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over classic monolithic controllers. For instance, it can be developed in stages, each new layer

building on the last. It can also be split among several processors or agents, so as new

capabilities are required new hardware can be easily added. Furthermore, its performance

degrades gracefully - if a single agent fails the robot continues to function, albeit at a lower

level of competence.

However, in order to achieve these goals the system must be decomposed following certain

guidelines. First, the internal workings of each agent should be isolated from all other agents.

This improves the modularity of the system and helps prevent implementation dependencies.

Second, all decisions should be based on spatially and temporally local information. This keeps

the robot from relying on incorrect models of its dynamically changing world and allows it to

operate with incomplete sensory input. Unfortunately, these restrictions make it nearly

impossible to use conventional techniques to perform tasks requiring spatial reasoning. The can

collection task is particularly difficult because it requires three different types of spatial

knowledge. The robot must be able to navigate through its environment, recognize the shape of

a can, and determine how to move its arm for grasping. To build a functional robot we had to

develop new ways of thinking about these operations.-The rest of this report details the

development of suitable strategies, discusses principles for achieving a satisfactory task

decomposition, and examines the limitations of such a system.
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A Colony Architecture
for an Artificial Creature

by

Jonathan Hudson Connell

ABSTRACT

In this report we describe a distributed control system for a mobile robot which operates in an

unmodified office environment occupied by moving people. The robot's controller is

composed of over 40 separate processes which run on a loosely connected network of 24

processors. Together this ensemble helps the robot locate empty soda cans, collect them with

its arm, and bring them back home. A multi-agent system such as this has many advantages

over classic monolithic controllers. For instance, it can be developed in stages, each new layer

building on the last. It can also be split among several processors or agents, so as new

capabilities are required new hardware can be easily added. Furthermore, its performance

degrades gracefully - if a single agent fails the robot continues to function, albeit at a lower

level of competence.

However, in order to achieve these goals the system must be decomposed following certain

guidelines. First, the internal workings of each agent should be isolated from all other agents.

This improves the modularity of the system and helps prevent implementation dependencies.

Second, all decisions should be based on spatially and temporally local information. This keeps

the robot from relying on incorrect models of its dynamically changing world and allows it to

operate with incomplete sensory input. Unfortunately, these restrictions make it nearly

impossible to use conventional techniques to perform tasks requiring spatial reasoning. The can

collection task is particularly difficult because it requires three different types of spatial

knowledge. The robot must be able to navigate through its environment, recognize the shape of

a can, and determine how to move its arm for grasping. To build a functional robot we had to

develop new ways of thinking about these operations. The rest of this report details the

development of suitable strategies, discusses principles for achieving a satisfactory task

decomposition, and examines the limitations of such a system.
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1. Introduction

In this report we describe a real, fully-functional mobile robot which operates in an

unstructured environment. The robot, called Herbert, is 18 inches in diameter and stands about

4 feet tall (see figure 1-1). It has a three-wheel drive configuration which allows it to turn in

place and go forward and back. There are two rings of 16 infrared proximity sensors on the

body for obstacle avoidance, and a flux-gate compass for navigation. To provide more

resources to control, there is also a 2 degree of freedom arm on board with a parallel jaw

gripper and a variety of local sensors. To provide a richer sensory input, the robot also has a

high resolution laser range finder for locating and recognizing objects. The robot is completely

autonomous and has all batteries and computers located on board.

Herbert has a single task: to collect empty soda cans. It starts by wandering around its

environment and searching for cans with its light striper. When it finds a promising candidate,

it carefully approaches and aligns itself with the target. Next, the robot releases its arm which

gropes around using local sensors and retrieves the can from wherever it is sitting. When the

robot has retrieved the can, it slowly navigates back to its home position and deposits its

trophy. Finally, the cycle repeats and the robot ventures forth once again on its quest for cans.

The construction of this robot required us to integrate the spatial reasoning problems of

recognition, manipulation, and navigation into a complete, operational system. This endeavor

was greatly simplified by the use of a novel distributed control system. Instead of having a

centralized sequential program, the robot is controlled by a large collection of independent

behaviors. Each of these behaviors contains some grain of expertise concerning the collection

task and cooperates with the others to achieve its task.

1.1 The task

The primary goal of our robot is to collect cans. This task was chosen partly because cans are

such easy objects to identify. They are all the same size, rotationally symmetric, and typically

found in a vertical orientation. This is important because it allows us to separate the variability

of the environment from the variability of the grasped object. By simplifying the task of object

identification we can concentrate instead on the difficult problem of moving through an

unknown, cluttered workspace. Another reason for chosing this task is that it can easily be
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mapped to a number of different applications. For instance, instead of finding cans in a

laboratory, the robot might be collecting rocks on the surface of Mars. In a more domestic

capacity, a similar robot might be used to clean up the floor of a child's room. The cognitive

and motor skills involved in all these tasks are similar.

Still, before extending our system to other domains, we must solve at least one instance of the

basic problem. The usual approach would be to start by describing our target can as a cylinder

of certain dimensions. We would then use some sort of remote sensing coupled with a

recognition algorithm (e.g. [Grimson and Lozano-Prez 84; Lozano-Pdrez, Grimson, and

White 871) to determine the object's location and orientation. We can not just enter the relevant

parameters via a keyboard because the actual placement of the can is part of the variability we

wish to retain. After finding the can, we would next construct a three-dimensional model of the

environment surrounding it. To do this we could use any of a number of techniques available

for acquiring range images (e.g. [Echigo and Yachida 85; Vuylsteke and Oosterlinck 86]).

However, all these methods yield only 2 1/2 D sketches [Marr 821. To build a proper three

dimensional model, we need to take multiple images from different directions and then fuse

them into a single coherent description [Ayache and Faugeras 87; Porrill 88]. Once this was

done, we would employ a path finding algorithm to plan a trajectory from the start point to our

target (e.g. [Lozano-Prez 86]) and then pass this path to a servo system to give us precise

control of the robot's joints.

Unfortunately, the approach described above relies on extensive, accurate world modelling.

The sophisticated sensory capabilities needed to support this endeavor are typically both

expensive and difficult to implement. Also, many of the best sensing techniques require special

lighting or impose restrictions on the surface properties of objects. This precludes their use in

general, unstructured environments. The situation is further complicated by the fact that

sensors mounted on a moving vehicle are unlikely to remain calibrated for any length of time.

Furthermore, even if we could obtain clean data, the sensor fusion techniques necessary for

building solid models are still under development. Finally, we are still left with the problem of

bringing the can back to a central repository. Even the most advanced navigation systems (e.g.

[Moravec and Elfes 85; Chatila and Laumond 851) make heavy use of world modelling. Thus

they are fraught with the same difficulties as the identification and manipulation phases.

We believe the difficulty with the traditional approach stems from the centralized nature of

world models and path planners. We are forced to carefully funnel all the sensory inputs into a

highly distilled form and then use this "snapshot" to plan an essentially ballistic trajectory for
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the arm. To overcome this limitation we follow Brooks [Brooks 86] and adopt a "vertical"

decomposition of our control system. Instead of having a single chain of information flow -

perception system linked to modelling system linked to planning system linked to execution

monitor - we have multiple paths. Each of these paths is concerned only with a certain subtask

of the robot's overall operation, such as avoiding collisions, searching for cans, and achieving

a firm grasp. We refer to such paths as "agents" and designate the specific functions they

perform "behaviors".

The advantage of having multiple parallel control paths is that the perceptual burden is

distributed. Within each path we still have perception, modelling, planning, and execution. But

these components do not have to be general purpose; they only have to pay attention to those

factors relevant to their particular task. For example, if the task is avoiding walls, then the

associated control system does not need to know the color of the wall, its texture, its

decomposition into generalized cylinders, etc. Similarly, we adopt a "reactive" style of control

in which each commanded motion is based solely on the robot's current sensory information

and goals. For instance, if an obstacle is encountered we simply instruct the robot to proceed

parallel to the surface of the obstruction until it vanishes. Thus, we do not have to make a

complete plan at the outset, but can instead improvise as we go along.

1.2 Animal stories

As a contrast to the usual robotics approach, let us examine some work from the field of

ethology, the study of animal behavior. Much effort has been devoted to finding the "releasing"

stimulus for particular behavioral pattern. By carefully controlled studies researchers are able to

determine what features of the situation an animal is paying attention to. Typically, creatures do

not have very detailed models of the objects they interact with. For instance, when baby

seagulls detect the arrival of one of the parents, they raise their heads, open their mouths, and

start squeaking in a plea for food. However, the baby birds do not recognize their parents as

individuals, nor are they good at distinguishing seagulls from other animals or even inanimate

objects [Tinbergen 51]. As shown in figure 1-2, the birds respond as well to a very simple

mockup as to the real parent. The important condition seems to be the presence of a pointed

object with a red spot near its tip. In their natural environment, this model works just fine

because the real parents are the only objects which fit the bill. The same sort of minimal

representations have been discovered for many other animals as well. This suggests that we
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might be able to build reasonably competent mobile robots without investing a large amount of

effort into building detailed representations.

red spot

Figure 1-2. Animals seem to use incomplete models for many activities. Baby seagulls respond just as well to
the mockup on the right as they do to their own parent (left). The critical features are that the object must be
pointed and must have a red spot.

Another, more complex example involves the coastal snail, Littorina. In analyzing a behavior

pattern researchers often tease it apart into components and describe it in terms of a number of

competing urges or "drives". For instance, the coastal snail has some behaviors which orient it

with respect to gravity and other behaviors which control its reactions to light [Fraenkel 80].

Sometimes these behaviors are in conflict and the creature is forced to choose one over the

other. The actual behaviors used, and the manner in which they are switched in and out, can

give rise to some interesting emergent properties. In fact, the snail can perform some seemingly

sophisticated navigational tasks with a relatively simple control structure. Like Simon's ant

[Simon 69] the complexity of a creature's action are not necessarily due to deep cognitive

introspection, but rather to the complexity of the environment it lives in. Our robot, Herbert, is

built to take advantage of this sort of phenomenon and is named in honor of the originator of

the idea.

But let us get back to the particulars of the snail. Figure 1-3 shows the creature's entire

repertoire of behaviors and summarizes the postulated interactions between them. Snails have

two basic reflexive behaviors which we will refer to as UP and DARK. UP tells the snail to

always crawl against the gravitational gradient while DARK tells it to avoid light by crawling

directly away from the source. It should be noted that neither of these "instincts" are complete

functions: there are some input configurations for which they do not generate an output

command. For instance, if there is no appreciable intensity difference between directions, the
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DARK behavior is quiescent and the snail crawls straight upward. Similarly, when the snail is

on a more or less flat surface, UP is inactive and the snail's direction of travel is determined

solely by the illumination gradient. Overall, however, DARK is the stronger behavior. h a very

bright light source is present, the snail will crawl away from it even if this means going

downward. In general, however, the commands from the two behaviors are combined and the

animal crawls at a compromise angle. In figure 1-3 the interaction between DARK and UP is

shown by suggesting that the output of DARK replaces the output of UP (circle with arrow

entering it). However, this diagram is merely intended as a schematic representation of the

interaction. The animal's nervous system might achieve this merger in some totally different

way.

dry STOP

no water DAFRKER

water upside BRIGHT

down

DARK

LI' crawl

Figure 1-3. The coastal snail may be controlled by a fixed hierarchy of behaviors. The combined effects of these
behaviors enables the snail to navigate to its feeding area.

Surprisingly enough, if one turns the snail upside down, instead of avoiding light, it will now

head toward bright areas. We can imagine that this is due to a third behavior, BRIGHT, which

provides the animal with a positive phototaxis. Since BRIGHT ends up controlling the motion

of the animal, it must ovride the output of DARK. Yet this new behavior only becomes

active, "potentiated", when the animal is inverted. Otherwise the creature acts solely on the

basis of the lower level behaviors. This is an example of a behavior which is more than a

situation-action type reflex. It is a control pattern that is switched on in reaction to

environmental conditions beyond those necessary for the orientation response. It has been

observed, however, that this light seeking behavior occurs only underwater. If the animal is in

air it will invariably seek out dark areas, even if it is upside down. This can be modelled by
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adding yet another behavior, DARKER, which, like BRIGHT, is only active in certain

situations. When the creature is out of the water, this behavior takes precedent over all the other

light sensitive behaviors. The actual reflex response embedded in this behavior is nearly

identical to the one in DARK but somewhat stronger. At high illumination levels DARKER will

halt the snail in place, whereas on a sufficiently vertical slope DARK would have allowed the

animal to crawl toward the light.

The last behavior, STOP, halts the snail when it encounters a dry surface and thus keeps it

from wandering too far inland. Unlike the other behaviors discussed, it has a completely

specified reflex component. Yet it is of a special type, called a "fixed action pattern". This

function does not depend on any sensory input at all, it simply produces the same output every

time. This behavior's potentiation, on the other hand, does depend on sensory stimuli. In this

case the halt response is only evoked when the snail fails to detect dampness underneath. Our

catalog of behavioral primitives for modelling the operation of an animal is now complete. In

our descriptive "language" the motor control signals for an animal are generated by the reflex

component of a behavior and can either be fixed or vary based on sensory information. In

addition, some behaviors also have a gating component which activates the reflex only under

certain conditions. Finally, the results of all the behaviors are combined, often by exclusive

selection, to produce the actual motor command.

Fraenkel explains how this collection of behaviors aids the creature in its pursuit of food.

These particular snails eat algae which grows in the cracks between rocks slightly above the

tideline. The behaviors we have discussed help the snail reach this food source and prevent it

from being cooked in the sun. Imagine, as shown in the left of figure 1-3, that the snail starts

off on the ocean floor a short distance off shore. Since the rocks are slightly darker than the

surrounding sand, it crawls along the bottom towards them. When it reaches an outcropping it

starts climbing the face. If it comes across a notch in the rock it is first drawn inward by

negative phototaxis. Upon reaching the end, it then starts climbing the rear wall and eventually

reaches the ceiling. Here, it becomes inverted and thus moves outward toward light again.

Having successfully overcome this impediment, the snail continues climbing toward the

surface. When it reaches the edge of the water, if the sun is too bright, it stops and waits.

Otherwise, it ascends still further until it reaches a dry area or comes across a crack. As before,

the dark seeking behavior will take over and directs the snail into any crack encountered.

However, since it is now above water, the snail does not turn around when it reaches the back,

but instead stays deep in the crack. It presumably stays there until a wave washes it back into

the sand.
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The snail thus arrives at the region of maximum algae concentration even if it has to negotiate

major obstacles along the way. Yet it does this without any conscious knowledge of its

purpose. It has no understanding that it is trying to reach the first crack above the waterline, it

merely acts as it was built to. We have designed our robot, Herbert, based on this same

principle. As with other "creatures", he can not be told what to do, he simply behaves

according to his nature. If we want Herbert to do something else, like deliver mail, we would

build a different robot. Fortunately, many of the underlying behaviors necessary for these two

tasks are similar so we would not have to start from scratch. Still, there is no way to directly

tell the robot which soda can you want it to pick up or where you want it placed. The best we

can do is start the robot off near the desired return site.

parallel. Each of these agents is responsible for some small part of the robots ask and compete to control the

robot's actuators.

1.3 Design principles

Our approach to robot control is derived from the ethological perspective. We visualize a whole

colony of locally autonomous agents which coordinate their actions to drive the robot. Our

agents are fairly fine-grained; there are tens of agents all operating in parallel rather than a

tightly linked set of two or three specialized sub-programs. Graphically, the mind of our robot

is a schizophrenic collection of impulses that compete for control of the body. This is similar,

at least in spirit, to Minsky's Society of Mind [Minsky 86]. There are many features which
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makes such systems attractive. The primary one is that, should an agent fail for any of a

number of reasons, the whole system exhibits only a slight degradation in competence. The

second advantage of multi-agent systems is that they are more easily extended than monolithic

centralized controllers. For instance, if we are reasonably careful about interactions between

behaviors we can incrementally augment the system's capabilities by simply adding new

agents. Furthermore, since there are no central bottlenecks or shared resources to saturate, as

we add agents we can also add more hardware. This lets us handle the increased demand for

computing power without compromising the performance of the rest of the system.

However, from our earlier experiences with Brooks's subsumption architecture [Brooks 86],

we discovered that to reap these benefits the robot's task must be broken up carefully. First, it

is critical that the various agents be mutually independent. It is a violation of modularity for one

agent to depend on the internal structure of another as this would preclude replacing an agent

with a new improved version that was implemented differently. It would also prevent us from

compiling agents down to more efficient units unless these new units left all the proper internal

signals accessible. Most importantly, it would force us to stick with our original task

decomposition, even if it later became unwieldy. Typically these control systems are built by

successively adding new groups of behaviors on top of the existing set. Given this structure,

suppose we reorganized the functions of several lower level agents. Many of the higher level

agents might then have to be changed, too, because the lower level subunits they rely on would

no longer be available.

The other guideline for proper partitioning is that all subtasks should require only local

information to be successfully completed. This follows from the fact that, in practice, the

sensory information available to the robot is usually so poor that detailed representations are

nearly impossible to build. Furthermore, since the larger details of the task are obscured,

algorithms based on locally perceived features of the situation are likely to be more robust in

complex, crowded environments. For similar reasons, decisions should be temporally local as

well. It typically does not work to take a "snapshot" of the world, devise some action sequence

using this information, and then blindly follow this plan. For instance, in plotting a trajectory

through space certain obstacles may not be evident at the outset, other obstacles may enter the

path as the robot moves, and control errors may accumulate to the point where the robot is

operating in a largely imaginary world. To have any hope of success the execution of the plan

must be monitored along the way, and corrected as new sensory information becomes

available. In the limit, in a highly dynamic world such a plan would have to be reformulated at

each instant anyhow.
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These principles, independence and locality, have important ramifications for system design.

Of the two, independence is the more stringent restriction. The most obvious consequence of

this choice is that there can be no complete internal world model. First, with a distributed

system there would be no good place to store such a data structure. Furthermore, because all of

our agents are independent and have no communication interconnections, we can not even

designate one agent to hold this information and let other agents query it. This means

blackboard based approaches are inappropriate. The last alternative is to have each agent build

and maintain its own version of the world model. While this would be possible, it certainly

does not seem practical. Also, there is the danger of skew between the copies. The whole point

of a centralized world model is to allow the robot to deal with his environment in a coordinated

way. Now, however, if there are multiple copies of the world model there is no guarantee that

they will be identical. Thus, we lose one major advantage of the world model anyhow.

Our solution to this conundrum is to use the world as its own representation. We came to this

conclusion by considering what world models are used for. Typically one integrates all the data

from a variety of sensors to recreate internally a miniature replica of the current surroundings.

Then various subroutines use this diorama to measure particular quantities and ascertain certain

relationships in order to decide what action to take. Why expend all this effort to build up a

model and then only use small pieces of it. Why not just measure the interesting quantities

directly from the world? In other words, use the same action analysis routines but substitute the

perceived world for the representation. No longer do we have to extract every iota of meaning;

instead, each agent merely computes as much as it needs to make its control decisions (cf.

{Wehner 87]).

One often cited reason for having a world model is that it allows us to combine information

from different modalities, or from the same modality over time. We can still do this in our

system, but we are relieved of the burden of making such mergers fine-grained and globally

consistent. Sometimes, however, even this effort is not necessary. With a clever

decomposition of the problem, we may only need to look at a single sensor to control some

parameter of a system (such as Raibert's balancing robot [Raibert 861). We can then combine a

number of these simple systems through behavior fusion to achieve the same result as would

have be achieved with sensor fusion.

The second requirement, spatio-temporal locality, also dictates a "reactive" style of

programming. The robot responds solely to events in its world; it is not driven by some

14



internal schedule. We have taken to this to an extreme and made the radical assumption that an

interesting robot can be built using no state. The primary benefit of this is that we never have

to cold-boot our system to wipe out erroneous information. However, if we are not careful, the

robot suffers from myopia and loses the overall picture of what it is supposed to be doing. If

we were to relax this stricture, the robot could use a history of past events to disambiguate

locally identical stimulus patterns. It could also use more global criteria to choose between

actions, even if the relevant context information was not directly perceptible at the crucial

moment. Yet, to confidently add state to the system requires placing a lot of trust in the robot's

sensory capabilities. Since later actions and perceptions are influenced by state, we want to

verify that the remembered data is based on solid readings and is not just a sensory glitch.

Furthermore, since the robot may not be able to observe the same features in the future, we

must have faith that it has interpreted the stimulus correctly. Unfortunately, predicting how a

given sensor will react when placed in a real environment is a notoriously difficult problem.

Figure 1-5. There are many sources of state external to the robot that can be used for the purposes of memory,
sequencing, and communication between agents.

While we attempt to keep the amount of internal state to a minimum, this does not mean that the

creature can not behave as if it had memory. As shown in figure 1-5, there are many forms of

state external to the robot's control system that can be coopted for productive functions.

Variables such as the arm's position, the base's speed, and the robot's orientation relative to

obstacles in the environment are all potentially useful. These conditions can be used to indicate

and perpetuate the current operating mode of the robot, and to signal transitions between

different activities in a sequence. Although we forbid agents to talk directly to one another,
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often one agent will maneuver the robot into a situation which will cause the activation of

another agent. In this respect, these variables also allow agents to communicate through the

world and coordinate their actions.

1.4 Contributions

This report makes several contributions to our understanding of mobile robots and ways to

control them. The most important accomplishments are:

Functioning Robot - A complete, operational robot was built which successfully

accomplishes a difficult task in an unstructured environment.

Distributed Architecture - The structure of a practical and theoretically interesting

distributed architecture was completely specified.

Limitations of Locality - A number of experiments were performed to investigate the

power of spatio-temporally local control schemes.

Limitations of Arbitration - An analysis of a simple fixed priority behavior arbitration

scheme was presented and its flexibility was analyzed.

Useful Algorithms - A number of novel recognition, manipulation, and navigation

algorithms were developed and implemented.

In addition, there are a variety of other items which should prove of interest to other robot

designers. Among these are:

Hardware Spin-offs - A large number of sensors and other hardware subsystems were

designed and characterized. These include several types of infrared proximity sensors, a

simple laser range finder, a low power arm with a large workspace, a network of parallel

processors, and a compact pipe-lined vision system.

Examples for Analysis - Several large control systems were constructed for various

aspects of the can collection task. These are concrete instances of distributed systems

which can serve as models for other experimenters, and as examples for theoreticians.
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1.5 Roadmap

The rest of the report is broken into three major portions. Chapter 2 sets forth our parallel

control system and compares it to other existing systems. Chapter 3 describes the robot's arm

and details how it finds and grasps cans. Chapter 4 is concerned with the laser light-striper and

presents the recognition algorithms used and explains how the vision subsystem is interfaced to

the rest of the robot. Chapter 5 examines the local navigation and strategic control components

of the robot and documents their performance. Finally, Chapter 6 summarizes our empirical

findings, discusses the system's limitations, and suggests avenues for future research.

