ^ (Figure 2) be formed by joining the points (W~, 
x 

W~, W~), (W~, -W~, -W~), (W~, -W~, W~) and(W~, W~, -W~). The dimension 
y z " x y ' z ' x x y z v x ' y z7 

W. is the aircraft 's dimensions in the i direction. Since the physical dimensions 

of the aircraft have been accounted for by the dimension W~. W~, and W~. the 
J x* y' z' 

aircraft crossing this plane can be represented by a mathematical point. Consider 

an incremental volume centered at (W~ 3f,z") with the dimensions cb£ dy, and d£ 
X 

The probability of finding the point in the incremental volume with a velocity be-

tween x and x + dx, given the initial conditions C , is 

p §c <x <x + dx, y < y. < y + dy, z < z < z; + dz", x < x < x+ dx;t |C ] = 
_ _ — i 0 

r^J r^> z*-' 

f ~ ~ ~ ~ & y,z,x;t)dx"dydzd^ (3.18) 
_ J L _ _ 

where the initial conditions are 

x(0) = xQ (3.19 a) 

5(0) = yQ (3.19b) 

z(0) = zQ (3.19c) 

x(0) = xQ (3.19d) 

The probability in equation (3.18) can also be interpreted as the expected time per 

unit time of finding the intruding aircraft in the incremental volume with an x 

velocity between x and x + dx. For this last interpretation it can be seen that 
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the expected number of crossings per unit time can be found by dividing the prob-

ability in equation (3.17) by the expected time spent in crossing the volume. The 

x velocity is essentially x, therefore 

e dx 
6 = — (3.20) 

x 

where 6 is the time to cross the volume. Using equation (3.18) and equation (3.20). 

the expected number of crossings per unit time with x velocity equal to x is 

f~~~~(W~, y, z, x;t) dx dy dz o£ = x f~~~~(W~ , y , z , x ;t) dx dy dz (3.21) 
^J2_£^£^ X xyzx x 

6 

Considering all velocities which result in a crossing from outside to inside (since 

these velocities are the only velocities which result in a collision), one obtains 

E {number of crossings per unit time |C ) = 

o . 

"* f°v7r7 ? ( W v ' ?» *"x ;t)dxdy d? (3.22) 
A y u A X 

-00 ~ i  

as the expected number of cross per unit time of the incremental volume. 

Summing these expected number of crossings over the entire D ___ plane, 
+W /N-' 

x 
the crossing rate X ~ (the +x subscript of Xindicates that only crossing of the 

+ x(t) 

^-w~ P l a n e a r e included) is -W 
x 

W~ W~ o . 
r y ~ .0 X+x^t) = J J J - x f — ~ ( W ? y , z , x ; t ) d x d y d z (3.23) 

X J f Z X 

- W W ~ -CO 

z y 
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On the negative x axis, the separation loss rate is 

W~ W~ co. . 
X-x ( t ) = J Z J y J xf^^(-W2y,z,x;t)dSdydz 

_W~ -W~ o 
z y 

(3.24) 

The total separation loss rate X~(t) due to a separation loss in the x 

direction is 

X~(t) = X^t) + A~(t) (3.25) 

A similar development can be used to obtain X~(t) and XMt). 

It is intended in this work to empirically determine the necessary density 

functions and in turn to calculate the probabilities from these density functions. In 

order to empirically determine the density function in equation (3.24) directly, 

it would be necessary to have a large quantity of data on aircraft pairs since the 

x , $ and_z coordinates are the relative coordinates of one aircraft to another. This 

would be somewhat of an impossibility since the data must contain what amounts 

to actual collisions in order to obtain the density function at x = W~. Another 

way of obtaining the density function in equation (3.24) would be to obtain the 

density function of the position of only one aircraft at a time with respect to some 

coordinate system. Then for situations involving two aircraft it will be assumed 

that the behavior of both the aircraft are independent of the other aircraft. The 

density function of the relative coordinates could then be obtained from the den-

sity functions of the individual aircraft coordinates. Of course, the behavior of 



23 

one aircraft would not normally be independent of the other aircraft if the other 

aircraft were nearby. However, for CAS application, it is preferable to consider 

the behavior of the two aircraft to be independent. This is because the CAS is to 

be used as a backup system to the present ATC. The warning would be given, 

hopefully, only in the event of a failure of the ATC. Therefore one would suspect 

that before the warning is given the two aircraft would be unaware of the other's 

presence and that the behavior of the two aircraft would be independent. There-

fore the probability of a collision without a warning will be determined by assum-

ing that the behavior of the two aircraft are independent of each other. 

Let a coordinate system be established such that at t = 0, the aircraft 

is at the origin of the system. Let the z axis be vertical and let the y axis be 

aligned with the aircraft velocity vector. The joint density functions of x, y, z, 

and x can be determined from one density function of x, y, z, x, and y if this one 

density function is assumed for both aircraft. This density function of x, y, z, 

x, and y contains six independents including time. Since the number of memory 

locations required to store an imperial function increases exponentially with the 

number of independent variables, it is desirable to make the numbers of indepen-

dent variables as small as possible. One plausible means of doing this is to 

assume that the altitude coordinate is independent of the x and y coordinates. 

Therefore 

f x y z x y ( x ' y ' Z ' * ' y ; t ) = f xyxy ( x ' y ^>y ; t ) f z ( Z ; t ) ( 3 * 2 6 ) 

which gives an appreciable reduction in the memory locations required. The 



density function f . . (x,y,x,y;t) still contains five independent variables. It 

would therefore be beneficial to find another method of finding \(t) which does 

not require empirically determining a function of five independent variables. 

A New Method 

This method, like MarksT, obtains only an approximation of the collision 

probability. The assumptions used to justify the approximation are also similar 

to those made by Marks. The primary advantage of this method is that it is 

easier to empirically evaluate the collision probability. 

Consider two aircraft, A and B, in a three dimensional space with some 

specified initial conditions. Let S be the set of all possible paths, with the 
a 

specified initial conditions, that aircraft A can follow. Similarly, let the set 

S, consist of all the possible flight paths that satisfy the initial conditions for 

aircraft B. The set S is defined as the cartesian product of these two sets: 

S = S x Su (3.27) 
c a b v 

Then S consist of all possible pairs of one path from the set S and one path 
c a 

from the set S, . 
b 

In order to determine when and if a collision occurs, each aircraft is 

viewed as being surrounded by a right circular cylinder of radius r and height 2h. 

If these cylinders touch or overlap, then a collision is assumed to have occurred. 

Each outcome of S must either contain one or more collisions, or no collisions. 
c 

For the outcomes that have a collision there is a time t* at which the first 
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collision occurs. It is also possible to associate with each collision the coordi-

* * * * 
nates x , y , and z which are the coordinates of aircraft A at t„. Let the dwell 

a ' a a 1 

time 6 be the time the cylinder surrounding the aircraft remains in continuous 

contact after the first collision occurs. The set C is a subset of S of all the 
c 

outcomes that contain a collision. By considering only the outcomes in C, a 

* * * * 

joint density and distribution function of 6, x , y , z , and t can be found. The 
a a a J. 

* * * * . 
notation for these functions are f * * * *(6,x ,y ,z ,tH C) and F_ * * * * 

s^AV' a a a x *A^-i 
* * * * 

($x ,y , z , t |C). The conditionality on C indicates that only the outcomes of 
a a a l 

S with a collision were considered. Let the condition R be such that the coordi-
c 

nates of aircraft A at some time satisfy x < x, y < y, z < z , and t < t. 
J - a - ' ^a - J * - a - ' - a -

The union of C and R gives all the outcomes of S that result in a collision such 
c 

J|C >(C 5j< >jC 

thatx < x, y < y, z < z, and t̂  < t. 
a ci a 1 

This method is based on the approximate equality between the expected 

dwell time of the first collision and the expected time in contact. This approxi-

mation equality can then be solved for a joint density function containing the time 

of the first collision. Integrating this density function gives the probability of a 

collision occurring. 

First it is desired to find the expected value of the dwell time considering 

all outcomes of S . To find this expected value, first consider finding the proba-

bility that^j < 6, x < x , j [ ^ y » ^ £ z > and t̂  _< t given R and C. 
a a a a a a J. 

This conditional probability can be written 

5fc ^k sk 5k 

p C ^ l 6 » x < x>zQ < y>z < z»l-, l t l C R ] = 
ci d a J-

* * * * * , (3.28) 
p j g < St^a < x»Z a < y ^ < Z>11 < t ,CR] 

P{CR) 
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If the collision is an element of the set {x < x, v < y,_z < z, 
a a - a 

* 

t̂  _< t},i t is also a member of the set C as well as satisfying the condition R. 

Therefore 

5k sk 5k 5k 

p ( 6 < 5 , x a <. x,y. a _< y , z a < z , t ^ < t, CR} = 

?k 5k sk 5k 

P i 6 < 6 , x < x,y < y,z < z , i < t ] (3.29) 
d a a x 

By using equation (3.29) and the relation 

P{CR] = P{R|C}P{C} (3.30) 

and the fact that 

>k 5k ?k ?k 

p t 6 < 6 .i^a < x » i a < y-5 a < z . i j < 11 c} = 

P{6 < 6 ,** < x a , ^ < y a , / < z a , t* < t} ( 3 3 1 ) 

P{C} 

then equation (3.28) can be written 

5k 5k sk ?k 

pC-§ < 6 ,x a <x,y a < y , ^ < zf tx < t | CR] = 

5k sk 5k 5k 

pL§ < o ,x < x ^ . 5 y , ^ < z , i x < t | c ] 

P{R|C} 
(3.32) 

By using the definition of a distribution function and differentiating, equation (3. 32) 

can be used to obtain 
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* * * * ffeiVt;^vvvtiiRC> = 
* * * * 

£te%Yt*<fl'VVVilc> 
aT~ci a J-

P{R|C] 
(3.33) 

The expected value of^ given R and C is therefore 

t z y x < D
, t e % V t V 8 ' X a - y a ' V t l | C } 

(3.34) 

O - 0 0 - 0 0 -CD 0 
PjtC] 

* * * * 
d6dx dy dz dt., 

a JSL a 1 

It can be shown that' 

E{x) = E{x |A1} P [A1}+ E jx |A 2}P {A^ (3.35) 

if 

and 

\ A 2 = ° 

A + A0 = S 
2 

where S is the certain event. 