17



2. Architecture

The control system we have developed for our robot is modelled after the behavioral network

of the snail as presented in Chapter 1. Here we first specify the exact function of each of the

basic components of our system and show how they evolved from an early version of Brooks'

subsumption architecture [Brooks 861. Next, we present the multi-processor hardware used to

implement the control system onboard our robot. Finally, we compare this new architecture to

similar systems which have been used to control mobile robots.

P 3" ' M25

PI-- M3 A

A2

Figure 2-1. Our control system consists of a number modules (the M's), each of which implements a particular
behavior. These module use the available sensor primitives (the P's) to directly generate commands for the
actuator resources (the A's). The outputs of different modules are combined through a fixed arbitration network,
represented here by circles.

2.1 What we use

A typical example of the architecture is shown in figure 2-1. It consists of a number of modules

(boxes), each of which implements some small piece of behavior. These are behaviors

corresponds to primitive activities such as the positive geotaxis and negative phototaxis

discussed in the snail example. In this sense, modules are complete, self-contained control

systems which use various types of perceptual information (Pn's) to generate appropriate

commands for the creature's actuators (An's). Competing commands are merged using a

hardwired priority scheme (circles) which is basically a series of switches. Only one module at
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a time can gain control of the contested actuator resource. Notice that, aside from the arbitration

network, each module is independent from all the others. There are no direct channels between

modules nor is there any central forum for communication. In particular, there is nothing like

the globally accessible and modifiable short-term memory buffer typically found in a forward

chaining production system.

The communication that does occur in this architecture is either from the sensors to the

modules, or from the modules to the arbitration nodes. These messages travel over the "wires"

shown in the diagram. Conceptually they are continuous signals that always reflect the current

value of a command directive or sensor reading. For implementation reasons, however, we

simulate them using discrete packets of information. When active, modules continually send

packets detailing the action they desire the robot to perform. The receiver of such a stream acts

on the basis of a particular packet only until the next packet arrives. A packet therefore has a

finite, but very limited, temporal extent. Although each module must remember each packet for

a small amount of time, theoretically the communication scheme requires no saved state.

Furthermore, if packets arrive with sufficient frequency, the system is essentially continuous.

So far we have discussed the mechanics of communications but have said nothing about their

content. In general, the raw sensor signals undergo various types preprocessing, either inside

the module or beforehand. Typical transformations include amplification, thresholding, spatial

differentiation, and noise elimination. Likewise, the basic outputs of modules are usually not

actual motor currents or joint velocities. They are a shorthand for one of a few standard motion

patterns which are expanded by a lookup table before being sent to an associated servo system.

Again, these interpretation steps can occur either internally or as a separate post-processing

stage. Our architecture is designed primarily to fill the gap between low-level sensor

information and structured motor actions. In the examples given we have been careful to point

out exactly what types of pre- and post-processing occur.

Now assume for a moment that we already have a number of modules and want to specify how

they should interact. Two special constructs are provided for this purpose. First, a module can

inhibit the output of another module (circle with an "I") and so prevent it from generating any

outputs. Second, the output of one module can suppress the output of another (circle with an

"S"). In the case of suppression, the output from the dominant module overrides the output of

the inferior module. Not only are the inferior module's commands blocked, but the dominant

module actually substitutes its own commands in place of original commands. This is a
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particularly powerful construct because it lets more competent behaviors take over from

general-purpose behaviors when the circumstances warrant it.

Figure 2-2 shows the effects of suppressor and inhibiter nodes. Since each output is really a

stream of packets, they are represented here as a series of spikes over time. When the dominant

module sends packets (top line) into an inhibition node, the inferior module's packets (second

line) no longer make it to the output (third line). The dominant module also blocks the inferior

module's packets in a suppressor node. However, in addition the dominant node injects its

own packets (fourth line) onto the wire normally used by the inferior module. If we were

dealing with true signals, the dominant module would lose control of a node as soon as it

stopped generating an output. Yet with our serial encoding scheme there is short gap between

packets in a stream. To compensate, we require each node to remain active for a small amount

of time after the last triggering input. If a another packet does not arrive before this interval

expires, the node switches back and the inferior module's commands pass through unaltered.

Thus, conceptually, arbitration nodes contain no state.

Dominant

Inferior

Inhibition , " " -

node S

Suppression -i-'IJ IIJ - -

node

Figure 2-2. These are the timing diagrams for inhibition and suppression nodes operating on streams of
packets. Notice that the suppressor node substitutes the stream from the dominant module (the dark colored
blips) in place of the infc'ior module's output.

Modules themselves can be considered roughly equivalent to production rules or situation-

action responses. Their internal workings, shown in top half of figure 2-3, consist of two

major parts which together give rise to each module's unique behavior. The first part, the

transfer function, defines what sort of action to take based on the sensory input to the module.

For instance, recall the control system for the snail discussed in Chapter 1. The mechanism that

oriented the creature toward bright areas is an example of a transfer function. The other part of

a module, its applicability predicate, determines when the transfer function should generate
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commands. Again from the snail example, recall that the animal only sought light when it was

upside down. In this case the applicability predicate would be a circuit that detected inversion

of the creature. Only under these special conditions is the result of the transfer function gated to

the module's output.

Module

-----------------------

Predicate

Input~ " Transfer Functio~n -Otu

Module

I p

Initiation Mode
clause , Memory - ,

Satisfaction
clause

Input Transfer Function, Output

Figure 2-3. Inside a module the transfer function describes what action the module will take while the
applicability predicate decides when to gate these commands to the output. Sometimes the the applicability
predicate is given a small amount of state as well (bottom).

In many cases the applicability predicate is used as a goal statement and the transfer function

alters the world so that this predicate becomes false. For instance, if there is an objec t directly

ahead of the robot, a module which turns the robot to the side becomes active. Eventually, this

action causes the object to no longer be in front of the robot and thus the applicability predicate

for this module becomes false. The robot has achieved the "goal" of escaping from the situation

which triggered this turning behavior. However, not all the behaviors in our robot take this
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form. Sometimes the applicability predicate is related to a desirable goal state and the transfer

function acts to maintain this state. Other times the transfer function's action does not affect the

applicability predicate at all. The applicability predicate serves to simply switch in some new

behavior in a certain situation which may or may not persist as a result of this addition.

Sometimes, however, the robot needs to respond to events as well as situations. The

distinction we draw between these two classes is that situations are extended intervals of time

whereas events are isolated point-like occurrences. In the case where the module is to be

triggered by an event we need to stretch the duration of the applicability predicate in order to

allow the module to have time to influence the robot. For this types of behaviors we split the

applicability predicate into three parts as shown in the lower half of figure 2-3. The initiation

predicate detects the triggering event and sets the mode memory to true. The satisfaction

predicate performs the opposite function and resets the mode memory when it detects that the

goal has been achieved. We store this single mode bit in a special type of memory latch called a

retriggerable monostable. As shown in the timing diagram, figure 2-4, when its input goes

high this unit remembers one bit of information. However, if its input has been low for a preset

length of time, it automatically resets itself. This prevents possibly outdated information from

lingering on and exerting undue influence on the operation of the robot. Using this construct, it

is as if every module had a built-in watchdog timer that "booted" it at regular intervals. Of

course, if the proper termination event occurs within this interval, the satisfaction clause can

directly clear the mode bit before its timer expires.

Tt t tout 1- r i L

Figure 2-4. The timing diagram for a retriggerable monostable is shown here. This construct can be considered a
piece of state which automatically resets itself after a while.

The gating function used inside modules is actually very similar to an inhibition node. In some

sense then, the transfer function and applicability predicate can be viewed as two separate

modules. The transfer function would be a module that continuously generated commands and
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the applicability predicate would be another module that inhibited the first in most cases. When

the appropriate situation occurs, however, the applicability module would cease producing

outputs and would thus release the transfer module to act. Yet instead of pursuing this

approach, we decided to lump the two pieces together for a number of reasons. First, the

output of the two modules are of different abstract data types. For inhibition the applicability

predicate only needs to generate a single binary output, whereas the bandwidth of the transfer

function is much higher. Second, this is a recurrent pattern of interaction that is present in

many places within a typical control system. It is also just about the only place inhibition is

actually used. For our robot at least, the entire arbitration network consists exclusively of

suppressor nodes. Finally, we have found from experience that applicability predicates usually

contain most of the interesting processing. Transfer functions are otten very simple or even

invariant such as the function "go forward".

2.2 The subsumption architecture

The distributed control system we use bears a high degree of similarity to Rod Brooks'

subsumption architecture [Brooks 86]. This correspondence is natural since our approach

evolved from subsumption architecture, and represents a refinement on the same basic ideas.

Brooks himself has now adopted many of the ideas developed in this report [Brooks 89].

The major structural difference between the two architectures centers around Brooks' particular

method for decomposing his control systems into layers. Both approaches build up controllers

by incrementally adding new levels to an existing system. However, Brooks envisions this as a

uniform process over the entire system in which all aspects of control are improved

simultaneously. We regard our own architecture more as a "soup" of modules than as a

stratified heap. This difference might be summarized by saying that Brooks' layers define a

total order on the behaviors of a robot, whereas ours only define a tree-like partial order. For

instance, the controllers for different actuator resources are almost always unrelated. Even

within groups devoted to the same resource there are often several disjoint branches. Also,

contrary to Brooks' original proposition, we do not require the dominance of various layers to

follow their evolutionary sequence. A new layer might provide a weak general purpose

solution that should only be used when the more specialized lower layers do not know what to

do. In fact, we even allow the various portions of a layer to have different priorities relative to

whatever existing layers they interact with.
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Figure 2-5. This is the control system for Brooks' first robot- Higher levels spy on wires contained in the lower

levels and sometimes inject their own signals.

Moreover, in our system when dependencies between different layers occur, they involve the

function performed by a layer rather than its internal structure. By contrast, one of the prime

features of the subsumption architecture is that upper levels can "spy" on the connections of

lower levels and "inject" alternative signals onto these paths. Several of these connections are

highlighted in figure 2-5. This certainly violates our design principle which calls for

independence of modules. As mentioned before, the major problem with this style is that the

designer must view the system holistically (or just be lucky) and choose the correct

decomposition for the lower levels at the start. Otherwise the proper signals and injection

points for higher levels may not be available.
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Another divergence between our approach and that of Brooks concerns the semantics of

suppression and inhibition. In Brooks' early system each suppressor and inhibiter node has a

time constant associated with it [Brooks 861. When a higher level module commandeers such a

node, the module retains control for a prespecified length of time. This is a result of the fact

that each of Brooks' message packets is meant to provide control of the robot for some non-

trivial interval of time. To drive the robot a certain distance one would send a single "go

forward" message and then follow it, some time later, with a "stop" message. Thus, instead of

being a pure reflex response, each packet really contains a small bit of a plan. Unfortunately,

suppressor nodes do not work well with this communications protocol. As shown in figure 2-

6a, if some module (M 1) grabs a suppressor node it blocks any other commands until its task

is complete. This can prove catastrophic if the losing contender for this node (M2) generates a

packet of its own during this interval. Looking at the output of the suppressor node (R) we see

that this command is lost and never reaches the effectors. Figure 2-6b shows the same situation

using our new signal model of communication. The lock-out problem is eliminated because the

inferior module is still generating outputs when the dominant module relinquishes control.

a time b.
constant

M1 M 1 I I III

M2 M2

R I .... R IIIIII i--= =

R R

M1's 1M's

task
start done task start done

Figure 2-6. a. In Brooks' packet model, MI takes control of the suppressor node for a preset length of time. A
command generated by M2 during this period will never reach the output of the suppressor node (R). b. With
our signal model, M2 is still generating a stream of packets when Ml's task completes. Thus its request
eventually gets serviced.

In general Brooks relies much more on state than we do. In fact, his modules are explicitly

made of augmented finite state machines (AFSM's) which are basically very small sequential

programs. Modules are also allowed to include "instance" variables and time constants. Thus
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there are three classes of state: sequencing steps, variables, and timers. The variables are

undeniably state because they persist indefinitely. The timers, on the other hand, are similar to

the monostables provided by our system and thus are "safe" state. Somewhat surprisingly, the

AFSM formalism itself does not give rise to much real state. The reason modules sequence

between entries is that, by Brooks' language definition, only one operation can be

accomplished per entry. Shown below is the code for the RUNAWAY module's state machine.

The first entry, the "event dispatch", merely waits for a packet containing the digested map

information to arrive. The next entry, the "conditional dispatch", tests the resultant force vector

to see if it is big enough to prompt action. If so, the last entry, an "output", generates a

command which causes the robot to run directly away from the disturbance. Notice that

nowhere is there any persistent state.

(defmodule runaway
:inputs (force)
:outputs (command)

:states
((nil (event-dispatch force decide))
(decide (conditional-dispatch (significant-force-p force)

runaway
nil))

(runaway (output command (follow-force force))
nil)))

This module also maps fairly directly to our new language. SIGNIFICANT-FORCE-P corre-

sponds to the module's applicability predicate while FOLLOW-FORCE is its transfer function.

The remaining step in the original state machine, the event dispatch, would not be needed since

we have switched to a signal model of communication. The converse mapping from our

architecture to subsumption is also straightforward. In general, one of our modules can be

represented as a pair of state machines in Brooks' formalism. As shown below, the module

waits for a sensory packet to arrive then runs the applicability predicate on it. If the relevant

conditions are not satisfied the module jumps back to the first state and waits for another

packet. It stays in this first loop until a packet arrives which triggers the applicability predicate.

It then jumps into the second loop and emits a signal which resets the mode memory. Next it

runs the transfer function on the sensory data to generate a command output for the actuators.

Finally, it jumps back to the first state in this loop and waits for more inputs. The module will

stay in this new loop indefinitely; thus the state machine has effectively recorded the fact that

the module was once activated.
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(defmodule basic
:inputs (sensors)
:outputs (mode actuators)
: states

((nil (event-dispatch sensors start))

(start (conditional-dispatch
(APPLICABILITY-PREDICATE sensors)
renew
nil))

(wait (event-dispatch sensors check))
(check (conditional-dispatch

(APPLICABILITY-PREDICATE sensors)
renew
active))

(renew (output mode $true$)
active)

(check (output actuators (TRANSFER-FUNCTION sensors))
wait)))

Notice that every time through this second loop, the module runs the transfer function and

generates an output. However, it generates a mode memory output only if the applicability

predicate is still satisfied. We send this output to a second module which implements the mode

memory monostable. When a trigger signals arrives, this module jumps to the second event

dispatch state and starts up an internal timer. If another trigger impulse arrives during the

specified interval, the "sleep" construct is reinitialized. Thus, as long as the applicability

predicate in the first module is true (and for a short while afterward), the second module will

remain in this event dispatch state. However, when the timer finishes counting the module will

emit a single output pulse before returning to its initial state. This pulse goes to a special reset

input on the first module and forces the internal state machine to go to the first state. Thus,

when the second module times out, the first module switches out of its output producing loop

and goes back to its original testing loop.

(defmodule watchdog
:inputs (trigger)
:outputs (reset)
:states

((nil (event-dispatch trigger stretch))
(stretch (event-dispatch trigger stretch

(sleep MONOSTABLE-TIME) switch))
(switch (output reset $true$)

nil)))
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2.3 The multiprocessor implementation

On an earlier robot [Brooks and Connell 86] we tried using telemetry and off-board computa-

tion, but found this to be highly unreliable. For this reason we decided to go with all on-board

computation on this robot, Herbert. Instead of using a production system or discrete logic as

mentioned before, we chose to implement all his behaviors on a set of loosely-coupled 8 bit

microprocessors. These were designed to run both Brooks' original version of the subsump-

tion architecture and the new version presented here. Physically, these processors boards are 3

inches by 4 inches and, except for power, are completely self-contained. The core of each

board is a Hitachi HD63PO1M1 microprocessor; essentially a CMOS version of the Motorola

6800 with 128 bytes of RAM and a piggyback socket for an 8K EPROM. The processor

configured to run with external memory and we have left a provision to allow an additional 2K

of static RAM. In practice, however, this extra memory has proved unnecessary so we have

removed it. All the components on the board are CMOS to keep power consumption low

(about 150 mw). This is a critical property for a mobile robot which runs off batteries.
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Figre -7.All our robot's behaviors are implemented on a set of 8 bit microprocessors which around mounted
aroud te otsid oftherobot's body,.
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Each of the processor boards has a small amount of space left over. On standard boards this is

devoted to a hardware implementation of a suppressor node. The time constant associated with

this node can be adjusted using a potentiometer located at the corner of the board. Since we

prefer the signal model of communication, we simply set this control to slightly longer than the

standard interpacket time and leave it there. On other boards, called "mutants", the extra space

is instead used to implement an 8 bit bi-directional parallel port. This port is mapped to a group

of 4 memory addresses and thereby allows the processor to communicate with a number of

peripheral devices.

There are also several features which are important for Brooks' modules but are not used in our

system. One is the reset line. If any message arrives on this input an interrupt is generated and

the processor reinitializes all its internal finite state machines. Since our modules have virtually

no state, this input goes unused. Another obsolete feature is a built-in inhibition input which is

checked by the processor every time it wants to generate an output. When active, it forbids the

module from sending packets on any of the outputs. Thanks to special hardware, this line can

remain active for a short time after the last triggering input arrived. The actual period can range

up to a minute and, like the time constant of the suppressor node, is controlled by a

potentiometer at the top of the board. However, since our arbiter uses suppression nodes

exclusively, the inhibition line and its associated hardware are also superfluous.

Processors communicate with other processors over special two-wire serial connections. These

connections carry 24 bit packets at an effective rate of approximately 300 baud. Each board

provides 3 simultaneous serial inputs and 3 serial outputs. The outputs go to single

subminiature phone jacks while the inputs come from paired jacks to allow for the daisy-

chaining of signals. Although the 6301 microcontroller does have a built-in serial port, it has

only one. Therefore, we synthesized the six necessary channels by polling several parallel

input ports in software. The program that does this consumes 80% of the processing power

available on the board. However, if each instruction takes 3 microseconds and there are 10

packets a second, this still lets the processor perform over 6000 operations per packet.

The communications protocol we use allows the clocks of the sender and receiver to differ by

as much as 20% and to have an arbitrary phase relative to each other. The processor starts

transmission by momentarily pulling the associated strobe line low. This signals the receiving

processor that a new packet its about to arrive and toggles the state of any intervening

suppressor nodes. It also explicitly tells the receiver to discard any partial packet that may have
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been in progress. This is important because a suppressor node can switch from the inferior

module to the dominant one right in the middle of a packets. Such a truncated packet is of no

use and should be ignored. After the synchronization pulse, the actual packet is sent on the data

line using a form of pulse length modulation. Ones are converted into long pulses while zeroes

are represented by shorter blips. Thus a message with many ones takes longer to transmit than

a packet containing all zeroes.

Each processor is wired, by hand, only to the other processors it needs to talk to. As can be

seen, this leads to a morass of small gray cables that cover the surface f the robot. However,

there is no central bus, backplane, or blackboard for general purpose communications - only

this distributed patch panel. This is important because it means there are no information

bottlenecks or shared resources to saturate. As a consequence, the hardware can be extended

indefinitely without degrading the system's performance. If we want to implement more

behaviors we simply add more processors.

The actual processor boards are mounted on the surface of the robot to allow easy access.

There is space around the periphery of the robot for 24 processor boards, but some of these

slots are filled by other types of hardware (such as mutants). Originally we had intended to

map directly from modules to processors. However, since we have 41 behaviors and only 13

positions actually available, we must instead package 3 or 4 behaviors per processor. In

general, we accomplish this by grouping together related behaviors into "levels of competence"

and assigning one of these per processor. Since each board has a manual shutdown switch

which disables the processor, this allows us to see what affect each level has on the overall

performance of the robot. Unfortunately, in our new style of subsumption we typically need a

suppressor node for every module. Since we don't have enough hardware for this, we

internally simulate all the suppression interactions between modules within a small task-

oriented group. The output of this arbitration then goes to the hardware suppression node to be

combined with commands from other clumps of behaviors.

2.4 Related architectures

The architecture presented here also bears similarities to many of the multi-agent control

systems proposed by other researchers in mobile robotics. The closest of these is probably the

Denning mobile robot system [Kadonoff et al. 86]. This robot has a number of different

navigational skills that are switched on or off depending on the environmental conditions. For
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instance, normally the robot homes in and follows a modulated infrared beacon. This can be

considered the behavior's transfer function. Yet the robot only follows a beacon if the beacon

is relatively far away. This criterion, therefore, is the behavior's applicability predicate. As in

our system, both of these portions are stateless.

The Denning robot also concurrently runs a number of other navigational processes. For

instance, if the robot ever deviates significantly from its nominal path, a dead-reckoning

scheme kicks in to correct the drift. As with the previous behavior, this strategy is clearly

composed of an applicability predicate and a transfer function. More importantly, however,

when the dead-reckoning system is active it completely overrides the beacon follower.

Similarly, a third, sonar-based system which takes care of local obstacle avoidance. If an

obstruction appears within a certain distance of the robot, this system slows the vehicle and

turns it away from the stimulus. As before, when activated this process simply grabs control of

the robot from whichever other behavior was previously driving the wheels. Denning's

arbitration system merely switches between processes in a preordained hierarchy; it never

combines commands. In this respect it is identical to our networks of suppressor nodes.

Researchers at SRI have also proposed a multi-agent control scheme for mobile robots

fKaebling 871 . Their system differs from ours in that it is split into a perception component

and an action component. In the perception half there are a variety of strategies running in

parallel which analyze the outputs of robot's sensors and cooperatively detect the presence of

certain high-level perceptual primitives. The action half, like our system, is broken down into a

number of totally independent components which generate effectors commands when the

appropriate conditions exist. However, these components do no sensor processing themselves,

but instead have access to all the details of the world model generated by the first half. The

commands produced are then passed through a series a "mediators" which combine them into

an appropriate overall drive signal for the robot. In the example given, Kaebling uses a fixed

priority scheme like ours. However, in general, she allows arbitrarily complex arbiters to be

used. Likewise, there are no restrictions placed on the nature of the computations performed by

either the perception or action modules. In fact, they mention embedding planners in various

subsystems.

At Hughes, they have also investigated dividing the control system into separate perception and

planning units [Payton 86; Wong and Payton 871. However, instead of having a number of

perceptual subroutines which cooperate to build a total world model, Payton and his colleagues

have what they refer to as "virtual sensors". These are a series of partial world models which
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are often aimed at detecting very specialized environmental features. For instance, one source

of information used in their control system is an obstacle recognizer which signals when the

robot is about to hit something. This information does not necessarily come from one sensor,

nor is it the product of a single isolated perception routine. Instead, it may be the merged result

of several different processes operating on a variety of sensory modalities such as proximity

detectors, sonar, laser scanners, whiskers, bump switches, or stall sensors. A virtual sensor is

defined by what it registers instead of how it actually accomplishes this.

The outputs of these virtual sensors serve as the inputs for the action component. Again, like

our system, this is composed of a number of independent reflexive behaviors which interact

(usually) through a fixed priority arbitration scheme. However, Payton also grafts a meta-level

onto this system to allow for more intelligent, although slower, control. He does this by

creating groups of behaviors called "activation sets". These are composed of several behaviors

along with special parameter settings for certain reflexes and an arbitration order for selecting

between them. Individual behaviors can belong to more than one set, but only those behaviors

that are members of a currently valid set are allowed to run. The activation sets are then

manipulated by a local planning module which decides when to switch on and off the various

i,.oups of behaviors. This is similar to the concept of "K-lines" as proposed by Minsky

[Minsky 80; Minsky 86].

The idea of suggesting processes for the robot to use, as opposed to actions for it to execute, is

also advocated by researchers at the University of Minnesota [Anderson and Donath 88a;

Anderson and Donath 88b]. Using simulations they have experimented with activating only

certain subsets of the available reflexes to achieve robust robot navigation. Unlike Payton's

system, however, their behaviors do not have parameters that can be adjusted and the relative

strengths are the same irrespective of the particular group selected. Furthermore, instead of

resorting to a classical planner, behavior sets are selected using pre-wired propositions. These

propositions are similar to our applicability predicates but, because they are tied to groups,

typically controlling more than one transfer function. The researchers present a simple example

in which the robot is attracted to a certain global position while being repelled by local

obstacles. Although the robot eventually reaches its destination, it tends to jitter around the

selected point when it gets close. To cure this, much as in a simple feedback system, they

simply switch off the local attraction behavior at the meta-level when the robot gets sufficiently

close to its goal.
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3. Manipulation

This chapter describes the control system for the onboard arm. We rely on a series of reflexes

to guide our robot. The set of behaviors developed here allows the robot to acquire and retrieve

soda cans by groping around on supporting surfaces. The robot starts by raising its hand to the

top of the workspace, extending the arm slightly, then bringing the hand straight down to find

the table. If the fingers touch a surface, they recoil and the hand starts hopping along in search

of a can. When the hand gets near, local proximity sensors align the can and provide guidance

for the terminal grasping motions. Finally, the robot lifts the can straight up off the table and

brings it back to a parking location next to the body. As long as the target is upright and within

the workspace (3' high by 1' long by 3" wide) the arm will eventually find and retrieve it.

IT -1 M. , .. PIP,*

• i .......................................
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Figure 3-1. The arm mounted on the top of our mobile robot is used to collect soda cans. Despite working in a

cluttered, changing cnvironmcnt it is able to perform this task using simple sensors and coarse manipulator
control.
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The underlying reflex system in this architecture is also interesting because it adheres to some

of the same principles we propose. In particular, Anderson and Donath take care to keep each

of their behaviors independent of all others, and explicitly forbid them to use any form of state.

The outputs of various modules, however, are not arbitrated by a priority based scheme.

Instead, as in Brooks' early work [Brooks and Connell 86], the commands are combined using

a vector summation technique. Each competing direction command is interpreted is as a force

vector in space. The robot then computes the resultant of all such vectors to pick a direction of

travel. The University of Minnesota architecture is also interesting because it contains a unique

repertoire of behaviors. Included are such primitives as "forward attraction" (go in the direction

the robot is facing), "narrow open space attraction" (find door-like gaps), and "location

directed open space attraction" (head toward the open space most nearly aligned with the goal).

These allow the robot to pursue a wider variety of trajectories than are possible with other

systems, such as Arkin's [Arkin 87].
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3.1 Hardware

Before examining the controller it is first necessary to understand the capabilities and

limitations of the manipulator itself. We initially considered using a commercial arm but

rejected this idea for two reasons. Since we wanted the robot to work at a variety of heights,

we needed an arm with a large workspace. Unfortunately, such arms are so heavy that they

would tip the robot over when extended. Furthermore, they are so bulky that they would not fit

well on the mobile platform we had chosen. Finally, they consumed a substantial amount of

power, both for the motors and for the required controller boards. None of them was suitable

for running with batteries. There were, however, a variety of smaller arms that would fit on the

robot and come within its power budget. Yet these arms had very small workspaces (on the

order of a cubic foot) and small payload capacities (typically several ounces). Thus, we decided

to build a custom manipulator for our robot. Our final design has a large workspace, weighs

only 10 pounds, and can lift over a pound at full extension (albeit slowly). Both the arm and its

controller fit easily onboard our robot base and consume only 18 watts on average (32 watts

when heavily loaded).

Full workspace

Table
height

Rectangular
workspace

Floor
height

Figure 3-2. The arm is a planar two degree of freedom design with twin parallelogram linkages. The hand can
reach cans both on the floor and at table height.
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This control system demonstrates two important principles. First, the robot's trajectory toward

the can is guided by the environment itself, rather than by some plan developed from an

internal model. The robot contains a variety of different behaviors which respond to particular

local aspects of the situation. As the hand moves, the changing properties of the environment

encountered are used to selectively activate appropriate behaviors. This arrangement lets the

robot negotiate even highly cluttered areas without assembling a detailed world model. This is

an advantage because comprehensive models are difficult to construct and typically make no

provisions for environments that change dynamically. Systems such as [lkeuchi et al. 86] stare

at the scene for a long time then compute a ballistic trajectory for the arm. If the world is altered

after the initial survey period, the robot may blunder into unexpected situations that prevent it

from executing the specified plan. The multi-agent approach we use, on the other hand, is able

to "improvise" since its reactive system only makes short range plans to begin with.

The other important principle is that even a system composed of independent local agents can

exhibit globally directed behavior. Since our system primarily uses spatially and temporally

local information, it occasionally gets caught in loops or local minima. Yet, to overcome this

we do not need a central supervisor that notices certain actions are being repeated or that the

improper minimum has been attained. Instead, we add another agent which monitors some

sensory variable indicative of the overall progress of the robot. When this agent notes that the

current set of behaviors is failing, it switches on a new set of behaviors to help the robot escape

from the stagnated situation. This approach has the advantage that it allows us to build working

systems without incorporating large amounts of self-knowledge into them. Requiring

information about how a certain task is accomplished violates the modularity of the system and

locks us into a particular implementation.

As an example, in our arm controller there is an agent that monitors the robot's groping activity

by continually checking whether the hand is still moving across the workspace. If for some

reason the hand stops or oscillates between nearby positions, control is transferred from the

extension mode into the retraction mode. Yet this agent that does this not need to know why the

hand stopped. The hand might have recently acquired or deposited a can, reached the eo-e of

the workspace, or simply gotten stuck. Similarly, it does not even need to know which groping

behaviors were active at the time. By using sensor derived events as signals we retain

flexibility in the actual construction of the system without sacrificing our capability to provide

global direction.

35



comparable joint velocities for the same command byte. The same effect could be achieved by

feeding a standard position servo with a sequence of successive points on the path. However,

the hardware integrator lets us lower the update rate and, for a given level of quantization,

provides smoother control of the arm at slow speeds. Our system is not a true velocity

controller since we do not use tachometer signals nor do we differentiate the position signal.

Yet we choose to use velocity commands rather than positional ones because, with our reflex-

based control system, most movements are made relative to the current location of the hand.

That is, we are more interested in controlling the trajectory of the arm than in sending it to some

global position.

The servo board communicates over a parallel port connection with a modified subsumption

architecture processor board called a "mutant". The mutant provides an interface to the arm

using standard subsumption serial lines. Its primary function is to allow cartesian control of the

arm by running the appropriate inverse kinematic calculations on the received velocity vector.

For various reasons the linear speed of the arm is not directly controllable and varies somewhat

across the workspace. For our purposes, however, all that is important is knowing that the

hand moves approximately 1.3" per second. In addition to its control function, the mutant also

reports various system parameters useful to the subsumption processors. For instance, the

distance between the fingers and the force applied is continuously transmitted on one of the

mutant's output channels. Similarly, another output reports the x-y position as computed from

the joint angles. All outputs have a 14.3 Hz update rate.

3.2 Sensors

In addition to position and force information, the subsumption architecture control system has

access to a number of sensors located on the hand itself. As shown in figure 3-4, there are a

variety of sensors all of which are updated at a rate of 9.8 Hz. For instance, there is an infrared

beam at the back edge of the fingers roughly 1" up from the tips. This operates like the light

beam in an elevator's door: the robot can detect when it is broken by an object. There are also

two switches on each fingertip which signal contact with a surface. These are 3/8" in diameter

and take about 5 ounces of pressure to activate. Although the responses of all four switches are

available to the control system, we typically OR the bits together to give a single control

variable. The hand also has a microswitch at the back of the wrist which acts as a primitive

force sensor. Since the whole finger assembly is pivoted at its front edge, the wrist switch

serves to detect a torque around this axis. This sensor is triggered if the fingers are rocked
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The actual arm used in our studies is shown in figure 3-1. It is formed from two planar

parallelogram linkages and resembles a desk lamp. These linkages serve to keep the fingers at a

constant orientation relative to the mounting plate. Figure 3-2 shows all the places that the

finger tips can reach. As can be seen, the robot is able to grasp objects both on the floor and at

table top height. Our controller deals primarily with a rectangle carved out of the center of the

full workspace. This "logical" workspace is a vertically oriented plane 12.5" wide by 39" high

which is centered 20" beyond the edge of the robot. To achieve lateral displacement of the arm

the whole robot base must be rotated.

At the end of the arm is a vertically oriented parallel jaw gripper. This consists of a pair of 3"

long fingers, each of which is surfaced with two rubber tubes. The tubes give the robot a soft,

compliant grip and also provide some passive centering of the can. The fingers themselves

open to a maximum width of 4.25". Since soda cans slide easily across surfaces, this wide gap

lets the robot tolerate a lateral misalignment of the can of plus or minus 3/4". However, the

hand is not as well matched to the height of cans. Because the fingers are short, the hand must

be raised off the supporting surface in order to grab a can.

force 8 A

speed -40 A W oo

position 4 A844 -- G

Figure 3-3. Each motor is controlled by an analog position servo whose setpoint is derived by integrating a
velocity command. The position and crror signals of each servo can be accessed by higher levels of control.

The shoulder, elbow, and fingers motors are each driven by identical analog position servos.

The actual servo board is bolted to the side of the shoulder gear box. The setpoint comes from

an analog integrator fed by either a joystick (useful for debugging) or an 8 bit digital to analog

converter. The integration time constants of the shoulder and elbow servos are adjusted to give
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The most useful source of local information is a pair of crossed infrared beams located at the

leading edge of the hand. The actual sensor heads are angled 45 degrees inward and angled 30

degrees down. In the basic proximity mode they operate by emitting near infrared radiation in a

tight cone and then looking for how much is reflected back. This quantity is then thresholded to

determine if there is something in the beam. Under favorable conditions the sensors on the

hand can detect white paper at over a foot. However, due to high levels of electrical and motor

noise we have tuned them down to a range of 4 inches. Figure 3-5 shows the sensing regions

for different elevations of the hand above the table. This mapping was obtained by first

propping the hand up the specified distance, and then moving a real soda can through each

detector's field of view. We found the extent of the detection area and then deconvolved its

boundaries with a circle the same size as the can. This gives the corresponding positions for the

center of the can. We plot this in figure 3-5 along with the 1.5" wide grasp zone of the fingers.

The result was not quite what we had expected because the top of the can is highly specular and

the whole curved outer surface contributes to the reflected signal. We had hoped to use the

crossed structure of the sensors to provide lateralization cues for aligning the object with the

gripper. Unfortunately, the noise problems severely truncated the sensor's range which in turn

shortened the far field sensitivity pattern. Instead of having a large funnel-shaped extension,

the side discrimination fields are now stubby and even cross over the centerline. Fortunately,

this phenomenon depends on the height of the hand so the control system is able to compensate

for it by keeping the hand close to the ground. The problem could be eliminated altogether by

reducing the baseline between the two sensors. For instance, if both were located near the

center of the hand instead of at the edges, each sensor's range would be predominantly on one

side but there still would be a useful intersection region.
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backward with a torque in excess of 3 ounce-inches. The sensor will also be triggered if a

significant upward force is applied to the fingertips. Since the fingertips can not reach the table

when the hand is holding a can, the wrist switch is sometimes the only source of tactile

information.

0

0 0 ~Wrist

switch

Crossed I R

Tip switches

Figure 3-4. The hand has a variety of local sensors.
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3.3 Controlling the hand

The robot's hand is controlled cooperatively by a set of 6 independent behaviors. Figure 3-6

shows these behaviors and their interconnections. Each box in the diagram is a "module" and

implements a specific behavior. All behaviors interact through "suppressor" nodes (circles "S"

inside). As mentioned earlier, the semantics of these nodes is that a signal coming into the side

can override the signal passing through. Note that we have broken the total collection down

into two separate groups - Cradle and Grip - which we refer to as "levels of competence".

Here, the Grip level allows the robot to grasp the easiest class of cans - those already between

its fingers. The Cradle level then monitors the force applied to prevent damage to either the

can or the robot. The robot can perform useful actions with just the lower level implemented,

but its performance gets progressively better as more and more levels are added. This effect is

more evident for the arm controller which is broken down into many more levels.

force spread

force 6 crush

force e Cradle Level

tact deposit Grip Level

beam -- 1 grab S ,

claw SHAND

Figure 3-6. The control system for the hand is divided into two levels of competence.

The hand controller is very simple and just serves to illustrate how an actual system can be

constructed from a number of independent agents. For instance, the Grip level tells the robot

how and when to grasp things. The most basic behavior in this level, CLAW, instructs the

fingers to stay wherever they happen to be. This default behavior is modified by the GRAB

42



left 0
Right
sensor

...................... H 2" up

Grab A
Zone N...................... . . DH

Left

fsensor

right

Right

left sensor

............... . .1.............. H up

Grab A
crossed Zone N

Left
sensor

right

right

Right
sensor

................... H 0" up

Grab A

Zon N
.......... ............. D

left Left
sensor

Figure 3-5. A can will be detected by the IR sensors if its center is in one of the shaded regions. To fit between

the fingers, the center must lie in the grab 7one marked.
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module which suppresses CLAW's output (circle with an "S" inside). This module has a very

simple "model" of a can: anything that fits between the robot's fingers counts. The robot could

not care less whether the object is a soda can or something else; it just knows to close its

fingers in this situation. The GRAB module detects such suitable objects by monitoring the

light beam at the back of the fingers. If no object is sensed, GRAB instead directs the hand to

open in preparation for the next object.

The GRAB behavior is in turn modified by DEPOSIT which forces the hand to open if either

the wrist sensor or one of the tip switches is activated. As shown in the diagram this module's

output takes precedent over both CLAW and GRAB. This new behavior forms the basis of the

robot's "plan" for putting things down: it moves the hand down until a contact between the

grasped can and the table causes sufficient force to activate the wrist switch. DEPOSIT is also

useful in its own right as a general protective behavior. For instance, the wrist is also activated

when the bottom of the can catcbes on a protruding obstacle, or when the robot has grabbed a

person's hand and they attempt to shake it loose. In these cases DEPOSIT, as before, causes

the can to be released.

The situation is not quite this clear cut, however, and modifications to the DEPOSIT behavior

are required. In particular, as soon as the fingers ease up their pressure on the object, the wrist

is free to rotate and relieve the built up stress. Yet at this point the finger beam still senses the

object prompting GRAB to immediately regrasp it. Therefore we have included a monostable

within DEPOSIT which cause the fingers to continue to open for a short while after the tactile

stimulus vanishes. By prolonging the opening phase, we make sure that they robot has

completely released the object. We also give other behaviors time in which to act (e.g. the

UNCRASH module to be described later).

The next level of control, Cradle, shows how a primitive force feedback servo loop can be

built using our architecture. Since the gripper can exert nearly 10 pounds of force, there is a

distinct danger of crushing the can unless we include a regulator such as this. However,

because we do not have any component equivalent to an adder, the resulting structure of our

controller is somewhat baroque. Yet this control layer is interesting because it illustrates how a

judicious assignment of semantics to signals can mitigate some of the shortcomings of a fixed

priority arbitration scheme.

Inside the Cradle level there are 3 modules which all monitor the error in the finger servo-

loop, but react in different ways. While the servo system provides 8 bits of force data, only 2
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or 3 of these bits are above the noise level. Therefore, we use only a coarse quantization of

force as shown in figure 3-7. The first behavior, EXCESS, takes control when the force

reaches a dangerously high level and drives the fingers in a direction which reduce the force.

To bring the force into the acceptable range, this module actual continues to drive the fingers

even after the initial threshold is passed (again, using a monostable). However, this module

alone is not sufficient. After a brief reduction, the grasp force would normally start to increase

until EXCESS was again triggered. To prevent the fingers from oscillating and applying a

pulsating force, we add the CRUSH and SPREAD modules. If the fingers have been exerting a

noticeable force for a while, the relevant module switches on and holds the finger force within

the permitted range. The only difference between the two is that CRUSH moderates excessive

grasping pressure, whereas SPREAD regulates the opening force.

ABS-FORCE-HI ABS-FORCE-HI

FORCE-LO FORCE-HI

too wide no force too narrow

Figure 3-7. When the grasp force is in either portion of the ABS-FORCE-HI region, the fingers are prevented
from moving any further. The FORCE-LO and FORCE-HI regions are used to determine the action necessary to
relieve the excessive stress. Only these 3 predicates are used by the hand control system; the true numerical
value of the force is not needed.

The proper functioning of these two modules relies on being able to generate a unidirectional

prohibitory effect. If we simply stopped the hand when the force was in the desired region,

once CRUSH or SPREAD was triggered it would remain active indefinitely. If we were then to

use normal suppression the activation of would of these modules would effectively lock the

fingers in their current positions forever. We overcome this limitation by using a special two

line command encoding and then partially suppressing the existing finger speed signal. Notice

that in the subsumption diagram (figure 3-6) we show the hand control bundle splitting into its

component wires at one point. The CRUSH and SPREAD modules are then free to inject

signals on just one of these wires. The semantics for the two binary control signals are fairly

obvious. If just the open line is active, the fingers open. Similarly, if just the close line is

activated, the hand grasps. However, let us specify that, for the special case in which both

open and close are stimulated, the hand should stay in the same place.
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close finger action "velocity"

0 0 don't care undefined

0 1 squeeze together + 1

1 0 draw apart -I

1 1 stay put 0

To see how this achieves the desired effect, suppose that the fingers are closing but the force is

too high. Because the gripper is squeezing, initially open is false and close is true. However,

when the CRUSH module kicks in it forces open to become true as well. According to the

semantics defined above, this combination instructs the fingers to stay exactly where they are.

Thus, the force regulation portion of the control works as desired. Now suppose that some

other module decides to open the fingers by setting open true and close false. Since CRUSH

only affects the open line and has already set it to the state desired by the other behavior, the

new command essentially passes through unaltered. Thus CRUSH relinquishes control when

the hand is commanded to move in the direction which naturally reduces the pressure.

Assigning numbers to the velocity commands as shown above, we can see that partial

suppression is actually a weak form of subtraction in this case.

3.4 Controlling the arm locally

Let us turn our attention to the behaviors controlling the arm. Figure 3-8 shows the complete

set of 14 behaviors. Like the hand controller, this collection is broken into a number of levels

of competence. Thanks to the hand controller, the robot can already grab things which happen

to be between its fingers. We now extend the range of the robot so that it can grasp things that

are further from the hand. However, instead of installing additional, more sophisticated

grasping procedures, we build on previous levels. By reducing the problem to a situation the

robot already knows how to handle, the pre-existing routines can take over and finish the job.

For instance, the most primitive level of the arm controller, the Local level, tells the robot how

to react to an object that is in close proximity to its hand. The robot lifts its hand until the top of

the can is found, and then extends the hand slightly straight forward. This set of actions brings

the can between the two fingers at which point the Grip level exactly knows what to do. The

Local does not need to duplicate this skill or invent different ways of grasping things. Thus,

although the various levels do not depend on each other's structure, they do depend on each

other's functionality.

45



pos hoist

p05 edge S
Path Level

.. . . . . . . . . . . . . . . . . ....... ............°..... .....o....o......,=.... , ,.....°, . , °.......... ° , . ° ° , ° .. .... , ..

pos -- home

Park Level
pos - engarde , )---

Skim Level
tact surface .

beam diagonal S tact bounce

de tact uncrash S

. . ....... .......... . ....... ...... .. . .o,....... ..... I . .................... ,. ......... , ...........

XIR xten XIRoverLocal Level

XIR extend sop S

Figure 3-8. The control system for the arm.

The acquisition strategy embodied by the Local level is actually implemented by a collection of

3 separate behaviors. Each module recognizes a particular arm-object configuration based on

readings obtained from the crossed infrared proximity sensors. For each of these

configurations we specify a direction to move the hand. When active, the associated module

continuously generates this command. For instance, the OVER module helps protect the hand

by responding to things which fit its ungraspable object "model". Specifically, when both of

the front IRs simultaneously detect something, OVER raises the hand to clear the hurdle.

Normally, the EGYPT modules freezes the arm in whatever awkward angular configuration it

happens to be in at the time. The new command produced overrides this zero velocity default.

Notice that OVER directly drives the arm; it does not just record a fact in some database for

future reference. While other researchers have experimented with hand mounted optical sensors

(e.g. [Balek and Kelley 851), they have typically been used for object recognition rather than as

a navigation tool.
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While the OVER behavior safeguards the hand, it does not actively promote the collection of

cans. For this, we make the robot's overall "plan" more sophisticated by adding the EXTEND

behavior. If the IR sensors have seen something recently, EXTEND drives the arm straight

forward in an attempt to locate the object again. Normally this action would be a bad idea since

the hand would simply plow obstacles over. Thus, as shown in the subsumption diagram

(figure 3-8), to assure the hand's safety we give the OVER module a higher priority. However,

since OVER and EXTEND have identical triggering conditions, we also allow EXTEND to

remain active for a short while after its triggering stimulus has vanished (by using a

monostable). EXTEND implicitly incorporates an estimate of the robot's dynamics so that this

time constant moves the hand a distance equivalent to the farthest sensor range. The relative

priorities of EXTEND and OVER then generate the basic snatching movement necessary for

acquiring cans. OVER first raises the hand until the IR signal disappears, then EXTEND gains

control and drives the hand forward to bring the sensed object between the robot's fingers.

This motion sequence works fine if the soda can is centered with respect to the hand.

However, if the can is displaced to one side OVER will not recognize it as an obstacle to avoid

ramming into. Therefore, continuing our enumeration of the possible "states" of the robot's

hand, we add a new behavior, BACK, specifically for the situation in which there is a laterally

offset obstacle. When only one of the two IR sensors is active, this module briefly drives the

hand backward and down. Notice that in the subsumption diagram (figure 3-8) the BACK

module is inferior to the EXTEND module. Since there is no case in which the sensor patterns

for the two modules could both be satisfied at the same time, one would imagine that the

ordering between them did not matter. However, recall that EXTEND tries to pursue recently

seen objects even if they are no longer visible. Thus, if BACK were given priority over

EXTEND the hand might reverse itself just as it was on the brink of grasping the soda can.