By an extension of equation (3.35) the following results: 

E { 6 |R } = E {6 |RC } P [C |R} + E {fi (RC }P {C |R } (3.36) 

But since 

E{6 |CR] = 0 (3.37) 

then 

See Papoulis (22) page 144. 
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E{6 |R) = E{6 |RC}P {C|R] (3.38) 

* * * * 
Also f* * * * *(6,x ,y , z , t„ IC) can be written as 

fix v z t - a a' a' 1' 

* * * * 
f * * * *(6,x ,y ,z , t J C ) = 
6x y z t . v ' a ' °a ' a* l 1 

• a - a -1 

3JC 3|C 3JC 3(C 5fC ?JC j|C ^ i 

f . ( 5 x ,y ,z , t ) f * * **(x ,y ,z , t j C) 
6 ' a , J a ' a' l ' x y z t / a , J a ' a 1' ' 
- -a^a-a 1 

(3.39) 

Using Equation (3.34), (3.35) and (3.36) and carrying out the integration with 

respect to 6, the expected value of 6 given R is given as 

_ PfCtR] t z y „x 
E«IR> = f f f l J J J J E ^ W a ' V 

* * * * 

O - 0 0 - 0 0 -00 

•f * * * *(x ,y ,z ,t„)dx dy dz dt. 
x y z t * a ' J a ' a* r a J a a 1 
—ara—a—1 

(3.40) 

The expected time in contact can be found by integrating with respect to 

time the probability at any instant of time that the two aircraft are in contact (see 

discussion related to Equation (3.5)). By noting that 

f (x , y , z k ; t ) = f (x , y , z ;t ) 
x y z v a J a a r a' x y z x a J a a a' 
-a; a—a -z&Lsr-a 

(3.41) 

P{R] 

then 
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E{time in contact |R} = —j-
t z y X 

f P{R) J J J J x y z (x ,y ,z ;t) 
o -oo -co -co -a^a-a^ a J a a ' 

x +r y + / r 2 - x 2 zQ
 + n 

a J a v a 

I 5 b i b 5 b
( X b ' y b ' Z b ; t ) d X b d y b d Z b] d X a d ya d 2 a d t a (3.42) 

x - r y - / r2-x2 z -hi 
a J a v a a 

If the expected number of collisions for all the outcomes of S is small 

compared to one, then the expected time in contact will be approximately equal 

to the expected dwell time of the first collision. The contribution to the expected 

contact time of the dwell time associated with collisions other than the first will 

be small as compared to the contribution of the dwell time associated with the first 

collision. Also, attention must be given to the relation between the length of 

time interval over which the integral is taken and the length of the dwell time. 

If the time interval is short as compared to the expected dwell time, the number of 

instances where only a position of the dwell time lies inside the time interval 

becomes a significant portion of the total number of dwell times. The expected 

time in contact would then be much smaller than the expected dwell time. Under 

the appropriate conditions, the expected dwell time in equation (3.40) will be 

approximately equal to the expected contact time in equation (3.42). By making 

use of the relation 

P[RC] = P{R|C}P{C] = P{C|R}P{R} (3.43) 

equation (3.40)and equation (3.42) give 
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p ^ j J 
t z y x 

* * * * 

o -oo -co -co 
E { 6 | x a , y a , z a , t l } • 

dz dt 
a 1 

f * * * */x y z t \C)dx dy c 
x y z t , a ' J a ' a' l 1 ' a °a 
-ara—a-1 

t , z r>y r»x 

o -oo -co -co — a^a-a 
f (x ,y ,z ;t) • 
x y z v a JSL a ' 

x +r y + / r 2 - x 2 z0+h 
a . a v a a 

f J ^-
: - r y - / r 2 -x 2 za-h 
a J a v a a 

f (x. , y. , z_ ;t)dx7 dy, dz, 
XuZiA. b b b b b b 

dx dy dz dt 
a a a a 

(3.44) 

Taking the partial derivatives of the terms of equation (3.44) with respect 

to t, z, y, and x gives 

* * * * 
P{C}f * * * *(x ,y ,z t | C ) ~ f (x ,y ,z ;t) L J x y z t., % a a' a 1' ' x y z v a ' J a a 7 

- a ^ a - a - l —a^a-a 

x +r y + /r2+x2 z +h 
a a v a a 

J ,J 

x 
a 

-r y - no -x z -h J a V a a 
^ b 5 b

( x b ' y b > z b ; t ) d x b d y b d z b 

* * * * 
E C f l l x ^ y ^ ^ . t j ] 

(3.45) 

Integrating the left hand side of equation (3.45) over the full range of 

x , y , and z and integrating with respect to time on the interval [0,t] » the prob-

ability of a collision on the interval [0,t] can be found. This can therefore be 

approximated by integrating the right hand side equation (3.45). Since only the 
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flight paths of aircraft A and B that satisfy the specified initial conditions are 

used in S , and since the density functions in equation (3.45) are defined on S , 

different density functions are required for each set of initial conditions. 

The density functions in equation (3.45) are simpler than the density 

functions required for Marks* method since they do not include the velocities. 

* * * * 
The discussion on how to obtain E (6 | x ,y , z , t ) is given in the next chapter. 

a a a J. 