This is especially likely since, as targets move in and out of sensor range, the two IRs seldom

switch at the same instant.

We have now wired-in the basic acquisition procedure but the robot's performance needs to be

tuned up in certain cases. In a subsumption-like architecture this is particularly easy to do -- we

just add another module for the troublesome situation. Here the problem is that EXTEND often

interferes with the grasp reflex. Although the fingers can move at 3" per second, they are

usually up against their outer stops and must first overcome some residual servo error before

moving. If the hand keeps travelling after the object is between the fingers, it may actually go

beyond the object before the fingers have closed sufficiently. Therefore, we add the STOP

behavior to freeze the hand for a while if the robot detects any activity in the finger beam
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sensor. If the module sees either a rising or falling (for the deposit phase) edge it locks the arm

in the current configuration for several seconds. Using the edge rather than the signal itself

keeps the hand from being frozen in place forever after something passes between the fingers.

The robot now has the capability of snatching nearby objects with its hand. The next level of

competence, Skim, extends this capability by allowing the robot to acquire objects which are

not initially perceived by the crossed IR. This new group of 5 behaviors basically contains an

operational representation of the fact that objects often rest on surfaces. The control system's

strategy is to first drive the arm straight down until it contacts some surface. The hand then

recoils straight upward until it is a short distance above the surface. At this point, it extends

forward while descending slowly in an attempt to make contact with the surface again. The

overall effect is that the hand hops along the top of the table as shown in figure 3-9. Thus, the

separate behaviors cooperate to find and explore a surface, hopefully bringing a can within

range of the local IR sensors. Again, we do not try to build a tactile model of the robot's

surroundings and then plan a path through it. Rather, the overall pattern of actions is

determined on the fly by the specific configuration of the environment.

Figure 3-9. The Skim level contains a number of behaviors which together cause the hand to hop along the
surface of tables.

The collective behavior of this level bears a passing similarity to the generalized damper control

scheme [Lozano-Pdrez, Mason, and Taylor 84; Erdmann 85]. In these systems an arm is given

some velocity vector to follow. If the arm contacts a surface and is unable to move directly

along the commanded direction, the velocity error is transformed into a force normal to the

surface. The manipulator is still free to move tangentially along the surface provided the

original vector was outside the surface's friction cone (pressing too directly into a surface

causes the hand to stick). It is instructive to examine the use of this scheme when coupled with

a fixed initial velocity vector. In particular, it has been shown that there are whole regions of

48



space, called the task's "pre-image", from which the operation can be successfully completed

with no additional high-level control. The manipulator travels through free space then slides

along various surfaces to reach its goal. For our approach the whole area above and behind the

soda can can be considered the task's pre-image. Although our system is not as elegant as the

generalized damper control law, it can be made to work with the limited manipulator dexterity

and sensory capabilities available to us.

The most basic module in our extended control system is DESCEND which simply drives the

hand straight down in order to find a surface to explore. However, if the robot is already

grasping an object this action must be modified somewhat. This is the function of the

DIAGONAL module which overrides the more general purpose DESCEND module. If the

robot pushes a can straight into a surface, it has to exert a considerable amount of force before

the wrist switch will trigger and cause the can to be released. When this happens, the built-up

strain on the arm is suddenly released and the robot "spikes" the can into the table top. When

the hand is grasping a can, much less force is necessary if the wrist can instead be induced to

roll slightly. Thus, DIAGONAL gives the hand a slight bit of forward velocity in addition to

the primary downward component. The actual direction of travel is matched to the robot's

rectangular workspace such that the hand starts in the inner, top corner and ends at the outer,

bottom corner. In this way the robot still seeks a supporting surface but is better able to deposit

the can without pounding it into the table.

Once some obstruction has been encountered, another behavior, BOUNCE, comes into play.

This behavior prevents the robot from jamming its fingers through table tops by forcing the

hand to recoil if either of the tip switches has been activated. As with other modules, we allow

BOUNCE to remain active for a short while after its tactile triggering stimulus has disappeared.

The length of this continuation, coupled with the dynamics of the arm servos, determines how

far the hand will actually rise. We use this timed approach because the arm's position sensors

are not accurate enough to let us build a closed loop system for the small distances we wish to

travel (about 1/2"). With respect to the task, however, the precise height is of little concern.

Whether the hand rises 0.2 inch or 0.7, it still has sufficient clearance to move laterally.

Furthermore, since table tops usually occupy a particular region in our robot's workspace, the

arm's speed only needs to be constant locally.

After the initial bounce, the SURFACE module prompts the robot to search along the top of the

table. When any of the tactile sensors have been activated, this module directs the hand to go

forward and slightly down for a while. Eventually, if the surface is more or less flat, the hand
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will descend far enough to activate the tip switches again and in turn retrigger BOUNCE. The

length of each hop, therefore, is determined by height of the bounce segment combined with

the commanded angle of descent. Actually, the downward component of the motion is not

strictly necessary since DESCEND will take over once SURFACE times out. However,

including this component causes the SURFACE module to continually verify its assumption

that there is a surface close by.

Finally we have the UNCRASH module which performs a function similar to BOUNCE, but

for vertically oriented surfaces. It detects when the hand has run forward into something by

looking for situations in which the wrist senses a force but the fingers do not. In response

UNCRASH causes the hand to simultaneously back away from the obstacle and to rise relative

to it. Notice that if the robot continues to advance after UNCRASH terminates, the hand will

prod the obstruction once again, but at a higher level. Thus, the hand not only hops across

surfaces, it hops up them as well. This is similar to a spinal stepping reflex observed in cats. If

the front of the foot contacts a rock in the cat's path, the creature will twitch its foreleg back

and try placing it at a higher level. An identical strategy has been successfully used in a stair-

climbing mobile robot [Hirose et al. 85] and as well as in one of Brooks's more recent robots

[Brooks 89].

The sensory pattern which triggers UNCRASH can also occur when the robot has just placed a

can on a surface. In such situation the wrist will actively sense a force, but the fingertips will

remain inactive because they are not in contact with the table. It turns out that the same action is

appropriate in this case as well. Even after DEPOSIT releases the can, there will be some

accumulated servo error in the arm causing the hand to press against the top of the can. The

upward component of UNCRASH's command helps alleviate this residual force. Meanwhile,

the backward component causes the finger beam sensor to clear the back edge of the can. This

is an important side effect because it prevents the robot from immediately regrasping the object

it has just put down. The fact that UNCRASH works unaltered in this situation is not as

coincidental as it might seem. Because the wrist cannot discriminate between upward and

backward forces, the system moves to relieve both potential stresses when this sensor is

activated. Furthermore, because the wrist was intended to be used during the exploratory

phase, it was made sensitive to backward pressures. Its associated movement, therefore,

locally reverses the normal grasping sequence and so naturally deactivates the finger beam

sensor.
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Figure 3-10. The hand is commanded to move in one of 10 relative directions.

Now that we have described the entire local grasping system, it is interesting to note that there

are only a few characteristic movements executed by the system. We never need to use the full

generality of the servos to drive the arm in some arbitrary direction. Just because the hand can

be moved in any direction, we do not necessarily have to use all these directions. Restricting

the arm to a small set of stereotyped motions makes calibration or learning of the manipulator's

inverse kinematics easier since we only have to solve for these special cases. Figure 3-10

shows the 10 local directions of motion used for both local and global control of the arm.

These motions are all in the vertical plane which is the arm's workspace and are the only

directions required for proper operation of the arm.

3.5 Controlling the arm globally

So far we have discussed reactions which occur relative to the hand itself. The robot also has

several behaviors which coordinate movement relative to various areas within its workspace.

As figure 3-11 shows, there are a small number of special areas the robot knows about. These

8 separate bits of information are all the robot needs for normal operation; we do not really care

about the hand's absolute x-y coordinates. As with the canonical directions of travel for the

arm, limiting the robot to a few key items aids in the calibration or learning of the requisite

spatial knowledge. A similar minimalist qualitative spatial representation has been proposed for

a computer controlled prosthetic leg [Bekey and Tomovic 86].
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Figure 3-11. These 8 position predicates are the only spatial knowledge the system uses. AT-HOME and IN-

YARD denote roughly rectangular regions whereas the other 6 predicates mark useful half-planes. For instance,

BEHIND-SPACE is true if the hand is anywhere to the right of the vertical boundary line shown in the diagram.

The locations shown are typically tised to signal transitions from one type of behavior to

another. For instance, when travelling the robot folds the four links of the arm against each

other causing its hand to be positioned directly in front of the main body. This special tucked in

location is marked by the roughly 4" square zone marked AT-HOME. The corresponding one

bit predicate serves as a termination condition for behaviors which retract the arm. A looser

area, denoted IN-YARD, is useful for behaviors which want to know whether the arm has

been safely parked yet. This is an example of behaviors communicating through the world.

Finally, there are two extended boundary predicates, ABOVE-HOME and BEYOND-HOME,

which simply help the robot determine the qualitative direction toward its parking location.

Four more binary predicates delimit the borders of the rectangular logical workspace. The far

edge is marked by BEYOND-SPACE and the top by ABOVE-SPACE while the inner edge has

two boundaries associated with it. At the beginning of a grabp cycle the hand travels all the way

to IN-SPACE to ensure that it will not miss the table top when descending. On the way back to

home, however, the robot takes special care not to hit the edge of the table. Yet once the hand

gets to the BEHIND-SPACE line, any motion toward home is safe and the more cautious

approach is no longer needed.
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The first level of the global control system, Park, is concerned primarily with the home

location. The ENGARDE module in this level controls the deployment of the arm after it has

been parked awhile. Like a swordsman, this module starts by moving the hand from the tucked

travelling position up to near the top of its workspace and then out towards the inner edge. This

in turn helps the DESCEND behavior find a suitable surface. If the hand started directly from

its parking spot, the robot would fail to explore the top half of its workspace. Furthermore,

even if the table is lower than the parking location, the hand will miss the surface altogether

unless the robot is positioned exactly against the table. ENGARDE's transfer function is

relatively transparent: it tells the hand to go diagonally upward until it achieves sufficient height

and then to proceed straight outward. The initial direction of travel is closely matched to the

direction between home and the top innermost edge of the workspace. However, to ensure that

the hand is placed over the table, ENGARDE only stops when it reaches the further of the two

inner workspace boundaries. At this point ENGARDE shuts down and lets other behaviors

take control. In addition the module has a short refractory period. This prevents ENGARDE

from being immediately reactivated if, say, DESCEND accidentally crosses back over the

workspace boundary.

Besides just finding and grabbing cans, the robot must also bring them back closer to its body

in order to transport them safely to another location. The Park level contains another behavior,

HOME, which takes care of this. HOME instructs the hand to move on one of the four main

diagonals to reduce its relative offset from home. The decision to retract is based on the special

motion predicate which is updated every 5 seconds or so. If the hand has failed to move at least

1/2" in this interval, the variable is set true. After a valid stop is detected, we allow the arm

about a minute to reach home. If it has not succeeded in this interval, HOME automatically

gives up. Usually, however, the module successfully parks the arm and then holds it at home

for the remainder of the allotted time. Unfortunately, we did not incorporate a satisfaction

clause in HOME's applicability predicate so its internal monostable never gets deliberately

reset. Thus, if the hand is very close to start with, it may end up locked at the home position

for a long (but finite) amount of time.

The HOME module was originally installed simply as a protective measure to cope with the

cases in which the robot can no longer make meaningful progress. For instance, the arm might

reach the edge of its working envelope, or become stuck on some obstruction. In these

circumstances, a reasonable thing to do is to retract the arm. Observing that in both cases the

arm ceases to move, we designed the HOME behavior to trigger whenever the hand stops at a
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non-home location. When this happens, HOME attempts to bring the hand back to the special

parking location. In a sense, motion of the hand is used as a progress indicator. If the hand has

stopped, the current set of behaviors is no longer operating effectively and should be replaced

by a different strategy. Thus, although the entire groping procedure relies only on local sensory

information, we can use a single piece of global information to give it an overall perspective.

This motion predicate can also be used as signal between behaviors. Although we do not allow

direct connections between modules, one module often alters the relation between the robot and

its environment to cause another module to become more effective. For instance, skimming

along the table hopefully brings a can within range of the IR sensors thus allowing the local

grasping routine to run. Here, we use this technique more directly. Recall that we deliberately

stop the hand when the finger beam is activated in order to allow the fingers time to open or

close. This in turn naturally triggers the HOME behavior and thereby brings the the arm back

after the robot has grasped or ungrasped an object. Thus we do not need a new, separate

behavior to haul cans in. We can instead simply tap into an existing reflex by setting up its local

environmental activation pattern.

Smodified

Table

IN, Home
original path

Figure 3-12. The original retraction behavior sometimes attempts to pass through tables. An improved strategy
is to rise and maintain a fixed altitude while inside the workspace.

The next level, Path, refines the basic retraction strategy embodied in HOME. This new level

encodes the fact that cans are often found amidst clutter. The primary module, HOIST, is

activated by essentially the same environmental conditions as HOME, but it does not head

directly toward the parking location. Rather, it first lifts the can almost to the top of the

workspace to clear any other objects on the table, then brings it straight back to the innermost

edge. As shown in figure 3-12, going directly home is often a poor choice of trajectories. This

is especially true when the robot has been exploring a surface at a height above that of the
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parking location. If the hand is empty, it will bounce backward along the table until it reaches

the edge and then proceed straight home. If the robot is grasping something, however, the

hand will jam it against the table top causing the DEPOSIT and UNCRASH behaviors to

release the object. The "up then back" strategy used by HOIST eliminates this difficulty. Yet

HOIST does not completely subsume HOME; once the hand leaves the workspace HOIST no

longer generates any outputs and allows HOME to finish retracting the arm. This is another

case where a more specific behavior (HOIST) suppresses a general purpose behavior (HOME).

The other behavior in this level, EDGE, stops the hand (and hence causes retraction) whenever

the hand goes beyond the far edge of the inscribed rectangular workspace. While the hand can

often reach beyond these limits, it can not always rise straight up all the way to the top of the

workspace. Thus, EDGE makes sure the hand does not go beyond the point where the HOIST

strategy will operate properly. The limit stop imposed by EDGE has the added advantage that it

also keeps the arm in the "elbow up" configuration. Just beyond the lower outside comer of the

workspace the arm is at its fullest extension so there is only one solution for the joint angles.

Unfortunately when leaving this point the controller sometimes inverts the elbow. Because the

parking location can only be reached with the elbow up, the robot may not be able to return

home without passing through another singularity. The EDGE module therefore also serves to

prevent this dilemma by never letting the arm reach too far. This is almost the converse of the

relations between modules that have been previously discussed. Instead of actively

reorganizing the world so that a particular behavior will start to work, EDGE ensures that the

world does not change so much that the retraction behaviors will cease to work.

3.6 Controlling the base

The system described so far can retrieve cans from a wide range of heights and at a variety of

distances from the robot's body. However, the arm operates only in a single vertical plane. For

successful operation the can must be aligned with this plane to within the tolerance of the

gripper (about 0.75" either way). The final level of the arm controller, Swivel, loosens this

restriction by using information from the hand IRs to turn the entire robot and help center the

can. As shown back in figure 3-5, the hand's crossed infrared sensors respond over a region

nearly three times the width of the "grab zone". We can use, for instance, the activation of just

the left sensor to tell us that the can is offset to the right. However, the response regions for the

two sensors cross over the centerline when the hand is about I" off the surface of the table

(compare middle and bottom panels). Thus, we need to keep the hand reasonably high to avoid
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control inversion which would send the hand in exactly the wrong direction. Normally the

hopping motion produced by the BOUNCE module is sufficient to guarantee this.

Due to a mechanical linkage, the arm always faces in the same direction as the robot's wheels.

To perform the necessary sideways shift we rotate the base in place. Most of the time,

however, we do not want the base to move at all. Thus, we have created two default behaviors,

FREEZE and LIMP, which prohibit translation and rotation respectively. We use two modules

because the base treats orientation and velocity as independent resources. The control signals to

the base can take on one of three discrete values: increase, decrease, or don't change. The

modules shown here continuous generate the appropriate "don't change" messages for their

degree of freedom.

Swivel Level
XIR quench

XIR twist S

lm ROTATION

freez TRANSLATION

Figure 3-13. The arm is reoriented by the TWIST and QUENCH modules which override the default behavior
for base's rotational degree of freedom.

The TWIST module controls the actual reorientation of the base. As shown in figure 3-13, to

do this it needs only to affect the base's rotary degree of freedom. TWIST's applicability

predicate waits until it is sure that it has seen an object on one side only. This long delay

prevents the module from making the costly mistake of turning and gives the BACK module

time to stop the forward advance of the hand. We then gate this module's transfer function to

the output for only a fixed amount of time. When an appropriate sensor pattern is detected, we

use the rising edge of the recognition predicate to set the module's mode memory monostable.

TWIST's transfer function then attempts to drive the base of the robot so that both sensors see

the can. If, in the course of this movement, the can is lost (seen by neither sensor) the robot

stops. However, the maximum turn the module can make is governed by the time constant of

its internal monostable.
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In general, control of the base is very difficult for a variety of mechanical reasons. For

instance, TWIST does not use position control for rotation because the necessary angular

resolution is not available. Although the position encoders on the base can sense very small

rotations, the arm is not rigidly attached to the base. The whole torso of the robot can twist a bit

and the arm itself has a tendency to wobble when fully extended. Thus the base's sensors do

not accurately reflect the position of the hand. Even with timed commands, the rotations

required are so small that if the base is active for long it will overshoot the centerline.

Typically, we want the hand to move on the order of one inch at a radius of 20 inches (i.e.

roughly a 3 degree rotation). Using the fastest base command update rate and turning at the

slowest reliable speed we compute that the minimum achievable turn is about 5 degrees.

Fortunately this is mitigated by the fact that the base has some initial backlash to overcome and

it sticks a little when it starts to turn. In addition, the upper body has a large rotational inertia

which limits the robot's acceleration and deceleration. However, the performance of this

system could be improved significantly if the base incorporated a real closed-loop velocity

servo and if its command language overhead was reduced.

Although the moves made by TWIST are small, sometimes the robot still oscillates around the

centerline. When the left IR sees something, TWIST tells the base to turn to the right which

eventually causes the right IR to come on. Normally, this signal would cause the robot to start

turning back to the left. To prevent this motion we add another module, QUENCH, which

provides some hysteresis for the system. QUENCH watches for the direction of asymmetry to

change and, when this happens, locks the base in place for a while. The change in direction is

detected by using a pair of monostables to remember whether either IR has been on recently. If

both IRs have been on recently (not necessarily at the same time) QUENCH steps in. This

essentially allows the robot to turn in only one direction and thus prevents any backward

rotation. Notice that QUENCH can only be deactivated by a long interval in which neither IR

is active. This serendipitous feature is useful because it keeps the robot form jerking sideways

due to asynchronous extinction of the IR signals when the hand rises to the top of the can.

3.7 Experiments

The system described above has been implemented on our multiprocessor and works well in

practice. The first thing we investigated was the true efficacy of the Swivel level. In a series of

40 consecutive trials the robot achieved a 90% overall success rate. A trial was considered
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successful if the robot eventually achieved a reliable grasp on the can. In these experiments the

can was placed in the center of the arm's workspace and displaced slightly from the hand's

normal line of travel. Specifically, we tested left and right offsets of 0.5" and 1.5". The robot's

actions were similar for both values, even though the smaller offset was within the robot's

natural grab zone. On 25% of the successful trials, the robot overcompensated on the first turn

and had to perform a second turn to properly orient the hand. The 4 failures in our tests were

caused when the hand did not rise high enough to pass over the can. Although the can was

knocked over, in most cases the hand was properly centered. Thus, we can count on the hand

to grab any can whose center lies within 1.5" of its centerline.

hoist

engarde

extend pr

Figure 3-14. The result of 10 consecutive runs on the nominal environment. The lines show the path followed
by the tips of the fingers.

Next we investigated the reliability of the local and global control behaviors used by the arm.

Figure 3-14 shows a composite of the trajectories produced by the system on 10 consecutives

runs. The data was obtained by video-taping the arm in action and then manually plotting the

position of the fingertips during slow-speed playback. A complete run takes approximately 2

minutes. On 30 consecutive trials, evenly distributed between the three environments shown in

this section, the hand achieved a 90% overall success rate. Notice that this was accomplished

despite rather poor manipulator control (none of the path segments are straight) and with no

prior model of the environment.
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The behaviors responsible for various phases of the trajectory are noted on the plot in figure 3-

14. In the beginning ENGARDE deploys the arm to the top edge of the workspace. Then

DESCEND takes over and drives the hand down until the fingers contact the table top. At this

point BOUNCE is activated to lift the hand slightly, and SURFACE kicks in to urge the hand

along the table. When the hand gets close to the can, OVER lifts it to a suitable grasping height

while EXTEND continues to propel it forward. Eventually the finger beam is activated which

stops the hand and causes GRAB to close the fingers. Seeing that the hand is stopped, both

HOME and HOIST become active. Initially HOIST wins the arbitration, lifts the can up to the

top of the workspace, and brings it in toward the robot's body. After clearing the work area

HOIST relinquishes control and HOME takes over to bring the hand the rest of the way to its

parking position.

extendl orengarde

I " ' -- ' uncras\
I surface bounce

Figure 3-15. The same control system can retrieve a can from a pedestal. Although the IR sensors did not notice
the rise, the ensuing collision was detected by the wrist switch.

Because it has very few expectations about the world, the same control system can be used in

many different environments. Figure 3-15 shows the trace of an actual run in which the can

was not directly on the surface of the table. The arm starts out in the same way as before, finds

the table, and starts groping along the surface. At a certain point, however, the crossed IRs

detect the book which is supporting the can, and cause the hand to rise to a suitable height to

grip the book. EXTEND then drives the hand forward trying to place the book between the

robot's fingers. This attempt is doomed to failure and soon causes the wrist switch to be

activated as the hand rams up against the side of the book. When this happens UNCRASH

takes over and raises the hand still further. This time the hand successfully clears the book and
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goes on to grab the can in the standard fashion. A similar pattern of behavior has been

observed when the hand just misses the edge of the table during the initial descent phase. The

crossed IRs notice the table and then, the the aid of the wrist switch, the hand navigates back

onto the top surface.

hoist
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Figure 3-16. The arm can also collect cans from behind a barrier. After exploring unsuccessfully for a short
while, SURFACE drops out and lets DESCEND take over.

Another example of the controller's flexibility is exhibited in figure 3-16. Once again this a

recording of the actual operation of the arm, but this time the can has been hidden behind a

barrier. The robot starts by locating the top of surface of the book in the normal manner.

However, as it is bouncing across the surface the robot notices that the tip switches have been

inactive for an abnormally long time. The monostable inside the SURFACE module thus times-

out and control reverts to the DESCEND behavior. As it happens, while the hand is adjusting

itself to the new terrain height, the crossed IRs pick up the can and the normal grasping cycle is

initiated. If the can had been further behind the edge of the book, the hand would have instead

descended all the way to the surface of the table and started skimming across it in search of a

can.

This example points out the danger of incorporating excessive state into the system. When the

fingers initially made contact with the book, the robot assumed it had found the correct height

at which to search. It implicitly models the environment as a single flat surface with only this

one parameter. Fortunately it stored the height information by activating SURFACE's

monostable, a piece of self-decaying state. Like a watchdog timer, the period of the
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monostable was set so that, for a truly flat surface, it would normally be retriggered before it

timed out. When this does not occur (no contact is made) the robot automatically "forgets"

about the original event. Thus, the robot never acts for long on outdated information and is free

to adapt its behavior to whatever circumstances are present at the moment.

While our system does not construct representations or build plans, it does use them in the

course of activity. As demonstrated by the experiments, there are obviously many partial

representations and sketchy plans embedded in the control system. Yet these are present only at
"compile time". That is, they are part of the creature's construction rather than something

subject to change over time. For instance, when the hand gropes around for a can it is

implicitly using a representation of a table. Part of this is representation is contained in the way

the fingertip sensors were installed, part is in the standard directions of movement of the arm,

and part in three independent control agents. As we have seen, these agents also contain a

rudimentary plan about how to find and search across a table-like surface. One agent "knows"

that tables are contacted by going down. Another agent "knows" that the hand must not contact

the table if it wants to move. The third agent "knows" that the table can be followed by

extending the arm outward. However, this plan was built into the creature as a collection of

instinctive behaviors, rather than being deduced on the fly by some conscious, introspective

reasoning facility. The robot's apparent ability to dynamically plan trajectories is actually

derived from the sequence in which environmental conditions allow these behaviors to be

triggered.
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4. Vision

With the development of the arm control system in the last chapter, our robot is now capable of

finding and grasping cans that lie anywhere within the arm's workspace and that are roughly

aligned with the plane of the arm. But what about cans that remain beyond the range of the

local sensors? This is the purpose of the vision system: to locate suitable objects from a

distance. With this new capability, the robot's collection zone can be expanded to include

objects that are within 30 degrees of the robot's direction of travel and up to 6 feet away.

In our system we do not adhere to the paradigm of model-based matching followed by a

transformation from image coordinates into joint angles. Rather, with our approach it is only

necessary to map the edges of the arm's effective workspace into visual coordinates. To grab a

can, the robot simply moves itself so that the image of the object lies in the image of the

workspace, then releases the arm. The rest happens automatically thanks to the collective

competence of the arm behaviors. In this way, the process of localizing the can is shared

between the vision system and the arm controller.

This is the key idea of this chapter: that the complexity of hand-eye coordination problem can

be greatly reduced by relying on the behavior of the arm controller. While many other

researchers have found ways to learn the full mapping from image coordinates to joint angles

(e.g [Kuperstein 871), none of these systems is as simple as ours. The advantage of having a

complete mapping is that it would allow us to move the hand more directly toward the can. Yet,

for our task all that matters is whether the robot eventually grasps the can, not how efficiently it

does this. Furthermore, even if we could approach the can directly, we would still require

many of the local obstacle avoidance and fine positioning strategies of the arm controller. Since

these behaviors were already present, we were able to take advantage of them to simplify the

task of adding vision to our robot.

Many sorts of coordinate transformations can be simplified in a similar way. Suppose we had

an additonal sensor that could discriminate red objects from green objects. To grab red cans,

the robot would first center a can shape and then see if a red object appeared at the correspond-

ing canonical location in the color image. It is not necessary to derive a dense correspondence

mapping from one set of image coordinates to another. We can instead map just a small region
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of correspondence and then arrange to bring potentially interesting objects into this focus of

attention.

The rest of this chapter describes the actual mechanisms used for finding cans and positioning

the robot. We first describe the nature of our range sensor and the hardware used for

processing the images. Next, we discuss the properties of real range images and show how

these are incorporated in our hard-wired can recognition algorithm. We then describe how the

recognition information is used to drive the two degrees of freedom of our robot. Finally, we

report on the empirical performance of the recognition algorithm and the proficiency of the

robot body alignment system.

4.1 Hardware

Before discussing how the robot locates cans it is first necessary to understand how the robot

perceives the world. To achieve good discrimination and a wide field of view we need a sensor

with high resolution. For this reason we decided to use an optical ranging system. While there

are several systems commercially available, we found that none were suitable for our

application. They were either too large, required too much power, or were too expensive.

Thus, we chose to construct our own laser ranging system. The system is small enough to fit

onboard the robot and, since it only consumes 30 watts of power, can be run off batteries. The

actual sensor is shown in Figure 4-1.

Our range finder is based on a triangulation scheme (cf. [Essenmacher et al. 88]) rather than

time-of-flight [Lewis and Johnston 771 or phase detection [Miller and Wagner 87] as some

other systems. The large vertical column is a 7mw Melles-Griot helium-neon laser. At the top

of this we have mounted a cylindrical lens to spread the beam into a 90 degree wide sheet of

light (see figure 4-2 left). The power density of the laser radiation is approximately equivalent

to that emitted by three 100W incandescent bulbs and so is bright, but safe. This sheet is then

reflected off a movable mirror mounted directly above the laser. A low-inertia Densei stepper

motor is used to ratchet the horizontally oriented plane of laser light up and down in front of the

robot. A complete sweep takes 1.1 seconds and covers almost 60 degrees.
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Figure 4-2. The robot locates objects by sweeping a plane of laser light up and down (left). This is observed by
an offset camera whose scan lines are oriented vertically. We compute depth by measuring the distance between
the laser line and the edge of the picture (right).

Lower down on the laser tube is a Pulnix TM-540 CCD camera (AGC disabled) which is fitted

with a wide angle lens to give it a roughly 60 by 75 degree field of view. The camera is tilted

downwards 20 degrees and rolled on its side so that its normally "horizontal" scan lines run

from bottom to top. This re-orientation of the camera is the key to the operation of the system.

At the beginning of each camera scan line we start an 8 bit timer which then counts the pixels

along the scan line until it detects the laser beam (a similar idea was used in [Popplestone et al.

75]). The further from the beginning of the scan line the laser stripe is detected, the closer the

object is to the camera (see figure 4-2 right). We perform this measurement for each line of the

CCD image to get 256 disparity readings per picture. All this happens during the odd field of

the NTSC signal. During the even field we increment the position of the deflection mirror and

let it settle. A full range image requires stepping the sheet of laser light through 32 such discrete

deflections.

Since we use an intensity threshold to detect the laser stripe in an image, we employ several

methods to improve the rejection of ambient illumination. First, we noticed that bright objects

in the background, such as windows and pieces of paper, often have a large spatial extent.

Thus, we use special digital circuitry to look just for skinny lines in the image. In addition, to

emphasize the red light from the laser, the camera is equipped with a broadband interference

filter from Oriel. This device is centered at 650nm and has a 70nm bandwidth. While narrower

filters were available for the particular wa ngth of interest (632.8nm), the center frequency

of all interference filters shifts as the angle ui the incoming radiation increases (see figure 4-3
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left). By using a wide filter we achieve a relatively flat transfer function over the region of

interest (figure 4-3 right) while still boosting the signal to noise ratio. Other researchers (e.g.

[Pipitone and Marshall 83]) have avoided the incident angle problem by using a narrow filter

and sweeping both the laser and the detector. This trades speed and simplicity for better

sensitivity.
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Figure 4-3. A filter is placed in front of the camera to aid in locating the laser stripe. The pass band shifts

relative to the laser frequency (dark line on left) depending on the direction of the incoming light ray. This

makes the center of the image dimmer than the edges (right).

We have also designed a special set of processors to interpret the data from the light striper in

real-time. Each Line-Oriented Vision Processor (LOVP) board consists of an 8 bit

microprocessor (a Hitachi 6301), 2K of RAM, a high-speed data transceiver, and a general-

purpose parallel port. Because these boards are very small, 3 by 4 inches, and do not require

much power, about 1W each, all the necessary processors can be mounted onboard. This is an

important consideration for mobile robots because external cables invari ibly get tangled.

Similarly, the telemetry necessary to process images offboard is generally infeasible due to the

physically cluttered and electrically noisy indoor environment.

The LOVPs communicate with each other using short bursts of image data. Each 1/30 of a

second the light-striper generates a set of 256 disparity measurements corresponding to the

wiggles and jumps observable in the laser beam. This set of numbers is then compressed into

a 0.5ms burst and sent to the first LOVP. When a LOVP receives data, special hardware stores

it directly into the onboard RAM chip. The RAM is divided into two conceptual chunks: old-

space and new-space. In new-space we have the most recent line of data plus three 256 byte

sections worth of "scratch-pad" used for storing temporary results. Similarly, in old-space we

have the second most recent line and its associated scratch-pad sections. When a new burst of
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data is received, the current new-space is renamed old-space, and the incoming data is written

to new-space. After the incoming burst finishes, the receiving LOVP generates its own burst

and sends all of the current old-space data to the next processor(s) in line. This produces an

auto-pipelined structure: if the processor does nothing to the data in RAM, the LOVP acts as a

simple delay unit. Normally, however, the microprocessor actively manipulates the available

data between bursts. In this 32ms interval approximately 40 instructions per pixel can be

executed.

8 bit

microprocessor

burst receiver
1 A 4 dat a field s

2 x 256 elements

burst transmitter

Figure 4-4. The Line-Oriented Vision Processors (LOVPs) are based on a standard 8 bit microprocessor. Each
board only has access to the two most recent horizontal lines of the depth map. Special hardware automatically
scrolls these lines into and out of memory.

The LOVPs can be connected in a chain or can fan out into a tree. They cannot, however,

recombine later on. That is, a LOVP can talk to any number of other LOVPs but can only listen

to one. This is not a serious restriction because we can use the scratchpad sections to perform

limited recombination of data. For instance, the first LOVP could put its result into a scratchpad

section and then transmit the original raw data and the newly processed data to the following

LOVP during the next burst. This LOVP could then perform its processing on the raw data and

store the result in a different scratchpad section. Finally, the third processor in the chain could

take the two scratchpad sections and combined them to obtain a single result.
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linear sampling area sampling

Figure 4-5. The same line-oriented processing architecture can be used with gray-level images. A linear

sampling might be useful for finding strong vertical edges such as comers and doors. A low resolution area
sampling might be useful for finding ceiling lights. The open rectangles indicate the sample points used in each
image.

The LOVPs are well matched to many mobile robot applications. First of all, they process the

data as fast as our light-striper can generate it. Second, an indefinite number of LOVPs can be

added to the system without slowing it down. Each extra processor does, however, add a 1/30

of a second latency to the overall system. The LOVPs are also simple and cheap. No large and

power hungry items such as frame-grabbers, 32 bit floating point vector processors, or

hardware convolvers are required. Furthermore, the basic scan line sampling scheme can be

extended to process gray level images as well. As shown in figure 4-5, any front end which

yields one data point per scan line can be used. Here we average the video signal over a small

interval (white boxes) and then send it to an ordinary A-to-D converter. Examining a single

horizontal slice across the image gives information which can be used for motion or stereo

vision [Brooks, Flynn, and Marill 871. A coarse two dimensional image can be used to

determine the orientation of ceiling lights as a navigational reference, or to follow objects and

paths [Horswill and Brooks 881.
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4.2 Image processing

The goal of our robot's vision system is to identify and report the location of cans within its

field of view. The LOVP network sits processing depth images, one per second, and delivers

to the subsumption architecture messages like: "I didn't see a soda can, I didn't see a soda can,

I see a soda can at (110, 15, 60), I see a soda can at (115, 14, 62), I didn't see a soda can, ... "

The numbers refer to the image coordinates of the can's bottom and a typical raw disparity

value for the object. This is all the information currently reported; no confidence limits,

alternative targets, size estimates, or shape descriptors are produced.

Yet to process the real data adequately, we must first be familiar with the properties of the

images actually produced by our light striper. Figure 4-6 shows one such image. We have

stretched everything by a factor of 8 in the vertical dimension to restore the true aspect ratio.

The gray levels represent the raw disparity measured; they have not been corrected for depth.

That is, the computer has shaded each pixel based on the number returned by the front end of

the light striper. This number corresponds to the measured distance from the laser line to the

edge of the picture. Still, in general, the darker an object appears, the closer it is to the robot.

This picture is the robot's impression of a soda can sitting on a bench top. There are various

objects under the table, and a white wall behind it which is blocked at the bottom by other

objects on the table. The lump in the lower right comer is not part of the exterior scene at all,

but is the top of the robot's hand.

Notice that large areas of the image are pure white. These are places where the light striper

received no returns. Since the position of the laser plane is detected by thresholding, if the

stripe in the image is not sufficiently bright the robot will ignore it. This can happen if the

object in the beam is too far away, has a low albedo (i.e. dark colored), is highly specular (i.e.

shiny), or is oriented at a steep angle relative to the camera's line of sight. Note that some

objects have narrow spikes on their surfaces. This occurs when the reflected beam is right at

the detection threshold. Any slight variation of the reflecting surface causes pixels to erratically

appear or drop out. The vertical streaks on the right side are caused by a different phenomenon.

On each video line the light striper records the disparity of the first narrow bright spot it sees as

it scans from the bottom to the top. Unfortunately, illumination highlights fit this description

and yield the same disparity irregardless of the declination of the laser. Here the highlights are

from the aluminum enclosure of the robot's own hand. We have since liberally applied

electrical tape to the hand to help mask these bright spots.
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4m II

Figure 4-6. This is an actual range image produced by our laser striper. It shows a can on cluttered bench top.

The streaks on the right are due to localized specular reflections.

Another interesting property of this image is that the soda can is relatively isolated. Except for

the bottom, all of its boundaries are marked by a transition from true depth data to no depth

data. In fact, in examining numerous images we have found that there are very few depth

discontinuities. This is due to a number of factors. Flat horizontal surfaces typically do not

show up because they are nearly parallel to the incoming beam. In addition, table tops are often

have a glossy coating which does not produce much diffuse Lambertian scattering. Vertical

edges are usually outlined by a no response region due to several geometric effects. Very

seldom are objects with square edges aligned perfectly perpendicular to the camera. This means

that there is at least one highly slanted surface (two for a can) which does not generate strong

reflections. Also, as shown in the left half of figure 4-7, the sensor's camera is mounted

slightly to the side of the laser. This leads to a shadowing effect on one edge of objects. A

fortuitous misalignment of the camera can cause a similar narrow isolation band on the other

side of objects as well. As shown on the right side of figure 4-7, if the scan lines are crooked

they may pass between two sections of the laser stripe without registering anything.
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Figure 4-7. Vertical edges often have an adjacent no response region. Because the camera is offset from the laser
there is a shadow on one side (left). If the scan lines are tipped slightly, a similar effect occurs on the other side
(right).

With these phenomena in mind, we designed a chain of 5 LOVP processors to help the robot

find cans. Figure 4-8 summarizes the function of each of these processors and shows their

interconnection. The first step of visual processing is to convert the disparity map into a binary

image. Any pixel for which a true depth reading obtained is marked as a one, all the others are

zeroed. This simplification is possible because we do not use any depth information in the

recognition phase of can finding. Next, to combat streaking, we eliminate any features

narrower than 6 pixels. This should not remove any prospective cans because, even at a

distance of six feet, they subtend at least 8 pixels. Next, as shown in figure 4-9, we look at the

pixel above and to the left of the current pixel to determine whether an edge exists. We also

classify any edges found as one of four types: left, right, top, or bottom. All this computation

is done by the first LOVP in the chain.

Next, as shown in figure 4-10, we look for possible tops of cans. These consist of an upper

left corner (a pixel marked as both a left and top edge), followed by a series of top edge

fragments, and terminated by a right edge pixel. Since we only use horizontal and vertical

edges, we consider objects to be distinct if they are not 4-connected. In addition, we require

that the length of a proposed top be less than 40 pixels. This threshold is fixed and is not varied

according to the computed depth of an object. It corresponds to the apparent size of a can

placed 15 inches in front of the sensor. The top and edge maps are then passed to the second

LOVP which looks for the sides of cans. These are chains of edge fragments which are more
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or less straight. In the actual code the maximum local dent allowed is 4 pixels, and the biggest

bump is 4 pixels.

Light striper LOVP I

burst compression

field copying

binarization LOVP 2

line erosion
edge marking

top finding

LOVP 3

side tracking

LOVP 4
cotermination checking
aspect ratio filtering Mutant

parallel communication

Figure 4-8. The robot uses a chain of 5 line-oriented vision processors to find cans. The first LOVP receives

data directly froi the light striper, while the last LOVP is interfaced to the subsumption architecture controller
via a "mutant".

Finally, the side map is passed to the last LOVP which finds the end of each chain. If two

matching sid, s terminate at the same height in the image, the robot considers this convincing

evidence for ,,e existence of a can at that location. The LOVP then records the coordinates of

the center of tiis can's bottom as well as its aspect ratio (length to width ratio). In addition, it

averages the ,1isparity values at the two side terminations to provide a representative depth

measure for the can. As the image is scrolled through, the LOVP keeps track of the candidate

whose true aspect ratio is closest to 2.7. The panel in the lower right of figure 4-11 shows the

can selected by the processor (single dark bar) and one other possibility which was rejected

(double bar). Once the complete image has been scanned in, the plane of laser light reverses its

direction and starts sweeping upward. During this period the LOVP uses its parallel port to

pass the parameters of the best can to an associated subsumption architecture processor which

then makes the information available to the rest of the system.
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Figure 4-9. The first stage of processing yields a binary image in which all real depth readings have been
replaced by ones. The system then eliminates any narrow noise features and marks the direction of the remaining
edges.
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Figure 4-11. The upper left shows the composition of the scene. To the fight, the depth map is binarized and
narrow features are removed. At the bottom left we show the tops and sides found. Finally, the original image is
marked with the best candidate (single underline).
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4.3 Visual guidance

The front-end LOVPs deliver a map with the best can marked. This judgement, however, is

based primarily on the shape of the object not its size. We did this to allow the LOVPs to work

with a simple scale-invariant can description. Yet, the proper metric information could greatly

reduce the system's mis-identification rate. Organizing the acquisition system as a collection of

behaviors lets us add this in after the fact. In our application, we divide the robot alignment

task into two separate operations. One behavior rotates the robot to bring the image of the can

into the image of the workspace. Another behavior then uses the depth of the selected object to

bring the robot within grasping distance. This approach behavior lets us dynamically weed out

improperly sized objects. Recall that, to be perceived as the top of a can, a horizontal edge had

to be less than a certain maximum width. Imagine that the robot erroneously latches on to some

oversized object such as a printer. As the robot tries to approach to the correct grasping

distance, the image of this object will grow in size. Long before the robot actually reaches the

object, its visual width will exceed the specified limit and the robot will lose interest in it. So,

not only can we use the behaviors of the arm to simplify th alignment process, we can also

use the alignment behaviors themselves to simplify our model of cans.

Although not as important as our semi-procedural can model, the implementation of the

alignment behaviors is also interesting. To convert the location of the can into a motion

command for the robot we use something called a "space table". This scheme is adapted from

the early work of Arbib [Arbib 81] and is a very flexible approach for dealing with images.

After the LOVPs finish their work the robot has a relative "can-ness" map of the world in

image coordinates. We view this entire transformed image as a big control table in which each

pixel suggests some motion for the robot's body. The maximum of the relative "can-ness" map

is then used to select a table entry. In our system only one pixel is ever marked, but one could

imagine extending the approach to multiple targets with varying strengths. The particular

control law associated with each component of the robot's visual control system is embodied in

one of these "space tables".

For instance, the ALIGN module implements a feedback loop in image space. Its job is to

determine whether the can is to the left or right of the workspace. It does this by assigning

certain regions of the image to a left turn operator, and other regions to a right turn operator.

This partitioning is based on the coordinates of the arm's workspace in the visual field. If the

can appears to the left of this area, the robot should turn to the left and vice versa. If the

selected object appears inside the workspace, no motion is necessary. On each scan of the light
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striper, ALIGN then activates the operator whose region includes the object selected by the

LOVP image processors. This in turn emits a brief rotation pulse to bring the robot into line

with the can. The length of each ballistic rotation is determined by the ALIGN module's

monostable. Since these motions are small, the robot typically undershoots its objective and

several cycles are required to properly orient the arm. Of course, if we had access to the base

encoder values we could terminate the movement more intelligently. Still, adequate

performance is obtained with just this simple scheme.

The other main control module is APPROACH. This compares the depth of the selected object

against the near and far boundaries of the workspace. The values for the workspace were

extracted from several images of a vertical post placed in the appropriate region. It uses the

result of this comparison to determine whether to drive the robot forward or back. Like

ALIGN, APPROACH uses the image coordinates of the most can-like object to select an entry

of its control table. However, instead of a being a matrix of fixed actions, the table

APPROACH uses is more like a tensor. Here, the maximum of the "can-ness" map gates the

raw disparity of the can to a particular window comparator function. The output of the chosen

function is an actual drive command for the robot's base.

Side view of the robot

LASER looking toward a point

(0,0)A
POINT
(z, y)

(dz, dy) . .... dy (f + s tan a) - dz (s - f tan a)

tan A (f + s tan a) - (s - f tan a)

image plane

Figure 4-12. The actual depth of an imaged point can be derived from the point's measured disparity, s, and the

declination of the laser beam, A.

The pixel functions used in APPROACH's space table actually consist of several processing

steps amalgamated into a single transform. Consider the disparity-to-depth equation for our

ranging system (figure 4-12). This function, z(A,s), gives the depth of a point based on the

measured position of the laser stripe in the image and the current declination of the projected
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plane of light (as well as the geometry of the system). We start by indexing this function on the

laser plane's declination, A, which corresponds to the perceived object's y coordinate in the
disparity map. This reduces the equation to a family of functions on one variable, zA o (s),

ZAI(s), zA2 (s), ... We then assign each pixel in the image the appropriate member of this

family based on its y coordinate. The next processing step is to check whether the robot is

close enough yet by comparing the target object's computed depth to the edges of the

workspace at that location. Thus, the location-based disparity-to-depth function is followed by

a location-based classification function which in turn is used to choose a direction of motion for

th,. robot's base.

if ZAn(s) < nearAn then advance

if zAn(s) >farAn then retreat

Since we actually never use the real depth value for anything except this comparison, we can

fold the two operations together. In fact, this is also the easiest thing to do for calibration

purposes. We merely take a laser image of a plane at the near and far boundaries of the

workspace and then use the raw disparity values generated as the thresholds for the

comparison.