Equation (3.45) is the general case where both aircraft paths are random 

processes. It could also be used where one aircraft path is random and the other 

is deterministic. Suppose that aircraft Afs path is deterministic with 

x (t) = x(t) (3.46) 
a 

ya(t) = y(t) (3.47) 

z (t) = z(t) (3.48) 
d 

then f (x , y , z ;t) would consist of the impulse function 
x v z a a a 
—jr-a-a 

f (x v z -tt - I 1 i f ^a= x(t)» 2 a
 = y ( t ) ' ^a = Z ( t ) a t * n 4Q> 

^ a ' ^ ' 2 ^ " t o otherwise * * ( 3 * 4 9 ) 

The density function of equation (3.49) could then be used in equation (3.45) 

to find the collision probability. 



CHAPTER IV 

STATISTICAL ANALYSIS AND COMPUTATIONAL TECHNIQUES 

Introduction 

The data used was collected in 1968 by The Federal Aviation Administration 

at Atlanta's Hartsfield Airport. Hartsfield Airport employs the ARTS radar 

system which has the capability of tracking each aircraft and recording in digital 

form on magnetic tape, the x and y position, the x and y velocities, and the identi-

fying track number. If the aircraft has onboard a mode C transponder, the alti-

tude of the aircraft is also available. Where the altitude of the aircraft was not 

available from the ARTS radar data, the FAA used voice recordings of the pilot-

controller communications to manually insert altitude data at a later date. This 

data was taken during eleven one hour sessions. The eleven sessions were spaced 

over a period of four days so as to fairly represent all the traffic conditions at the 

terminal. 

The x and y velocities on the tape received from the FAA were unrecover-

able. It was necessary to reconstruct the velocity information from the position 

information. Since direct computation of the velocity by taking the difference of 

successive positions proved to have a high noise level, and a- 0 tracker (23) was 

employed to smooth the data and supply the velocity data. Fairly heavy filtering 

was employed which might cause the fllteral position to be somewhat displaced 

from the position on the original tapes. Because of the use to which the data would 



33 

be used, the noise was thought less desirable than the shift of position. The data 

from each time scan was also sorted according to aircraft and the resulting 

tracks placed sequentially on a new tape. A few of the flight tracks were found 

with obvious e r rors . All of the tracks were then checked for velocity ranges, 

altitude rate, and turn rates. After removing several tracks, the result was 

640 tracks that span 93 hours, 36 minutes and 15 seconds. Figure 3 shows 

a portion of the tracks used. 

The statistics of the data were determined by considering only single 

flight tracks. All flight tracks were rotated and shifted so that the starting 

point corresponded to the origin of the axes and the velocity vector was aligned 

with the y-axis. The rotating and shifting obscures any dependence the statistics 

have on the absolute position of the aircraft. 

Since the absolute position of the aircraft was not considered, then the 

starting point of the track was arbitrary. Any point along the track could have 

been considered the starting point. Therefore one track was used several times, 

each time with a new starting point. 

The time span over which the statistics were taken was a matter subject 

to several considerations. The collision probability is the integral of a time 

varying function. The integration is carried out over the entire time span for 

which the statistics are known. The portion of the probability that is of most 

interest for avoiding collision is the portion at a time greater than the time 

required for an evasive maneuver since this is the position of the probability 

that can be most affected by a maneuver. If an evasive maneuver in the order 
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SCALE: =5 NAUTICAL MILES 

Figure 3. Flight Tracks Recorded at Hartsfield Airport. 
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of 20 to 30 seconds is considered, then perhaps the time span should extend one 

or two minutes. Another factor considered was the number of tracks available 

that extend the full range of the desired time span. The length of the time span 

together with the time intervals at which the data was collected determined the 

amount of computer shortage required for the statistics. With all these factors 

under consideration, a time span of 120 seconds was chosen with data taken at 

10 second intervals. 

Position Statistics 

It was of interest to find the probability of an aircraft occupying any arbi-

trary portion of air space at various times given the initial position and velocity. 

All aircraft were assumed to behave statistically identical regardless of the 

absolute starting coordinates. Thus only the position relative to the starting 

position need be dealt with. It was felt that the position statistics would be cor-

related to the initial velocity. The required density function therefore is 

f (x,y,z;y , z , t ) . The velocity component in the x direction, x, is not included 
xyz o o 

since it will always be zero if the initial velocity vector is aligned with the y axis. 

A simplification was gained by considering z to be independent of x and y. 

Thus giving 

f _ ( x , y , z ; y o , Z o , t ) = f (x,y;yo,t)fz(z;zo,t) (4.1) 

If the range of each variable were divided into 10 increments, an array containing 

1 x 10 elements would be required for the density function on the left-hand side 
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4 
of equation (4.1) but only 1.1 x 10 elements would be required for the density 

function on the right. 

The decision not to include z was also made. It is unlikely that a CAS 

would have ready access to z. It therefore would not be utilized in a threat 

prediction criteria and to have carried it further would have been an unnecessary 

burden. Also, since the altitude rate can be changed readily over the two minute 

span, the correlation of z to the initial altitude rate would diminish fairly rapidly 

with time. The desired density function was reduced to f (x,y;y ,t) • f (z;t). 
*L — 

The density function f (z;t) did not present any difficulty as far as computer 
z 

storage is concerned; however, f (x,y;y ,t) could still become quite large. Ways 
xy ° 

of further reducing the storage requirements were sought. 