The fact that each pixel has a potentially different function suggests implementing the

APPROACH module in a massively distributed fashion. Figure 4-13 shows how this could be

done. At the top is the fully processed image plane in which, at each location, the system has

recorded its degree of belief that a can is there. Connected to each pixel location is a

subsumption module (gray). In each module the applicability predicate checks whether its

module is at the maximum of the "can-ness" map. For our system, the applicability predicates

simply test whether the associated pixel has been marked as the best candidate can. The active

modules then gate the result of their transfer functions to their output. In APPROACH's case,

the transfer functions have access to the raw disparity map which is registered properly with

respect to the "can-ness" map. The outputs of all the individual modules are combined in a

large arbitration network to generate a single motor drive signal. Since the visual preprocessing

we currently perform will activate only a single module, the details of this network do not

matter. However, one could imagine cases where the structure of the arbitration network could

produce some useful action, such as selecting the module closest to the center.
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Figure 4-13. The APPROACH behavior can be implemented as massively parallel network. Each pixel checks

whether a can is at its location and, if so, picks a motion appropriate to the object's depth. All the commands

generated are then merged by a series of suppressor nodes.

APPROACH and ALIGN form the core of the Seek level of competence. While their basic

functions have already been explained, the robot's qualitative behavior also depends on the

relative response regions of these two modules. Figure 4-14 shows a real light striper picture

of the arm's workspace overlaid by the activity zones. ALIGN pays attention to the whole

image except for a small vertical slice centered on the arm's workspace. APPROACH,

however, only responds to cans in a small area around the workspace. If the can being pursued

is near the edge of the robot's field of view, approaching may cause it to slip off the side of the

image. Thus, we have adjusted the activity region for APPROACH to cause the robot to aim

itself more or less toward the can before advancing.
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Figure 4-14. This picture shows the response regions of the modules in the control system overlaid on an actual

image of the center of the arm's workspace. The robot does not approach if there is any danger that the can
might move off the side of the image.

The other two modules in the Seek level (see figure 4-15) control the robot's visual attention.

The lowest priority behavior is STARE actually serves two functions. If a can has been spotted

recently (within the last two scans), this module grabs control of the base's motors to keep it in

the same place. This lets the light striper get another look at a potentially interesting objects.

Although the default behavior for the robot's base is to stay exactly where it is, this will change

later when we add several levels of navigation to the system. STARE's purpose is to block any

such commands which are not part of the robot's can centering routine. The other function of

STARE is to abort hopeless acquisitions. If the robot has continually observed something for

long time, STARE gets bored and, for a while, disregards all objects sighted. The last module

in this level, TAIL, performs a similar function. In particular this module watches for the hand

to be in the parked position with the fingers closed. When this first occurs, TAIL directs the

robot to ballistically turn around to face the opposite direction. The purpose of this behavior is

to prevent the robot from being fascinated by some object on the same table from which it just

successfully removed a can.

Like STARE, the modules in the Lock level of the control system help coordinate the different

phases of the robot's activity. For instance, we do not want the arm to be deployed uttil the

robot has finished aligning itself with the can. Therefore we added the TUCK module which

freezes the arm if the base has advanced or retreated recently. Notice that when the can is

properly situated relative to the robot, APPROACH become quiescent and the base stops
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moving. This causes TUCK to relinquish its hold on the arm resource, effectively signalling

the arm through the world that it is time for it to extend in the normal groping pattern. Much as

we want the arm to remain parked when the base is moving, we also want the base to stay put

when the arm is extended. For instance, if we allowed the base to rotate freely when the arm

was out, the robot might inadvertently sideswipe things with the arm. This could wreak havoc

with the environment and would likely damage the arm as well. To prevent this we install the

POINT module which prohibits any movement of th,. base unless the robot's hand is at its

home location.

vis "Seek level

v is . align --

S S S TRANSLATION
vis stare (after Freeze)

S ROTATION

(between Limp
and Twist)

tail

xos

... ... ... ... .. ... ... ... ... .. ... ... ... . . .. . ..... ............ °. ... ... ...

Lock level
p05 point..

ene - ARM

(after all others)

Figure 4-15. The Seek level pursues visually sighted cans by first aligning the robot and then approaching. To
prevent damage to the robot's arm the Lock level prevents the arm and the base from being simultaneously

active.

This situation-keyed form of resource scheduling can give rise to a phenomenon akin to the

ethological concept of a "displacement activity". When an animal is in a situation in which two

of its innate "drives" are in conflict, it often exhibits behavior which is marked different from

that produced by either drive [Tinbergen 511. For instance, during breeding season seagulls

have territories which they assi(" 9usly defend from other birds. If another bird approaches too 4
close, the claimant will charge forward and peck at the intruder. Yet each gull is also cognizant
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of the boundaries of adjacent territories. Once a gull realizes it is outside its range, it will

retreats back to its home turf. The interesting situation occurs when two birds meet at a mutual

boundary. Here the urge to back off and the defensive imperative are evenly balanced. What

happens it is that the birds face each other and peck violently at the ground.

Our robot exhibits a similar behavior when it can not approach quite near enough to grab a can.

The light striper tells the robot to advance but the robot's proximity sensors detect an obstacle

ahead and enforce a stop. Neither navigation behavior directly controls the arm, however.

Thus, when it detects that the robot has stopped, the arm extends and ends up pawing at empty

air. One simple way to resolve this situation would be to explicitly monitor the progress of the

visual approach behavior. If distance to the target does not steadily decrease, something has

gone wrong and the vision system sha-d give up. A different approach would be to loosely

couple vision directly to the manipulator. For instance, we could add a module which froze the

arm unless a can was sighted in the workspace. This method, unfortunately, would also

require adding another special purpose interlock for releasing the arm at the deposit site.

4.4 Experiments

Here we show the performance of the can finder algorithm. Figure 4-16 shows soda cans

placed in various cluttered surroundings typical of our laboratory area. The gray panels to the

right are the actual light striper images. In all three cases here the robot chooses the correct

object to pursue (solid black bars). Other objects which met the width and co-termination

criteria but were rejected based on aspect ratio are marked with an arch-like black symbol.

Notice in the third panel of figure 4-16 that the leg of the table behind the printer appears as two

separate objects in the light striper image. This happens because the table leg is partially

occluded by the surface supporting the printer. This is just one case in which can-like artifacts

can be generated by non can-like objects.

Figure 4-17 shows several more examples of phantom cans. In the top panel the leg of the

wkork bench is broken into several distinct objects. In this instance, the image portions

connecting tht ,nree pieces were so narrow that the front-end noise elimination step wiped them

out. However, even if the robot erroneously chose one of these fragments, the semi-procedural

nature of our can model would allow the robot to correct the situation. As the distance to the

object decreased, the connecting bridges would appear to grow wider until, eventually, the

separate segments would merge together. The longer object produced could then clearly be
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rejected based on its high aspect ratio. The second panel in figure 4-17 shows another

mechanism by which false targets can be introduced. Here, the actual can produces a shadow

on the side of the printer yielding a can-like square area to the left of the real can. This phantom

will be eliminated as the robot changes its point of view, unlike a real can which remains

invariant with respect to angle.

Finally, the third panel of figure 4-17 shows yet another artifact generating mechanism. Here a

swath of the table top is visible at the bottom of the image. However, as the relative orientation

of the table changes, the laser stripe is reflected less effectively. This leaves a raggedly outlined

parabola in the image due to the streaking that results from the use of a single, highly local laser

intensity threshold. A similar effect can be produced at the edge of regions by surface

markings. However, as before, when the orientation of the laser system changes, so will the

shapes of these regions. This is the primary advantage of using a partially procedural object

model. We believe in letting the robot keep its eyes open as it moves, as opposed to a "flash

bulb" approach where one image is considered sufficient for accomplishing the task. Since the

robot gets many chai,:es to correct its interpretation as the situation changes, it can afford to

use simpler image processing routines (c.f. [Mysliwetz and Dickmanns 87; Horswill and

Brooks 88]).

However, not only does the robot need to know what cans look like, it must also know not to

respond to non-can objects. Figure 4-18 shows several scenes lacking a can. The top panel

shows a person's legs; no cans were found in this image. The next panel shows a human hand

in close proximity to the robot. Again, the robot is properly discriminating and does not

classify the hand as a can. It does, however, mistakenly identify a background reflection as

can-like. In zhe bottom panel of figure 4-18, we show the same image but rotated upside down.

In this case the middle finger of the hand satisfies all the relevant shape constraints and is

perceived as a can. It is flat and fairly narrow at the top, and has two relatively straight sides

that end at the same height in the image. Without access to size information, this is probably a

reasonable interpretation. Once again, after a suitable shape is identified, the robot adjusts its

distance relative to the target. In this case the robot would back away from the hand to the point

where the finger would fall below the minimum width threshold and disappear.

82



can

box

stack of cups .....
9a box

soup box ~fu
cocoa

can

white
refrigerator

rFh ____......

white wall

table
laser
printer bo

can............

=i4able
leg

box of

paper

~Y -hJ...
Figure 4-16. For the situations shown on t~he left, the actual light striper image is shown to the right in gray.
The dark bar indicates the object chosen by the robot, while the arch-like marks indicatc the other candidates
considered.
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object in the top two images, but fails on the third.
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Figure 4.18. Sometimes, as in the top panel, no cans are perceived. Other times, although there are no cans in
the scene, the robot is attracted to some similar featut, .
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Figure 4-19. Thc robot is able to center cans (circles) with respect to the arm's effective workspace (rectangle).
The lines show the apparent paths, relative to the arm's frame of reference, taken by several cans during the
centering process.

Once a can is detected, the robot moves to place the image of the can in the image of the

workspace. Figure 4-19 shows the results of 10 centering trials. To obtain this data, a rigid rod

was affixed to the robot's base such that its tip was directly beneath the center of the arm's 3"

by 12" grab zone. As the robot swivelled to center the can, this rod's orientation and the

position of its tip were recorded. The data was then transformed into the arm's moving frame

of reference. From the robot's point of view, the arm does not move in order to align itself

with the can; rather, the can appears to jump around with respect to the arm. The circles in
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figure 4-19 show the final location of the can while the lines show the apparent paths taken by

several representative cans. The rectangle marks the limits of the robot's horizontal workspace

in which the center of each can must fall. Notice that for highly eccentric cans, the robot rotates

before turning (trace "F"). For cans closer to the midline the robot turns and advances

simultaneously (trace "H"). Overall, the robot has a 70% success rate. Many of the errors are

due to over-rotation of the base (e.g. trace "G"). This suggests implementing an alignment

system with several different turn angles, thus more closely emulating a proportional

controller. Big turns would be used for fast, coarse centering of the can, while smaller

rotations could be employed for fine adjustment. However, even with the present "bang-bang"

system, it is clear that our reduced hand-eye mapping scheme is adequate.
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5. Navigation

Using the laser rangefinder and a local groping strategy the robot is able to acquire cans that are

in a 60 degree wedge in front of it. The last step is to increasing the robot's range is to move

this wedge around through the environment. We do this by causing the robot to follow walls

using a collection of infrared proximity sensors on its body. When, in the course of this

wandering, the laser striper spots a promising candidate, it automatically stops the robot and

starts positioning the arm. As soon as the alignment is satisfactory, the arm deploys itself and

the normal grasping cycle ensues. Once the can is acquired, however, the robot has another

duty: to bring this can back to a central collection area. For this we do not need a full-fledged

map, nor do we need an understanding of how to take short-cuts or even what the quickest

path back is. All the robot needs to do is to get home with his prize. This requirement is met

most simply by having the robot retrace the path it took during the exploratory phase.

We have been able to further simplify our system by observing that the robot's environment is

typically structured as a graph rather than as a series of wide open meadows. For instance,

there are walls to follow, corridors to track along, and a warren of footpaths in what initially

appears to be a room. Thus, as have others (e.g. [Kadonoff et al. 86; Wong and Payton 87]),

we have broken our navigation system into a tactical component and a strategic component.

The tactical part knows how to follow each of the types of paths that are found in the robot's

world, while the strategic part knows when to switch between them. The strategic component's

job is made much easier by using the paths intrinsic to the environment. For instance, every

twist and turn of a corridor does not need to be remembered provided that the tactical

component can still reliably follow it. Still, some junctions remain. Luckily, there are often

local feature- that can be used to discriminate between directions. In fact, if we do not demand

that the rc -it reach all parts of its environment, by always choosing the same type of branch

the creature can navigate with no stored state at all.

This is the key idea of this chapter - a path does not have to be a data structure. We can instead

use a simple decision procedure to choose between segments and a local navigation procedure

to "record" the relevant information about each segment. Thus, our robot does not need a

complete internal representation of its path. By relying on the strategic component's ability to

consistent pick out the correct direction and the tactical component's stereotyped interaction
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with local features of the environment, the robot is able to use the world as its own

representation.

5.1 Sensors

The primary navigation sensors are two rings of infrared proximity detectors mounted on the

torso of the robot. The sensors themselves, like the hand's crossed IRs, operate on a returned

intensity basis. Two infrared emitters radiate a brief burst of photons which is bounced off

obstacles in the environment and then detected by a associated phototransistor. As shown by

the data in the left half of figure 5-1, the returned signal intensity falls off in a manner roughly

proportional to the inverse of the distance from the sensor to the obstacle. We pass this signal

through a set of 3 logarithmically spaced thresholds to yield qualitative depth information. Note

that this is not an absolute measurement since the returned signal intensity depends on a

number of other factors. For instance, black objects appear further away than white objects and

small items are harder to detect than larger obstacles. In addition, if the reflecting surface has a

matte finish (i.e. is largely Lambertian), the signal strength also exhibits a cosine dependence

on the angle of this surface relative to the robot. As shown in the right half of figure 5-1, this

prediction is borne out by the actual measured performance of the sensor.
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Figure 5-1. The robot navigates using 30 body-mounted infrared proximity scnsors which operate in a diffuse

reflective mode. The actual intensity cf the returned signal depends not only on the distance to the object (left)
but also its angle relative to the sensor's beam (right).
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Figure 5-2. There are 30 proximity sensors mounted in two rings around the periphery of the robot. The top set

sees about 1 foot while the bottom is able to sense out to 2 feet. Because these sensors have a narrow field of

view, very high or very low obstructions may be missed.

The robot has a total of 30 of these sensors. There is a ring of 16 evenly spaced sensors below

the processor panels (see figure 5-2), and another ring of 14 sensors above the panels. Due to

the base's mechanical linkages, both sensor rings always remain in the same orientation relative

to the robot's direction of travel. Unlike the sonar sensors typically used on mobile robots,

these proximity detectors can only see a short distance. The bottom sensors typically see out to

about two feet, while the top sensors are restricted to a one foot distance by mounting

considerations. However, also unlike sonar sensors, there is n - standoff distance - the infrared

sensors can detect obstacles no matter how close they are. Our arrangement of sensors gives

rise to a tapered protective shell around the robot. Any large obstacle entering this "personal

space" will be detected by at least one sensor. Unfortunately, the obstacles in man-made

environment are not blob-like boulders but instead have highly convoluted shapes. As shown

in figure 5-2, this means objects such as table legs and the seats of chairs may actually sneak

undetected past this sensory field. To correct this shortcoming, the robot continually monitors

its forward progress to determine whether its motor has stalled. This allows it to detect and

correct collisions with "invisible" objects.
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Figure 5-3 shows the true sensory capabilities of the two rings. The dark circle is an overhead

view of the robot's body and the arrow indicates its direction of travel. The plots indicate the

maximum detection range for a standard 8.5" by 11" piece of white paper. The concentric

circles mark the 1 foot and 2 foot perimeters. Although the on-board electronics provide 4

range bins for each sensors, we only use this outermost detection limit. We have plotted 14

readings for each set of sensors. Since the front two sensors of the top ring were blocked by

the robot's hand, they were removed. Two other sensors on the bottom ring were non-

operational (near the 4 o'clock position). Notice, first of all, that the ranges of the functioning

sensors are not uniform - the standard deviation is almost 40%. Notice also, that even though

the sensors were securely rounted, they are not perfectly aligned radially. The average

deviation is on the order of 5 degrees. Finally, because the beams of the sensors are so narrow,

the detection zones of adjacent sensors do not overlap. This leads to sensory dead spots

between positions. Thus, when the robot rotates the proximity pattern sometimes seems to

"sparkle" as skinny obstacles move into and out of the individual beams. Our control system

must take account of this phenomenon, as well as the range variations and the geometric

deviations from a purely radial pattern.
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Figure 5-3. The robot's rings of proximity sensors arc not very uniform. The measurcmcnts shown here indicate
that the sensors are not perfectly aligned radially. They also reveal that the actual ranges of the individual sensors
vary considerably.
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Figure 5-4. The robot also has an onboard compass for navigation. As shown in these

measurements the compass is only locally consistent. The heavy line in each circle indicates

the perceived direction of north, while the other lines point east, west, and south.

The robot also has onboard a compass to help it navigate. This is a Zemco digital flux gate

compass which has been modified to increase its update rate. Still, it takes about a tenth of a

second to settle thus making it unsuitable for use in a path segment integration scheme. Also,

as shown in readings of figure 5-4, the device is not globally consistent. The circles in the

diagram represent the size of the robot and the black bar inside points in the direction the robot

believes to be north. The readings are locally consistent to about 3 bits, and globally consistent

to 2 bits. That is, the compass never deviates more than 45 degrees from the true direction over

our test area. Some of the more pronounced shifts can be explained by the proximity of objects

with high iron content (stippled regions in the figure). In fact, it is important that the compass

be elevated from the floor (about 24" up on our robot) due to the structural steel and rebars in

the concrete. Notice also, that in some cases the perceived cardinal directions, the thinner lines

in the circles, are not orthogonal. Again, we must take care to des-gn our navigation routines

with these sensor limitations in mind.
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5.2 Tactical navigation

The robot's tactical navigation system is similar to the exploratory groping of the arm in that

both follow along a surface using only local cues. However, instead of a collection of special

purpose one bit sensors, the navigation system has a much richer source of information,

namely the two rings of body IRs. This leads to a control structure which more closely

resembles the "space tables" of the vision system than the melange of simple behaviors

employed by the manipulation system. Yet, we do not simply model each possible situation

and then tell the robot the appropriate action to take in each case. Rather, the proper following

behavior emerges naturally as the result of two competing imperatives. First, as a basic

protective measure we require that the robot not hit any obstacles and veer around obstructions

in its path. We then add to this the desire to simultaneously remain within sensor range of some

part of the environment, much as ancient mariners would stay within sight of land. The only

way to stay near an object while moving is to follow it; thus, the robot ends up tracking along

the "coast" of its world.

The actual control system for our robot is shown in figure 5-5. Only the lower 3 levels of

competence are required for local navigation. The most basic level, Stall, causes the robot to

aimlessly bumble about its world without getting stuck anywhere. This extends the robot's can

collection range by moving its optical field of view around in space. The TREK module is the

primary source of motion commands since it constantly urges the robot to proceed forward. If,

in the course of its perambulations, the robot hits an object or runs into a wall, the STUCK

module will sense that the base is exerting itself yet the robot is not moving. To correct this and

disentangle the robot from the obstacle, it causes the robot to back up for a while. However, if

nothing else is done, the robot will soon advance straight into this object once again.

Therefore, we add one more module, TWIST, which waits for the robot to start backing up

then turns it briefly to the right. Hopefully the jog this induces will permit the robot to miss the

barricade on its next attempt.

The next level of competence, Avoid, is more interesting. The behaviors in this level use the

two rings of infrared proximity detectors to assist the robot in navigating around blockages.

The actual avoidance behavior is broken down into two components. BLOCK function is to

determine whether the robot can safely continue forward. This behavior works on the premise

that the robot cannot pass through an aperture less than 3 IR readings wide. Thus, if either of

the forward two sensor positions is blocked, or both of the adjacent sensors are blocked,
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BLOCK stops the robot. The other component of avoidance, the VEER behavior, steers the

robot in close quarters and helps it escape any deadlocks produced by BLOCK. When VEER

notices that there is an obstacle in the front quadrant, it swivels the robot toward the nearest

freespace. Often VEER can correct the robot's trajectory before an emergency stop is required.

map

lost HAND
comp (suppresses Grab)

sep

map orient

comp

sep

comp Strategic level

~~~~~~~.,...,,...°..,.... , . . . . . . . . . . ......... ..... , ..... , , o. ,,....... . . . . . . . . . . . . . . . . . . . . .

Thigmo level
map

map retrace

map--=0 lmo S

....................................................

Avoid levelmap- blc

map - ve J

Stall level

tre S S S TRANSLATION
(suppresses Freeze)

enc z twist S ROTATION
(suppresses Limp)

enc- stc

Figure 5-5. The robot's tactical navigation skills are embedded in the Stall, Avoid, and Thigmo levels of
competence. The last level, Strategic, causes the robot to seek global goals.
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The nearest freespace is actual chosen using a "space table" similar to those in the vision-based

modules. By arranging the topology of the processing elements to reflect the actual geometry of

the sensors, all the necessary computation can be performed locally. VEER starts by growing

all obstacles in the original IR proximity map by one sensor position on each side and then

removes lone pixels of freespace. This eliminates from consideration all gaps which are too

small for the robot to fit through. Then imagine, as shown in figure 5-6, that there is a special

agent for each proximity pixel. The agents on the left side of the robot output a "go left" signal

when their associated pixel is sensing free-space, while those on the right generate "go right"

commands. We then use a fixed priority scheme to arbitrate between adjacent and contra-lateral

agents. As shown on the right in figure 5-6, agents 2 and 14 are both activated but, because of

the structure of the suppression network, agent 2 wins. Thus, the robot correctly determines

that turning to the right is the most efficient way to avoid the obstacle.

D obstacle

0 16? 0 "go left" "go right"

O 15 230 agents agents

013 40
012 50 6

S108 7 0

obstacle obstacle

turn

Figure 5-6. The robot grows the 3 obstacles detected into 2 forbidden regions. Each pixel in this map is then
associated with a turning agent that is active (white) when the pixel is freespace. A fixed local arbitration
network decides which of these agents controls the robot.

In addition to checking the width of apertures, both avoidance behaviors perform some

essential preprocessing on the infrared sensitivity pattern. By combining the readings obtained

from sensors that are aligned vertically, the top ring of sensors can fill in any obstacles missed

by the bottom ring. In figure 5-7 the robot is facing in the direction of the arrow while the

concentric rings mark the one and two foot offsets from it. The plot on the left shows the

effective detection perimeter using the previously measured ranges (figure 5-3). While this

degree of smoothing is adequate for most purposes, it makes the robot too skittish unless more

processing is done for the avoidance behaviors. For instance, bright lights can falsely trigger
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individual sensors. In addition, as the robot moves the relative surface angles of objects

change. Because of the sensors' cosine variance, this can cause a marginally reflective object to

suddenly become visible or, conversely, drop out altogether. Fortunately, both of these effects

are angularly localized and can be resolved by pruning proximity readings that are not

corroborated by at least one adjacent sensor. As the plot on the right side of figure 5-7 shows,

this additional smoothing allows a flat object, such as a wall, to approach nearer to the robot

before causing a reaction.

Vertical Smoothing Horizontal Smoothing

Figure 5-7. The IR sensor data is cleaned up by various forms of smoothing. In the left range diagram we
pairwise OR the top and bottom readings. The right diagram shows the effect of also requiring verification by an
adjacent sensor.

The next level of competence, Thigmo, is very similar to Avoid, but seeks out objects instead

of trying to evade them. The LIMBO behavior stops the robot if its infrared sensors detect no

objects in the front half of the robot's space. The whole idea of tactical navigation is to use the

constraints of the environment as paths. When the robot loses sight of the world, it becomes

lost because all directions of movement are permissible. LIMBO tries to keep this from

happening by stopping the robot if it is driving away from the only thing in sight. Sometimes,

however, there is not adequate warning and all the IR readings suddenly vanish. This can

happen if the robot is following a wall and comes to a sharply convex comer. To relocalize the

robot, RETRACE backs the robot up for a while if it ever enters an open zone. This usually

reestablishes contact and so gives the robot another chance to correct its heading.
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Figure 5-9. The VEER behavior tries to keep obstacles out of the robot's front quadrant. The HUG behavior

maneuvers the robot to keep some thing into the front half of the robot's space. Together, these behaviors keep
objects at a constant azimuth (gray sensors).

The necessary heading corrections are made by the HUG module. Like VEER it uses a space

table, but turns toward the closest object sensed. HUG only generates commands when there is

no object in the front portion of the robot's space. Figure 5-9 shows the active ranges for

VEER and HUG assuming that there is only one object in the environment. If this object falls

in the field of view of one of the front 4 sensors, VEER attempts to turn away from it. That is,

VEER's applicability predicate is activated by the presence of any object in the front quadrant.

This then gates the transfer function which, as described earlier, is implemented as a space

table. By contrast, if the single object lies somewhere in the range of the back 10 sensors,

HUG rotates the robot toward it. If the object happens to fall on one of the sensors shaded

gray, neither VEER or HUG is activate and the robot proceeds straight forward. The same

thing happens for objects that appear wider than one sensor reading, except that in this case it is

the leading edge of the object that matters.

Thus between the desire to avoid obstacles and the urge to stay near the edge of a room, a

useful property emerges. As shown in figure 5-10, the interaction of these two levels of

competence allow the robot to follow walls at a set distance. If the robot is too far away, HUG

will steer it more toward the wall in order to bring the edge of the sensiy pattern into the front

6 sensors. Similarly, if the robot is to close, VEER will reorient it outward to avoid collision.

Only when the robot is parallel to the wall and at the appropriate distance are both these

modules quiescent for any length of time. Thus, we can follow walls without having to make

any planarity assumptions and without explicitly fitting the data to a model over time. This is

especially useful for the irregular walls formed by the piles of terminals, repair carts, bicycles,
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and bookcases typically found in academic institutions. While similar to a wall following

algorithm we have presented previously [Brooks and Connell 86], this new version does not

need the complexity of polar coordinate addition. Unfortunately, because the system uses IR

sensors, the actual offset distance is governed by the reflectivity of the surface. Thus, the robot

will stick more tightly to a dark wall than to a light one.

WALL

too far

too near

Figure 5-10. The robot turns to keep the leading edge of the sensor pattern at a certain angular position. The
robot naturally spirals inward (left) if is too far from the wall, whereas it shies away (right) if it is too close.

5.3 Strategic navigation

Now that we can follow the pre-existing paths in the environment, namely walls and corridors,

we can construct a more global navigation scheme. To complete the system, the robot must

have some principled means of choosing between routes when it reaches the juncture of two or

more paths. Yet we do not need a full-fledged map-based scheme that allows the robot to take

novel paths through the world. The task of our robot is to simply collect cans and bring them

back to some central location. As long as the robot consistently arrives at home, we are not

concerned with how efficiently it does this. As we have pointed out previously [Connell 88], it

is sufficient to merely remember the outbound path and replay it in reverse to get the robot

home. Once can imagine the robot, like Theseus, unrolling a spool of thread as it moves about

the world, and then, once it has found a can, following this thread to eventually escape the

labyrinth.
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One way to accomplish this would be to record the sequence of turns made as the robot passed

through doors. However, this involves the use of persistent state which might not accurately

reflect the world, especially after someone closed one of the doors. Employing another

analogy, the robot might instead mark its path by leaving behind a series of "bread crumbs"

which pointed the way home at each intersection. Then, even if one route is temporarily

blocked, the robot still has a chance of finding another marked intersection further along the

path. Figure 5-11 shows a series of rooms in which all the choice points have been marked.

The squares signify path junctures and the arrows specify the direction to take at each

branching in order to return home. No matter where the robot ends up, if it takes the directions

indicated, it will always get back to its starting point.

4-8

toward
home

[JHOME

Figure 5-11. Strategic navigation can be achieved by leaving signposts in the environment. At each path
juncture the robot records which direction of travel leads to thc home location.

We are still left with the problem of associating "landmarks" with directions. If the doors are

individually distinguishable (for instance, they might have numbered infrared beacons

[Kadonoff, et al. 86]), the robot could build up a table linking places to routes. For instance,

every time it encountered an unknown landmark it could record its direction of approach. This

direction could be in specified in some global coordinate frame (i.e. a compass heading), or

could be relative to some canonical orientation of the landmark itself. One could even imagine

changing the pointers over time to make the robot's expeditions more efficient and to allow it to

take advantage of recently discovered shortcuts. Unfortunately, unless we alter the natural
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environment, all doors look essentially the same to the limited sensory capabilities of our robot.

Thus, it would be much better if each doorway was marked with an easily perceivable arrow

pointing in the home direction. This is a technique actually used in spelunking since many of

the intersections in dimly lit underground caverns are not particularly memorable.

Yet laying down signs also involves modifying the environment, something we would like to

avoid if possible. In addition, as Hansel and Gretel discovered, these signs might be

inadvertently altered or disappear altogether over time. If each door instead had some

permanent directionality already built into it, we could take advantage of this to build a more

robust system. For instance, using another sensory modality such as sonar, we might be able

to detect the hinge side of each doorway. Since doors are seldom opened fully, the depth

would fall off sharply on one side and more slowly on the other side as it hit the angled door.

We could then interpret this asymmetry as the direction to travel in order to return home. Of

course, the distribution of door hinges limits the portion of the environment that the robot can

safely traverse. It may be that the first doors that the robot encounters are all oriented in the

wrong direction. That is, the hinges do not indicate the direction home. In this case, the robot

would be stuck traversing its initial path forever.

The method we actually use is a variation of this intrinsic orientation scheme. Instead of using a

feature of the door itself we use a global orientation reference to select a path at each juncture.

In other words, like a migratory bird, to get home the robot always travels south (see figure 5-

12 left). This extends the robot's reliable navigation range because it is no longer limited by

vagaries of the building's construction. The method is also practical for implementation

purposes because the orientation functionality required is particularly well suited to the robot's

onboard magnetic flux gate compass. Since we are not trying to integrate path segments, the

response time and global consistency of the device are unimportant. Furthermore, because

intersections tend to be orthogonal, we do not need incredible angular resolution to clearly

distinguish which path to take. All that matters is that the compass be local consistent over

some small area in front of the door, and that it be temporally consistent so that it points in the

same direction when the robot retraces its path.

This compass-e*,ected method also has the interesting property that it automatically defines a

home location for the robot. Suppose, as shown in the middle panel of figure 5-12, that on the

inbound journey the robot reaches a door whose axis is oriented directly along the home

vector. It passes through this door and then attempts to head in the direction of home.

However, this would lead the robot out into the middle of some large open region. Since the
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robot is constrained to only move along walls, the LIMBO behavior halts it in its tracks. This

conflict condition persists indefinitely and eventually releases the arm interlock behavior TUCK

which in turn causes the robot to set down the can it has been carrying. At this point the robot

becomes interested in collecting more cans and switches to the outbound mode of navigation

once again. A procedural specification of the home location such as this is not incorporated in

other maze solving procedures such as the "left hand" rule. Here would have to add additional

sensory capabilities to detect when the robot reached the "exit" of the maze.

INBOUND OUTBOUND

U:L
ARRIVAL

ifrom

turn ' home?
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home

al ready
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Figure 5-12. In our navigation scheme, the robot always turns south to get home (left). It has arrived at "home"
when it can no longer go any further south. Thus, any east-west door is a candidate (middle). To avoid getting
lost, as it explores, the robot checks its orientation at each doorway (right). Here, it has come from the correct
return direction and so can continue.

To ensure that the robot can always find its way home, there are a few conditions and

adjustments that need to be added to the algorithm. First, if the robot ever reaches a door and

finds that it has not been travelling opposite to the home vector, it should immediately turn

around and head home. This situation is depicted in the right panel of figure 5-12. By

terminating its wandering at this point we guarantee that the robot will never execute a path

segment that it does not know how to invert. Of course, for the algorithm to work we must

also assume that a new, improperly oriented door is not added to the environment between the

inbound and outbound phases of one of the robot's expeditions. Another is that before heading

home the robot must first turn around 180 degrees. This inverts the most recent portion of the

path and causes robot to pass through previously certified doors rather than unknown ones.

Fortuitously, the TAIL module in the visual servo system already performs a similar maneuver

each time a can is retrieved. Since the robot is only able to detect cans roughly in line with its

direction of travel, this turn will indeed reverse the robot's course.
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The final condition necessary for success of the algorithm is that the robot must pass through

every door it sees. This is because the robot turns toward home only as it is leaving a door.

Suppose the robot found a door on its outbound journey and that the robot had approached it

from the correct direction but chose not to go through. When it again encounters this door on

the way home, since it has not just left a doorway, it is free to pass through instead. This

would cause the robot to end up lost in an uncharted portion of the world, or reach a different

final door which happened to be oriented in the same way as the home door. By symmetry,

because the robot passed through every door it found on the outward journey, it must also pass

through all doors on the inbound phase.

The complete navigation algorithm is embodied by the Strategic level, as shown in figure 5-5.

The most basic behavior is ORIENT which causes the robot to attempt to align itself with the

home vector as it passes through a door. The companion behavior BALK prevents the robot

from moving unless it is roughly in line with the home vector. Both behaviors are activated by

the presence of a nearby door. The robot detects such places by looking for particular features

in its local IR scan. If there is both a narrow aperture (3-5 readings) and a wide aperture (> 8

readings), the robot has discovered a door. The second clause in this definition was added to

prevent the robot from responding inappropriately in close quarters, such as when traversing a

corridor. The commands generated by ORIENT and BALK override the Thigmo level of the

controller but defer to the Avoid level. Thus,. as the robot passes through the door it will

repeatedly attempt to turn toward home. To allow forward progress to actually be made, the

alignment threshold used by BALK must be set fairly loose (e.g. +/- 30 degrees).

Both the ORIENT and BALK modules are only active on the inbound leg of a journey. Since

this usually occurs immediately after the hand has grasped a can, these two behaviors monitor

the separation of the fingers to determine whether it is time to go home. However, as

mentioned earlier the robot sometimes needs to retrace its steps if it gets to a door at which the

home vector is pointing in the wrong direction. To accomplish this, every time the robot

approaches a door the LOST behavior checks whether the robot has come from the direction of

home. The tolerance on this test is set fairly broad (+/- 55 degrees) because the robot typically

angles inward toward the wall before it actually detects the door. Then, instead of generating a

whole new set of behaviors for this case, LOST simply simulates the environmental conditions

produced in the normal course of affairs. If the robot has approached a door from the wrong

direction, the LOST module forces the hand to close for a length of time. This both prompts

TAIL to turn the robot around, and enables ORIENT and BALK. At each door on the way
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home, the monostable inside LOST is reset and the hand remains closed. Since it is only on the

initial closure that the robot turns around, the homeward trajectory is not disturbed by this

timeout renewal. Finally, when the robot has reached its destination and pressed the can against

a supporting surface, DEPOSIT opens the fingers to release the can.

never explored never explored

not from not from
home home

HOME HOME

Figure 5-13. The robot can not safely travel to all parts of environments. Any door oriented the same as the
home door causes the robot to stop. Thus, the top room is never explored, nor are the light colored walls in the
original room.

This algorithm still has a number of shortcomings. In particular, any door oriented in the same

direction as the home door blocks further exploration. For instance, the robot will never reach

the upper room in figure 5-13, nor will it even investigate the gray walls in the original room.

In general, the robot will only explore its environment in a direction perpendicular to the home

vector. The only exceptions to this restriction are certain doors which are flush with the corner

of a room. If the robot is following a wall in a direction directly away from the home vector, it

will still be going in the same direction when it encounters such a door. Hence, the robot is free

to pass through without fear of getting lost.

The other annoying limitation of the algorithm is that the routes taken by the robot can be very

circuitous. As shown on the left side of figure 5-14, the robot cannot recognize individual

doors. Thus, when it encounters the door in the dividing wall for the second time all it knows

is that it did not approach this door from the home direction. Therefore, instead of just passing

back through the door, the robot reverses its path and again circumnavigates the room until it

reaches this same door from the other side. Also, in certain circumstances as shown on the
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right in figure 5-14, whole extraneous loops can be added to the robot's route. Again, this is

because the robot does not realize that it has passed through the same door twice and can prune

its path. Nevertheless, by undertaking this arduous journey the robot does indeed get home.

retracereac

' - - - -

HOME HOME

Figure 5-14. The robot cannot recognize individual doors. This can lead to inefficient homeward navigation (left)

as well as highly circuitous routes (right).

5.4 Experiments

Here we investigate the actual performance of the tactical navigation system. The data shown

was obtained by strapping a felt-tipped marker to the underside of the robot near its centerline.

After the robot made its autonomous run, the resulting line was recorded relative to the tiling

pattern of the floor. Although the pen was not always exactly centered, it was affixed to the

central part of the base which, due to the synchrodrive mechanism, remains in a relatively fixed

orientation with respect to the environment. Thus, the whole trace is shifted about an inch in

one direction. However, the initial alignment of the robot was chosen so that this offset occurs

in the principle direction travelled by the robot, so the offsets from obstacles shown in the

diagrams are fairly accurate. No attempt was made to chronicle the speed of the robot, nor were

the positions of pauses recorded.

The results of 5 consecutive wall following trials overlaid one on top of the other are shown in

figure 5-15. Notice, first of all, that the robot's performance is very repeatable -- there are no

large divergences from the basic trajectory on any of the trials. Notice also that the same wall
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following mechanisms works in a number of different situations. At the beginning of the

course the robot is required to make a U-turn around a line of boxes. While the robot did stop

briefly a few times, in no case was any backing up required nor did it hit any boxes. The next

situation encountered was a concave comer such as found at the edge of a room. As soon as

the robot detect the wall perpendicular to its original course it makes a detour to the right.

Finally the robot enters a corridor region. Initial the hallway is wide enough that the robot

cannot see the far side and therefore performs simple wall following. As the corridor narrows,

the robot migrates slowly toward the centerline. This occurs because the HUG module is

typically inactive in a highly constrained environment such as this.

closed door white wall

I I

END robot

white wall 
s

extinguisher p
bookcase

boxes

START

Figure 5-15. This is a composite of 5 actual runs made by our robot. Notice that the same tactical navigation

routines let the robot competently handle highly convex areas (boxes), concavities (near bookcase), walls, and
hallways.

Next we tested the robot's ability and propensity for passing through doors. The door used for

this experiment was 26" wide, made of light colored wood, and had a tiled floor on each side.

The diagonal on the left side of the picture is the door itself in the opened position. Figure 5-16

shows a composite of 5 consecutive trials using the only the tactical navigation system. From

the data it can also be seen that the robot is able to successfully traverse the doorway without

getting stuck. At several points the rob-t stopped and rotated back and forth a number of times

before finding a clear direction of travel. This suggests that the dynamics of the robot are not

closely enough matched to its sensory capabilities. As the robot moves, its sensors sweep over

a small area during each sensing period. A close object may be smeared into two sensor

readings whereas a poorly reflective object may be missed altogether. In addition, as mentioned
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earlier the overall IR sensing field has dead zones within it that can cause additional confusion.

Yet in no case did the robot graze the door frame.

robot .

size START

white wall w

wooden)
door

' END

Figure 5-16. This is another composite of 5 runs of the physical robot. The same navigation skills used for
wall following also allow the robot to pass safely through doors. Notice that even for this narrow door (4"
clearance) the robot spontaneously goes through 80% of the time.

Notice also that the robot chose to go through the door on only 4 out of 5 trials and therefore

violates one of the assumptions of the strategic navigation system. More reliable performance

has been obtained with wider doors but has not been formally documented. Notice also that the

robot always turns the same direction after passing through the door. This occurs because the

robot starts out closer to one side and can thus sense it more consistently. Also, the door itself

on the other side is not only further away but angled with respect to the robot. Nevertheless

this result suggests that when running the strategic navigation layer there may be more

unexplored areas than originally assumed.
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6. Discussion

We have described a complete mobile robot system for collecting soda cans in an unstructured

environment. This system is unusual in that it is controlled by a collection of independent

behaviors rather than a centralized program, and because it uses a minimal amount of state.

Furthermore, the robot satisfactorily accomplishes its task without building complex internal

maps of its environment or performing sophisticated planning operations. A number of

experiments were conducted to document the robot's abilities and illuminate its limitations.

Here we summarize our overall findings and suggest avenues for further research.

6.1 Spatial representation

Our robot uses a variety of spatial representations, but none of them are complete and detailed.

For instance, the system incorporates information about the rough size and shape of a soda

can, the sensory appearance of a wall at the correct distance for following, and the tactile

signature of a supporting surface. The most prominent feature of these fragments is that they

are all "task-oriented". By this, we mean that perception is directly coupled to action. Our robot

does not try to pack its sensory information into some general purpose structure to be stored in

a datat ase somewhere. Instead, there is a tight coupling between particular motor acts and

special purpose recognition procedures. This lets the robot concentrate on just those aspects of

the environment that are relevant to its current activities. For instance, the robot does not need a

deep understanding of obstacles in order to navigate around them. Contrast this to classical

artificial intelligence research in which the functional and structural significance of items such

as chairs has been paramount.

Our representations are not only minimal with respect to the resulting behavior, they are also

distributed according to the resources required by the local situation. The job of responding to a

particular stimulus is split up among a number of different modules. For instance, the robot's

"knowledge" of cans is divided between the visual alignment system and the the local arm

controller. The LOVPs 'understand" (in a limited sense) what the outline of a can looks like

and what size it should be. The OVER, EXTEND, and TWIST modules "understand" the way

a can fits into the hand and how to get it there. Likewise, the perception of supporting surfaces
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is embodied in BOUNCE and SURFACE, and environmental obstacles are recognized

collectively by BACK, UNCRASH, STALL, and COLLIDE. Our "sensor fission" approach is

to partition the desired behavior of the arm controller into separate fragments, one for each type

of motion. We then analyze the dependence of each of these characteristic movements on the

different sensory modalities available.

Consider how the hand would be programmed to avoid local obstacles. Under our

methodology we first ask what the component motions of the task are, and then what sensory

information is need to recognize the associated situations. For instance, when an ungraspable

object is in front of the hand we want the hand to retreat and recenter itself. The BACK module

produces the appropriate arm motion and needs only the information from the crossed IRs to

tell when to act. We create another module, TWIST, with similar triggering conditions to

control the other actuator resource required for the overall motion (i.e. the base). Sometimes,

however, the offending obstacle is invisible to the proximity sensors. To remedy this we create

another module, UNCRASH, which also causes retraction, but uses only tactile information to

determine when an obstacle is present. However, there are some situations which call for

qualitatively different avoidance maneuvers. For instance, when the hand comes up to a vertical

wall we want it to rise until it reaches the top. This is the function of the OVER module. Like

BACK, it uses the crossed IR sensors, but now interprets them in a different manner.

By keeping the perceptual modalities distinct, we avoid the difficult task of cross-calibrating

disparate sensors. By splitting control according to actions, we allow the prevailing

environmental conditions to determine the actual trajectory taken. By separating the actuator

resources, we can tune up each part of the system independently. Contrast this to a traditional,

perceptually integrated approach. Here we would use the information from the tip switches, the

crossed IR beams, the joint position sensors, and the base rotation encoders to build up a local

model of obstacles to avoid. This model would then be used to tell the robot how to thread its

way through the environment to reach its goal. Yet our distributed system performs the

functions required for successful operation without first fusing the all the available sensory

data. Not only is there less work involved, but since the action modules are not expecting

complete models anyhow, the system is able to "improvise" with only partial information. In

general, the extent of a creature's "knowledge" should be judged based on how it acts, not

necessarily on how it thinks. Thus, since behavior fusion performs as well as sensor fusion for

the task our robot has been given, both approaches can be considered equally competent in this

case.
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We can take the behavior fusion approach still further and use the effects of the behaviors

themselves to pare down our representations. In earlier work [Brooks and Connell 86], we

showed that we do not need a scale invariant model of doorways if the robot is guaranteed to

follow walls at a particular distance. This result has been used on Herbert as well. In fact, our

robot's model of its world is largely composed of behaviors. It does not record the specific

path followed but instead assumes that on the way home invoking the wall following routine

will yield the same result as before. Kuipers has also used a similar technique for specifying

routes between distinctive locations [Kuipers and Byun 881. Sometimes two behaviors even

actively cooperate to recognize an item. For instance, although many of the physical

dimensions of a can are directly embedded in the control functions, nowhere does our robot

have explicit knowledge of these parameters. The ALIGN module simply picks a promising

candidate and APPROACH drives toward it. If the object is too big, as the robot gets nearer the

object's increased angular width will eventually cause ALIGN to reject it. If the object is too