The position of an aircraft along some arbitrary flight path can be written 

t 
r(t) = f v(T)dT (4.2) 

i 

o 

By considering the x and y components, then 
t 

x(t) = f v(T)sin9(T)dT (4.3) 
o 

t 
y(t) = [ V(T) cos 6(T)dr (4.4) 

O 

where 9(t) is the heading (measured positively clockwise from the y axis such as 

azmith is) and v(t) is the absolute velocity (airspeed). If the airspeed is constant, 



i . e . v(t) = V, then equation (4.3) and (4.4) becomes 

t 
-^9-= J sin6(T)dT (4.5) 

o 

i 

- ^ - = J cos0(T)dr (4.6) 

By letting x '(t) = -^p and y '(t) = ^Ll ? th e required density function becomes 

f / / (x', y ';t). For any particular velocity the density function for x and y was 
* Z 

obtained by the relation 

f^<x,y;yo,t) = V f 2 y ( f 4 ; t ) (4.7) 

where y = V. 

In order to see how well the constant velocity assumption fits the actual 

data, the density function of the normalized velocity error was plotted in figures 

4(a), 4(b), 4(c), and 4(d) at 10, 30, 60, and 120 seconds. The normalized 

velocity error v(t) in the figures is defined as: 

v(t) = ^ ^ (4.8) 

As can be seen from the figures, the constant velocity assumption seems fairly 

good. Even after 120 seconds the error is seldom greater than 20 percent. 

Figures 5, 6, 7, and 8 compare the positions of aircraft in the two coordi-

nate systems. The points were taken from the Atlanta radar data. The x and y 
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Figure 4(a). Density Function of v After 10 Seconds. 
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coordinates are used in Figures 5 and 7 and the x ' and y ' coordinates are used 

in Figures 6 and 8. Using x ' and y ' results in a tighter dispersion of points. 

Notice the crescent shape of the highest concentrations in Figures 6 and 8. This 

shape suggested a method of representing the data more efficiently than the x ' 

and y ' coordinate system. 

Suppose it is assumed that each position an aircraft occupies is reached 

by way of a constant radius turn. Then each point would have associated with it 

a radius p (see Figure 9). The radius p ' is p/V, or 

,2 ,2 
x ' +y' 

(4.9) 

assumed 
pa-fh 

Figure 9. Constant Turn Radius Flight Path. 

When the aircraft flies straight, the radius is infinite. There will also be 

some minimum radius, p . , dictated by the maximum acceleration of the air-
'min 

craft. The radius varies between this minimum radius and infinity. Another 

unique characteristic of a constant radius turn is the curvature which 
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is defined as the reciprocal of the radius. The curvature has the desirable 

property of varying from 0 to l /p . instead of from p . to oo as does the F J J Mmm 'min 

radius. The curvature k , in terms of x and y is 

x +y 

The angle 0 is the heading the aircraft would have had it followed the 

constant radius path. This angle in terms of x and y is 

9 = 2 Tan"1 - , (4.11) 
y 

The distance along the arc in Figure 9 is 

d ' = p ' 6 (4.12) 

Had the aircraft maintained its initial velocity it would have covered a 

distance d where 
c 

d = Vt (4.13) 
c 

For d to be plotted in the x and y coordinate system it must be divided by the 

initial velocity giving 

d ' = t (4.14) 
c 

The difference between the distance d ' in equation (4.12) and d' in 
c 
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equation (4.14) is the error in position caused by a nonconstant velocity and a 

nonconstant radius turn. Since this error should have a tendency to increase 

with time, it can be normalized with time giving 

d ' - d ' 

^ - V - = 1 - k T <4'15> 

The lines of constant e and constant k could be viewed as a coordinate 

system for the position of the aircraft. The line for € = 0 would of course be a 

function of time. Figure 10 shows the positions of a number of aircraft super-

imposed on this coordinate system for the purpose of seeing how the data actually 

fits the coordinate system. 

It may be noted that other than the constant velocity assumptions inherent 

in the x ' and y ' coordinate system, there is no information loss in transforming 

thex ' , y ' coordinates to the €, k coordinates. There is a one-to-one corres-

pondence of points. The advantage that the e and k coordinate system has over 

the x ' and y ' coordinate system is that the data has a smaller dispersion. This 

smaller dispersion would mean less wasted computer storage space. Figure 11 

shows a three dimensional drawing of the joint density function, f (e, k ;t) for 

t = 60 sec. The concentration about e = 0 and k = 0 is obvious. 

To find the collision probability it is necessary to integrate the right-hand 

side of equation (3.43). One of the quantities in the right-hand side of equation 

(3.43) is the integral of f (x , y , z ;t) over the collision volume. If this 
- b ^ b b b b 

density function is assumed to be constant over the area and z is independent of 

x b anc^ ^b» * n e n *n*s integral can be approximated by 
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Figure 10. Aircraft Positions After 60 Seconds Superimposed 

on c, k Coordinate System. 



Figure 11. Joint Density Function of e and k. 
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V v t ) 2 h f W X a ' y a ; t ) 47rr (4.16) 

It is necessary to find f ( x ^ y ^ from f fe ( ^ b ) . 
f̂cr̂ b —b-b 

This is 
S£h b b 

V b ( X b ' y b ; t ) = ^ ^ 
3e>k ) 

(4.17) 

where d(x,y)/d(e ,k ) is the Jacobian of x and y with respect to c and k . This 

Jacobian is 

5(Vyb> -j- [I - cosyci - cb) 
k b 

(4.18) 

where 
2V. 

k = 
b ^ 

2 2 
V y b 

(4.19) 

and 

e b = 1'1TtTan'1^-
(4.20) 

The integration could have been carried out with respect to x , y ,and z , 
a a a 

but since 

f (x ,y ;t)dx dy = f , (e ,k ;t)de dk 
x y * a , J a ' a J a c k v a' a' ' a a 
- a r a — a-a 

(4.21) 

the integration was carried out with respect to e and k . Also the function 
a a 
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* , (e;k;t) was used instead of f (x ,y ;t). 
€ k x y v a , J a ' ' 

—a-a -a^a 

Mean Dwell Time 

The mean dwell time is needed in equation (3.45) in order to compute the 

collision probability. 

Each aircraft is considered to be enclosed in a right circular cylinder 

with radius r and height 2h. A collision is assumed to have occurred if these two 

volumes overlap. The dwell time is the length of the time the volumes remain in 

contact. 

When the centers of the two volumes have a horizontal separation of less 

than 2r and a height separation of less than 2h, then the two volumes are in con-

tact. Let a coordinate system be fixed on aircraft A. In this coordinate system 

the two aircraft are in contact when the center of aircraft B is within the region 

shown in Figure 12. 

Figure 13 shows the plan view of the collision volume. For the purpose 

of finding the dwell time, it will be assumed that the relative path of aircraft B 

to aircraft A is essentially a straight line. This line is characterized by the 

angle y and the distance b. The velocity component in the xy plane is v. and 
h 

the component parallel to the z axis is v . 

The distance a is the portion of the flight path that lies over the region. 

The portion of the path may or may not all be within the volume depending on the 

z component and the point of entry. Since the cross-section is symmetric, all 

the relative flight tracks could be rotated to any angle without affecting the cross-

ing time. Therefore, the crossing time is independent of the angle y. Consider 
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all tracks to be parallel to the x axis. Figure 14 shows the cross section of the 

collision volume that is parallel to the z axis and contains the track. 

The portion of the track that lies within the volume depends on the slope 

a. and the point c where the track crosses the z axis. Therefore the dwell time 

depends on b, c, v , and v . If the joint density function of the four variables 

as a function of x, y, z, and t were known, then the mean dwell time could be 

found. 

Several assumptions were made to simplify these calculations. First, it 

was assumed that the vertical velocities were very small compared to the hori-

zontal velocities. The angle a would then be approximately 90 degrees. This is 

equivalent to assuming that all entrances and exits of the collision volume by the 

relative flight track would occur through the sides of the volume. This eliminated 

the dependence of the dwell time on the parameter c and the vertical velocity v . 
z 

For some given b and v , the dwell time is 

2 - 2 . | 
6 = 2(4r -b ) 

V V 

h h 

(4.22) 

It was also assumed that the random variable b was independent of the 

position and the velocity. The random variable & would also be independent of 

v, . From equation (4.22) the expected value of the dwell time can be seen to be 

E{6] = E { - M E fa} (4.23) 
- h J 

By assuming b to be uniformly distributed between 0 and 2r, the expected 
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Figure 12. Collision Volume 

Figure 13. Plane View of Collision 
Volume. 

Figure 14. Cross Section View of 
Collision Volume. 
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value of a is 

E{a} = 7rr (4.24) 

It has been assumed that the aircraft maintains essentially constant air-

speeds. Let V. and VQ be the velocities for two aircraft. The relative airspeed 

l 2 

of the two aircraft is 

Vh = ( V 1 + V2 " 2 V 1 V 2 c o s 0
r ) * (4-25> 

where 9 is the smallest angle between the two velocity vectors. 

In relation to the position of an aircraft it was found that the aircraft tends 

to follow constant radius turns. It would be reasonable then to calculate the head-

ing of the aircraft using this same assumption. For a given x and y the head-

ing 0 is equal to 20 (Figure 9). The radar data was used to check this assump-

tion. Figures 15 through 21 show the density function of the error between the 

actual heading and the heading equal to 2$. This density function has $ as well 

as t as a parameter. For small values of <£ the heading calculated from the 

constant turn rate assumption is fairly good. As <i> moves away from zero, the 

error is no longer distributed evenly about zero. 

Aircraft in the terminal area normally execute a standard turn. This turn 

is a 3 degree/sec. turn which is equivalent to making a complete turn in two 

minutes. In an attempt to improve the estimate of the heading, it was assumed 

that an aircraft would reach any point x and y by first executing a 3 degree/sec 

turn followed by a straight line segment. The heading of the straight line segment 
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Figure 16. Density Function of the Heading Error After Assuming 

a Constant Radius Turn, with <!>= 60 and t = 60 Seconds, 
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Figure 17. Density Function of the Heading Error After Assuming 

a Constant Radius Turn, with $= 20 and t = 60 Seconds. 
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Figure 18. Density Function of the Heading Error After Assuming 

a Constant Radius Turn, with $= 0 and t = 60 Seconds. 
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Figure 19. Density Function of the Heading Error After Assuming 

a Constant Radius Turn, with <!>= -20 and t = 60 Seconds. 
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Figure 20. Density Function of the Heading Error After Assuming 

a Constant Radius Turn, with 3*= -60 and t = 60 Seconds. 
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was assumed to be the heading at the point. If the point could not be reached by 

this assumed flight path, then a constant radius turn was assumed. Figures 22 

through 28 show the distribution of the error in making this assumption. It can 

be seen that assuming a 3 degree/sec. turn is better than assuming a constant 

turn rate since in all cases the mean error is very near zero. 

The expected dwell time at some point x and y is therefore 

E{6} = — 2 ~ 3 1 ( 4 , 2 6 ) 

( V i + v 2 _ 2 V i v 2 c o s ( y s 

where 0 is calculated by assuming that each aircraft reached the point by making 

a 3 degree/sec. turn followed by a straight line. 
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Figure 22. Density Function of the Heading Error After Assuming 

a Two Minute Turn, with $>= 120 and t = 60 Seconds. 
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Figure 23. Density Function of the Heading Error After Assuming 

a Two Minute Turn, with <£= 6Q and t = 60 Seconds. 
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Figure 24. Density Function of the Heading Error After Assuming 

a Two Minute Turn, with $= 20. and t = 60 Seconds. 
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Figure 25. Density Function of the Heading Error After Assuming 

a Two Minute Turn, with $ = 0 and t = 60 Seconds. 
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Figure 26. Density Function of the Heading Error After Assuming 

a Two Minute Turn, with <£= -2.0 , and t = 60 Seconds. 
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Figure 27. Density Function of the Heading Error After Assuming 

a Two Minute Turn, with <£= -60 , and t = 60 Seconds. 
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CHAPTER V 

RESULTS AND CONCLUSIONS 

Numerical Results 

The last chapter derived the equation to be used to calculate the collision 

probability and this probability was used to establish the threat prediction criterion 

given by equation (2.9). To determine the benefit in equation (2.7) it was necessary 

to find the difference in the collision probability with and without an avoidance 

maneuver. 

The avoidance maneuver considered for this work is the climb maneuver 

specified by the ATA(24). This maneuver consists of maintaining a vertical accele-

ration between 1/8 g and 1/4 g until a climb rate of 2000 ft/min is reached. The 

2000 ft/min climb rate is maintained until a 650 ft. separation is reached and the 

aircraft then levels off. Since the termination of the maneuver depends on the 

vertical separation of the two aircraft, the maneuver is actually a stochastic pro-

cess. The determination of the collision probability is much more difficult to 

calculate than the case where the avoidance maneuver is deterministic. Therefore 

the maneuver used was a . 1875 g vertical acceleration until a climb rate of 2000 

ft/min was reached. The 2000 ft/min climb rate was continued and no leveling 

off took place. This maneuver is deterministic since the termination of the maneu-

ver does not depend on the vertical separation of the two aircraft. The collision 

probability resulting from the maneuver with leveling off should be almost identical 
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to the collision probability resulting from the maneuver without leveling off. This 

is because the collision probability after a 650 ft. climb is very small. It would 

therefore make little difference in the collision probability if the aircraft levels 

off or keeps climbing. 

The independent parameters on which the collision probability depends are 

(Figure 29): 

S? 
b

> , 

(x,y,z) 

fy 

4 

Figure 29. Independent Variables on Which the Collision 

Probability Depends. 

V 1 ' V 2 
— airspeeds of the aircraft 

6 — heading of the intruding aircraft relative to the 
protected aircraft 

x,y, z — position coordinates of intruder relative to the 
protected aircraft 

For each point in this six-dimensional space, it is possible to find the 

benefit associated with the avoidance maneuver. The alarm criterion is established 

by locating the surface in this six-dimensional space where the benefit is equal to 

the penalty. Since the avoidance maneuver is always the same, the penalty is the 



same. The alarm surface would therefore be a surface of constant benefit and, 

since the benefit is proportional to the collision probability, this surface would be 

one of constant probability. 

It was beyond the scope of this work to include a thorough investigation of 

the constant benefit surface. It was thought desirable however to include some r e -

sults so that this could be compared at least in part with previous criteria. The 

six-dimensional space was reduced to a three-dimensional space by holding three 

of the independent variables fixed. The two airspeeds were fixed at 160 knots and 

the relative altitude was held at zero. The three remaining variables x, y, and 

9 were expressed in terms of three new variables: 

\i — separation at closest approach for unaccelerated 
flights (miss distance) 

t — time to closest approach 

0 — relative bearing of intrude with respect to the 
protected aircraft 

These three variables were then varied to obtain the collision probabilities 

in Figures 30 through 32. Each figure is for one value of the relative bearing, j3. 

The vertical axes are the collision probability with no avoidance maneuver minus 

the collision probability with an avoidance maneuver. The range was used for the 

horizontal axes instead of t so that the comparison of this criterion with other 

criteria would be easier. Since it was found that the collision probability was zero 

when an avoidance was initiated, the vertical axes are also equal to the probability 

of a collision with no avoidance maneuver. Lines of constant \x and lines of 
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constant t are also shown. 
V 

As can be seen in each figure, for a constant miss distance, the probability 

increases as range increases until a maximum probability is reached. The proba-

bility then decreases as range increases further. It can also be seen that the proba-

bility decreases as the miss distance increases. This corresponds to the general 

results one would intuitively expect. 

In order to determine the warning criterion, it is necessary to select some 

probability to be used as a threshold value. In choosing this value it should be kept 

in mind that the collision probability here is not the actual collision probability 

when the aircrafts are under radar control but instead is the collision probability 

that would result in the event of a system failure. A value for the probability thres-

hold of . 01 was chosen and the resulting alarm region was plotted in Figure 33. Also 

present in the figure are the curves which show the alarm region defined by the tau 

criterion and the modified tau criterion. The lines for r and r were for a con-
m 

stant relative bearing of fi = 0. All the criteria have the same general shape but 

the region covered is quite different. The tau and modified tau criteria with r and 

r equal to 30 sec cover a much larger miss distance than does the constant proba-

bility criterion. It would therefore be likely that the alarm frequency would be 

higher. 

The constant benefit criterion as shown in Figure 33 utilizes the relative 

bearing in determining when to give the warning. However, the curve for j3 = 0 

appears to enclose the curves where fi^ 0. It can also be seen that the curve for 

# = 0 still covers a much smaller region as do the curves for r and r • It 



3000 

2500 A 

2000 4 

\-
u) 
ul 
u 1500 
I 

s 
Z 

5 
k iooo 
CO 
CO 

500H 

y| 

T *30$«c 

RANGE - NAUTICAL MILES 

Figure 33. Comparison of Collision Avoidance Warning Criteria. 



79 

would be possible to obtain a significant false alarm reduction by using the curve 

for j3= 0 and the relative bearing would not be required for the criterion. 

Future Research Possibilities 

Collision avoidance systems and warning criteria can be compared by 

determining for each system its cost and benefit. The cost associated with each 

of the systems are twofold. One part of the cost is the monetary cost of the sys-

tem, and another is the cost associated with the frequency of warnings and severity 

of maneuvers. The monetary cost is perhaps the easiest to obtain and can be 

found by estimating the equipment cost. The alarm cost would have to be estab-

lished by assigning to each maneuver, if more than one maneuver is considered, 

a relative cost indicative of the disruption the maneuver would cause. The alarm 

frequency could be determined by considering the CAS operation in a realistic 

environment. The maneuver severity cost, weighted with its frequency of occur-

rence, would then be summed to give a single cost which when combined with the 

monetary cost would represent the total cost of that particular CAS. 

The single benefit of a CAS is the reduction in the number of midair colli-

sions. To determine this benefit it is necessary to know what situations have in 

the past and what situations will in the future contribute to collisions. It would 

then be possible by way of a simulation to determine how much the CAS reduces 

the number of collisions. By using these procedures for calculating the cost and 

benefit of a system, the different CAS, incorporating various warning criteria, 

can be compared and the appropriate system chosen. This type of analysis has 
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been conducted in the past to compare previous systems and criteria, but they 

need to be extended and refined so that a rational evaluation of the systems can 

be made. 

Before the criterion developed in this research can be evaluated, the cr i -

terion must be developed in its entirety. One reason the criterion was not com-

pletely developed was because the number of independent variables on which the 

collision probability was based will not necessarily be the same as the number of 

independent variables available from the hardware. If the six variables related 

to position and velocity as used in this work are known, the criterion can be 

determined using these six state inputs as has been described. If the information 

for all six states is not known, then the criterion must be based on the information 

that is known. There are two ways to determine the criterion in a reduced dimen-

sional space. 

Let q. be a point in any state space with less than six states where all of 

the states can be determined if the six states are known, and let Q. be the set of 

points in the six dimensional space that correspond to q.. To determine the colli-

sion probability f or q., it is necessary to determine the collision probability for 

every point in Q. and to combine these collision probabilities with the probability 

that that point in Q. will occur in a realistic environment. Therefore it is necessary 

to have some statistical information in addition to the statistical information neces-

sary to calculate the collision probability in six dimensional space. If these 

additional statistics are not available, then the appropriate procedure (see for 

example Tribus (25) Chapter 4) would be to use the best guess for the unknown 
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distribution of points in Q.. A third and somewhat less desirable alternative would 

be to use the highest collision probability from all the points in Q. for the collision 

probability of q.. This last method would of course lead to a higher alarm rate. 

The density function of the aircraft position and velocity were used in their 

numerical form for this research. It would be advantageous to obtain an analytical 

curve fit for this data for reasons of easier accessibility and flexibility in its use. 

Also an analytical curve fit would allow extension of the actual data where no data 

points were observed in the small sample. 

The method of determining the collision probability as described in this 

research could also be applied to other problems. For example, this collision 

probability could be used as a basis for evaluating avoidance maneuvers even if the 

criterion based on this probability is not used. 

Application of the Methodology 

This research has applied a rational framework for a particular design 

problem. This is one of many similar problems where, historically, intuitive 

judgement has been favored over analytical methods to make design decisions. 

Many of these decisions, like this one, require a tradeoff be made between bene-

fits and costs. If the benefits and costs do not both have obvious dollar equivalents, 

the tendency is to rely on judgement. In this case, benefits are reduced loss of 

human life and limb and the costs are both dollar cost and inconvenience. When 

life and limb are involved, the tendency to rely on judgement is even greater 

because one hesitates to put a dollar value on such cost. 

Consider an example of two collision avoidance systems with the same dollar 
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cost and the same inconvenience cost. Suppose one system reduces the probability 

of a collision by a greater amount than the other. It is clear that failure to apply 

analytical methods might tragically result in the intuitive choice causing the larger 

loss of life and limb. 
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