small, APPROACH will back the robot up until the item vanishes into obscurity. Thus,

between these two behaviors the property of size emerges. However, this concept is of size is

not consciously recognized or reified in anyway. This is a disadvantage if we want the robot to

do any sort of introspective learning about objects.

6.2 Distributed systems

Much as processes can be used as a form of representation, they can also be used in place of

actions as primitives for planning. This is how most of our system works: each behavior can

be considered a process whose order of invocation is determined by the world. As was seen in

the arm experiments involving pedestals and barriers, the structure of the environment

effectively "programs" the robot to take an appropriate path by triggering various behaviors in a

particular sequence. Thus, instead of consciously planning from a map, we use the world as its

own representation and allow the situation to control the flow of events. This environmental

activation property also aids the decomposition of our control system. As we add levels of

competence we do not have to explicitly chain the different actions together; a new level merely

puts the world into a configuration which is recognizable to a lower level. We have also taken

advantage of this same effect to coordinate groups of behaviors. For instance, stopping the

base causes arm extension, stopping the hand causes arm retraction, and a long pause causes

the robot to turn around and head home. The ability of different processes to communicate

through the world is a direct result of our data-driven procedure invocation scheme.
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This lack of an explicit control structure is one consequence of our decision not to go "meta".

Many systems such as GAPPS [Kaebling 881 and SOAR [Laird et al. 87] rely on a recursive

control structure which may or may not eventually bottom out. Often they have an attractively

simple base level in which most of the computation is supposed to occur. However, when

unusual features are called for, one invokes a special purpose meta-level facility to resolve the

problem. Yet frequently most of the interesting computation occurs in the unstructured meta-

level rather than the elegant foundation. The other problem with such systems is the faith they

place in the comprehensiveness of the meta-level. One is tempted to assume that any problem

that arises can be cured by the meta-level, or that adding the proper meta-level controls will

drastically improve the system's performance. On the other hand, a meta-level can be a useful

tool for coordinating the functions of lower levels. In particular, it provides a medium for the

cooperative resolution of command conflicts and for the long-range scheduling of resources.

In our system there is no infinite regress of meta-levels. Each module is divided into a

continuous transfer function and a discrete applicability predicate. While the applicability

predicate can be considered to be "meta" to the transfer function, there are no more hidden

levels. Likewise, our arbitration network is a straightforward fixed priority scheme. However,

this does not mean that there is no implicit structure to it. We have arranged things so that more

specific behaviors suppress general-purpose behaviors, and so that behaviors which occur later

in a typical sequence take precedent over earlier behaviors. In addition, behaviors are ordered

along an immediacy spectrum. The least important are behaviors with fixed action patterns.

Next come event-triggered behaviors, followed by reflexive agents, and finally the regulatory

procedures at the top end. Yet this ordering hierarchy is pre-wired and static - it is not the

product of some piece of dynamic meta-level machinery.

So how can we extend such a distributed system in a principled way? Theoretically higher level

motor control signals could be injected anywhere in the system. These might come from a

neural network trajectory generator, a classical path-planner, or a stereo vision system. In

previous work [Connell 881 we suggested that a stack be used to record the turns made by the

robot. Playing back these choices straight into the robot's direction control wire would then get

it home. Taken to an extreme, we could add one more module labelled HUMAN which

allowed the operator to use a joystick and override the commands produced by some portion of

the navigation system. A different approach, more in keeping with the indirect nature of

artificial creatures, would be to selectively switch on or off whole groups of behaviors. Our

rotoot does something like this when the arm changes over from exploration to retraction. Here

PARK and PATH suppress the more general groping behaviors DESCEND, SURFACE, and
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EXTEND. Along similar lines, other researchers have investigated how enabling only certain

navigation routines affects the path of a robot [Anderson and Donath 88a]. This approach is

reminiscent of the set-point theory of trajectory generation in which all the muscles are given

certain lengths and stiffnesses but the actual path is left unspecified [Hogan 84].

A

B B s

C S C S

E SS S R E S R

Figure 6-1. A pure suppression network specifies a total ordering on the priority of the modules so these two

networks act the same. However, inhibiting the wire marked with an asterisk in the left structure has an effect
which can not be duplicated in the right structure.

One way to switch on and off banks of behaviors is to make better use of inhibition nodes.

Because our current arbitration scheme uses only suppressor nodes, it defines a total order on

the modules. If module A suppresses module B we can say "A > B", meaning that A always

has strictly higher priority than B. Since suppression is associative, we could wire the network

shown in figure 6-1 such that A > (B > C) or, conversely, so that (A > B) > C. Since these

both specify the same ordering, the detailed configuration of the suppression network does not

matter. However, suppose in figure 6-1 a that some module inhibited the wire coming out of the

suppressor node on C's output (asterisk). This would turn off both B and C but leave the rest

of the modules alone. This effect can not be achieved with the network shown ir. figure 6-lb.

Any single node that inhibited both B and C must perforce inhibit A as well. This selective

excision phenomenon is potentially quite useful, especially if we group the modules in task-

oriented branches. It lets us temporarily forbid the robot to attempt a certain operation (such as

the one performed by modules B and C) without disturbing the rest of its control system.

However, it would be most useful to switch on and off groups of behaviors corresponding to

whole levels of competence. For instance, by turning off the Grip level we could prevent the

hand from grasping everything it touched. By turning off the Stall level we could keep the
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robot from continually wandering around. Unfortunately, the inhibition scheme above would

not work for this because all the behaviors in a level are not necessarily on the same branch of

the suppression network. Thus, it seems a ntew grouping construct and another level of

arbitration might be in order. Much as the satisfaction of module's applicability predicate gates

its transfer function, so might the "potentiation" of a level enable all its component modules. A

similar idea is presented in a different guise in the Society of Mind architecture [Minsky 861.

To test this type of partitioned system we need to give the robot more modes of operation. A

plausible extension to the current system would be to have the robot recognize more types of

objects and treat them differently. For instance, there might be different "homes" for different

classes of objects. Cans would go to a bin, whereas anything else went to a trash barrel. Other

objects might just be collected onboard the robot and not require any relocation. For instance,

the robot might drop infrared beacons at regular intervals and occasionally need to recycle some

of the previously deployed units. Some objects might not have a fixed "home" at all, but

require the robot to locally search for an appropriate location. For instance, if the robot found a

blackboard eraser on the floor it would look around for the nearest chalk tray to return it to.

This multiplicity of activities would force the robot to selectively disable certain routines to

avoid resource conflicts with the proper navigation and manipulation agencies.

6.3 Limitations

The type of control system we have proposed has two main features. First, it emphasizes the

use of local reactive procedures instead of detailed persistent models. This lets us sidestep

many of the difficult problems involved in cross-calibrating the sensors and effectors and

integrating their values over time. We pay for this with less than optimal performance. In

particular, without a history of events or an overall picture of the situation, the robot faces the

possibility of getting stuck in local minima or entering infinite loops instead of achieving its

true goal. The second distinctive aspect of our approach is that it advocates distributed decision

making versus centralized control. This, again, involves an engineering tradeoff. Hopefully,

we gain extensibility and flexibility by having a number of independently combinable agents.

However, we typically lose the close coordination between activities possible with a more

structured system.

The strongest constraint imposed is that of temporal locality. This effectively forbids the robot

to build up models from sequences of sensor readings, or to remember anything it has learned
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about its environment. In spite of these limitations, a mostly stateless system has the advantage

that it relies solely on current, directly perceived information. Since the robot never has any

preconceptions about the condition of the world, it is never fooled by a dynamically changing

environment. Yet not every aspect of the world is in constant flux; there are many useful

invariants and regularities. In this sense, the totally stateless approach is too extreme. Even in

our robot we have built in certain facts, such as that soda cans are oriented upright and that IR

sensor I views a region of space directly next to that perceived by IR sensor 2. In addition, we

use the state in various monostables to perform ballistic movements and to regulate the robot's

mode of operation based on past events. What we have tried to avoid is storing a lot of detail

about the environment. In most cases we are caching single bits of information rather than

whole datastructures.

Still, there are tasks which cannot be accomplished with such limited state. The most obvious

example is detour behavior involving a map. Unless the robot has an internal model of the

connectedness of its environment, it cannot plan an alternative route if the usual path is

blocked. The map knowledge necessary for this task is usually not built into a robot. Typically,

we want to install a more general purpose navigation system and then let the robot perform its

own survey of the deployment environment. However, for these tasks a full-fledged

architectural blueprint of the building is not necessary. As various other researchers have

pointed out (e.g. [Chatila and Laumond 85; Kuipers and Byun 88]), it is only the topological

information that is crucial.

Relaxing the temporal locality condition, the robot's navigational skills could be significantly

augmented with the addition of a relatively small amount of persistent state. For instance, soda

cans often occur in clusters. By remembering the path it took to reach home, the robot could

return to last place it found a can and thus increase its probability of finding another can. This

memory might be implemented as a short list of the turns to take. To compensate for the

opening or closing of doors, the robot might also remember the approximate distances or travel

times between turns [Connell 88]. However, even if this stored model should prove wrong and

the robot is unable to retrace its steps, this is not a catastrophic occurrence. Because the utility

of the behavior is high and the price of failure low, neglecting the possibility that the environ-

ment might change is probably an acceptable risk.

The spatial locality constraint also imposes a limitation on the robot by precluding most forms

of planning. For instance, the laser striper currently withholds some potentially useful

information such as the approximate depth of the can and its height above the floor. With some
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modifications this sensor could also be used to find the height and angle of table tops, and to

form a crude three dimensional chart of the obstacles on the surface. This data could then be

used to plot a trajectory for the arm so that it would go directly to the can instead of blindly

groping around for it. However, we would first have to develop the transformation between

image coordinates including disparity measurements and joint angles of the manipulator. This

might or might not go through an common intermediate phase involving the global cartesian

coordinate frame. To derive a reasonably accurate global model we would have to correct for

distortion at the edge of the camera's field of view, calibrate the laser geometry to give true

depth measurements, and compensate for errors in the arm servo loop caused by non-linearity

in the potentiometers and static loading of the manipulator. Even once we accomplished this,

the system parameters are liable to drift over time thus requiring an additional layer of adaptive

control. Even more arduous calculations are required for general purpose asynchronous sensor

fusion (cf. [Shafer, Stentz, and Thorpe 86]). Local algorithms circumvent most of this problem

of establishing and maintaining consistency between subsystems.

In some cases, however, sensor fusion is both beneficial and easy to accomplish. Suppose we

want the robot's manipulator to respond to a vertical surface in two different ways. If the

robot's hand approaches a wall we would like it to descend until it finds a flat area. If the hand

instead reaches a comer between the base of an object and a supporting surface, we would like

it to rise above the object. No one sensor has the information to distinguish between these two

situations. We need to combine the tactile information from the fingertips with the proximity

readings from the forward facing IRs to generate a local spatial model. Since the two sensors

are fixed relative to each other and constitute only a few bits, this merger is easily

accomplished. However, the fused model need not be stored in some central database, or even

be explicit in order to generate the required response. We might instead construct an ordered

pair of behaviors to achieve the desired functionality. For instance, the DOWN module could

drive the hand straight down every time the front IRs saw something. The other behavior, call

it BOTTOM, would be able to recognize comers and would take precedence over DOWN. This

module could be "primed" by setting a monostable every time the fingers touched something.

Then, if the monostable was still on when the front IRs became active, BOTTOM would drive

the hand upward instead. In essence, the recognition procedure for comers has been directly

combined with the action procedure associated with this situation; the intermediate geometric

representation has been compiled out (cf. potential fields in [Connell 871).

The other hallmark of our control system, the independence and isolation of the modules, can

impair the robot's ability to coordinate its actions. One aspect of this is that there are no
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channels for the exchange of information. Thus, modules are forced to communicate by

affecting the exterior world. One problem is that the "signals" used might also be generated

spontaneously by some other activity. For instance, if the robot is waiting in line at a can

collection center, it might make such slow progress that it starts extending its arm and ends up

goosing the next person in line. Sometimes more subtle signals are in use and we must take

care not to disturb them when adding additional behaviors. For instance, when the robot

reaches a doorway it assumes that its body is aligned with the direction it came from. This

would not necessarily be the case if we added an extra module which slowly rotated the robot's

body as it moved in order to pan the laser striper back and forth.

These examples argue for the installation of a few specific centralized communication depots or

lines such as a retract-the-arm-now line and a average-recent-heading-was line. The

retraction line might be regarded as a complex effector resource, in the same way that the

cartesian controller for the arm is. Similarly, the heading indicator could be viewed as a high-

level sensory primitive, much as the LOVP can recognizer is. Still, employing a small number

of such control wires is qualitatively different from writing the whole control system in a

standard imperative computer language. We are not so much installing a foreman which micro-

manages each of his employees, as we are providing simple standardized set of linguistic

primitives. With this minor change, the operation of the robot could be made significantly more

reliable.

Modules also "communicate" by reducing the current situation to one which some other module

can cope with. There is no way for one module to directly pass digested sensory information to

another. This is especially irksome if the second module in some sequence fails when the first

module could have succeeded. For instance, once the IR proximity detectors on the front of the

hand change from on to off, the robot has enough information about the sensed object's

position to make a ballistic grab for it. Yet, instead, the EXTEND behavior attempts to trigger

the beam sensor between the fingers in order to initiate grasping. However, if the finger

sensor's receiver is bathed in bright sunlight, it may not respond to the can. If there were some

medium for communication between the two processes, at least GRAB could try to adjust its

sensing threshold to compensate for the ambient illumination. Similarly, when the robot is

wandering around its environment it usually is following the edge of some physical object such

as a bench. These objects are usually sites at which soda cans are found. Yet, the navigation

procedure does not tell the vision system on which side of the robot cans are likely to be seen.

This might make a difference if two equally plausible can shapes are seen but on opposite sides
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of the image. Thus, it might make sense to weaken the independence stricture in certain cases

and allow behaviors to modify each other's parameters.

6.4 Extending arbitration

Our system is also limited by the method used to combine conflicting commands. As

mentioned earlier, we currently use a simple priority scheme to arbitrate between proposed

actions. This is a purely competitive process; in no case are two commands combined to yield a

compromise. Furthermore, the relative priorities of the modules do not change over time - the

suppression network cannot be dynamically reordered nor can modules tag their commands

with a measure of certainty or urgency. We chose this scheme because it had a very simple

semantics and proved sufficient for all the tasks we wished to accomplish. However, should

the need arise, there are many ways in which it could be modified to make it more flexible.

One variation we have already explored is the use of partial suppression. Recall that we broke

the hand force control bundle into two distinct wires and then modified the individual lines

separately. This allowed us to use standard suppressor nodes to block action in only a certain

direction. The actual encoding we used was inspired by imagining the effect of two wires

innervating a pair of antagonistic muscles. If a single wire is "on", one or the other muscle

contracts and the joint moves in some direction. If neither wire is "on" the joint swings freely,

whereas if both are "on" the joint locks rigidly in place. Thus, the "off-off" combination is

interpreted as "don't care". This encoding has the useful property that a command is not valid

unless at least one of the two wires is high.

L2 R2

0 0 don't care

1 0 turn left L1 , L
0 1 turn right

1 1 no rotation R
Ri

Figure 6.2. With a two wire command scheme suppressor nodes become much simpler. Each of wires in the
dominant command bundle "augments" its corresponding member after first cross-inhibiting the opposite wire.
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One benefit of this system is that it reduces the complexity of suppressor nodes, should we

desire to build them out of discrete gates. As shown in the figure 6-2, we start by OR'ing the

control wires together pairwise to guarantee that the output will be valid (at least one line will

be "on") if either of the two inputs is valid. Next we must disable the inferior input (LI and L2)

if the dominant input is valid (either L2 or R2 is active). However, there is no need to

disconnect LI if L2 is active; the output of the OR gate will be the same regardless. The only

other case in which the dominant module is active is when R2 is high. Thus we use this signal

to block Li, and similarly use the L2 signal to block RI. This leads to the interesting

observation that suppressor nodes can be built of "inhibition" units (the AND-NOT gates) and
t"augmentation" units (the OR gates). Thus, we might consider augmentation, rather than

suppression, to be one of the basic behavior fusion primitives. This new mode of combination

is particularly useful when two modules generate similar commands.

On a different track, the arbitration scheme could also be altered to allow graded responses. We

usually think of the mode memory within a module as a binary storage element, yet there is no

conceptual reason why it could not carry more information. For instance, a module's

applicability predicate might actually be a utility function that yielded a continuous range of

values. The mode memory would then act as a "peak follower" whose output would slowly

ramp down after its input descended from a local maximum. Given that the output of the mode

memory reflects the module's conviction that its output is appropriate, one might also modify

inhibiter and suppressor nodes to act more like valves than switches. The activity level of a

module would control how much it suppressed the output of another, while the relative activity

levels of two modules would determine how their values were mixed in a suppressor node.

However, the formulation by which such mixing should take place is unclear.

One way to derive an appropriate mixing expression is follow up on partial suppression idea

and take the dissection of command bundles to an extreme. Imagine a massively parallel,

statistical form of arbitration in which all transmitted values are represented in unary. Suppose

we have a large collection of wires and that we activate a number of them proportional to the

quantity being encoded. Now imagine two bundles of these wires impinging on a surface filled

with arbitration nodes. The outputs of these nodes form the output of the whole arbitration

unit. As with the inputs, the resulting value is represented by the fraction of wires that are

active. To analyze this scheme we assume that the two sets of wires are assigned to nodes

randomly and independently. Therefore, if vj is the proportion of wires from the first bundle
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that are active and V2 is the number from the second bundle, the expected fraction of nodes

with both inputs active is viv 2 .

collection of
arbitration
nodes

In I
Out

Figure 6-3. To find the equations governing graded-response arbiters we construct a

surface filled with primitive nodes. Two input bundles are then mapped randomly and

independently to various nodes in the cluster.

The final outcome depends on what kind of arbitration units we use. If the surface is composed

of augmentation nodes, the output value v is given by:

V = V1 + V2 - ViV2

- VI + V2

If v, and v2 are both small, an augmentation cluster just adds its two inputs. To allow the full

range of values to be used, we can create k (say 10) times more intersection points than needed

and then have each output wire OR k of these points together. If the surface is instead made of

inhibition nodes, we get:

V = V1 - VIV2

= V1 (1 - V2)

where v1 is the value on the inferior input and V2 is the value on the dominant input. Thus, the

inferior value is attenuated by a multiplicative factor that depends on the strength of th ,

dominant input.
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L2 R2

LI I L

R1 •R

I

I Ii

---------------------- a

Figure 6-4. A general valve-type suppressor node for a dual bundle unary inputs.

To see how a graded response suppressor node responds let us reimplement the two wire

turning system described earlier. Each input now becomes two bundles of wires where L and R

represent the fraction of "left" and "right" wires, respectively, that are active. The direction D

specified by a command is L-R; if this quantity is significantly positive the robot turns to the

left while, if negative, it turns right. The quantity that determines how this command gets

mixed with other commands, its "strength" s, is encoded as L+R. Figure 6-4 shows the

structure of a suppressor node for commands of this form. Note that there are two dominant

inputs to each inhibition cluster which determine how much the inferior command is inhibited.

Working through the cascaded transformation we find:

L = L2 + LI(I - (L1 + RI))

R = R2 + RI (I - (LI + RI))

By solving for the strength and direction of the resulting command we can derive a general

formulation for suppressor nodes. Note that the mixing depends only on the strength of the

dominant input (the higher subscripts).

D=L - R

= (L2 - R2) + (L1 - RI) (. - (LI + RI))

= C2 + DI (1 - S2)

S=L+R

= (L2 + R2) + (LI + RI)(1 - (L1 + RI))

= S2 + SI(I - S2)
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Another approach to merging conflicting commands is to abandon the idea of suppressor and

inhibiters altogether, and instead use the potential field method. The idea is to treat all

commands uniformly as two dimensional polar coordinate vectors. The "strength" of a

command becomes the vector's magnitude, while the "value" of the actual command translates

into the vector's direction. Two commands of this form are then merged by simply adding the

vectors together and finding the resultant. This method was first used in robotics by Khatib

[Khatib 85] although its popularization in mobile robotics is due to Arkin [Arkin 87; Arkin,

Riseman, and Hanson 87; Arkin 891.

The name "potential fields" comes from a physics analogy. We start by treating the robot as a

point with a positive electrical charge and then go on to assign charges of various magnitudes

and signs to other objects and locations in the world. Each of these charges exerts a force on

the robot which tries to push or pull it in some particular direction. To determine which way the

robot will actually go, we use superposition and sum up these force vectors. Figure 6-5 shows

an example of how this method is used. We have set things up so that the robot feels a

repulsion from the sides of the hallway and an attraction to a special "goal" location. This sets

up an "potential" surface like a topographic map in which the walls are ridges and the goal is a

pit. To find the robot's actual path from the starting location we just descend the slope by

moving in the most downward direction.

Arkin uses a number of such fields to perform distributed path planning for his robot. These

include radially oriented obstacle avoidance and goal attraction fields, channelled path

following fields, compass-directed wandering fields, and random noise fields for escaping

field plateaus. Arkin presents very detailed diagrams showing the superposition of these vector

fields and gives several examples of paths travelled by the robot. Unfortunately, not all the

vector fields one might want to use can be represented as strict potentials. For instance, we

might want the robot to proceed down a hallway in the same way that water flows through a

pipe. From fluid mechanics we know that the velocity of a particle is always parallel to the

surface of the pipe and varies from zero at the edges to some maximal value in the center.

However, since this vector field has a non-zero curl it can not be modelled as the gradient of a

scalar potential (see [Purcell 63] page 75 for other examples). This means we can not construct

an energy terrain for the robot to descend. Arkin actual uses a field with non-zero curl to

perform an oriented docking maneuver [Arkin 88a]. In general, dealing directly with vector

fields is a more flexible approach than classical potential fields.
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START

Figure 6-5. In this potential field example the robot is repelled by the walls and attracted to a particular location.
The robot always moves perpendicular to the equipotential surfaces of the underlying field, shown here as
contours.

Even with this extension, a significant drawback to Arkin's field method is that it is world-

centered not robot-centered. Since things not directly perceivable by the robot can have a non-

negligible effect on its trajectory, it is necessary to have an extensive world-model. For

instance, when the robot turns a corner it has to know beforehand that there will be another

wall at right angles to the one it has been following. Furthermore, many times the robot is told

to drive toward a goal which is not visible from all locations or, even worse, does not

correspond to a landmark at all but is merely an arbitrary set of grid coordinates. In these cases

it is crucial that the robot have an accurate knowledge of its position in the global coordinate

frame. In addition, the vector fields used by Arkin are totally position-based: they ignore the

robot's current heading and speed. These quantities are obviously also important for any robot

which can not turn in place or which has substantial inertia. The lack of orientation also causes

strange detours in the robot's path because equal attention is paid to objects behind the robot as

to those in front of it. Unlike other systems (e.g [Brooks and Connell 86; Anderson and

Donath 88a]), there is no way to tell the robot to go forward in the direction it is currently

pointing. In recent work, however, Arkin does alter the strengths of his fields based on internal

variables such as the amount of power remaining [Arkin 88b].

122



D3 (0) = D1 (0) + D2 (0)

m3cos (0 - a3) = micos (0 - al) + m2COS (9 - a2)

m3CS0) COS(a3) + m3sin (0)sin (a3) = micos (0 OS (al) + misin (0)sin (al)

+ m2COS (0) cos (a2) + m2sin (0) sin (a2)

m3COS (a3)COS (0) + m3sifl(a3) sin (8) =(mlcos (al) + m2COS (a2)I COS (0)
+ Emsin(ai) + m2sin(cL2)) sin(O)

We then match up the coefficients to yield:

m3c05(a3) = mlcOs(cal) + rn2cOs(a2)

m3sin(a3) = mlsin(al) + m2Sifl(a2)

Finally, converting to cartesian coordinates we find:

x3 = X1+ x2

Y3 = Y1 + Y2

This shows that the result really is another cosine and therefore is suitable for adding to other

encoded vectors. Furthermore, we can see that the components of the resultant are exactly the

same as those that would be obtained with the vector summation model. Thus, the peak of the

distribution is located at an angle corresponding to the resultant of the two original vectors, and

the height of this peak has the correct magnitude.

maxim~~~~um of tecmie distributions h etrsmo h w ocs
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Desire

goal

Turn angle

obstacle

Figure 6-6. In theta-space summation each possible direction of travel is rated based on its desirability. The
creature then proceeds in the direction specified by the maximum of the distribution. Here the robot must detour
around a fence to get to its goal.

A still more general, and explicitly robot centered, command integration scheme is theta-space

summation [Arbib and House 87]. Instead of having each command represent a single

heading and its desirability, behaviors communicate by rating all the possible directions. This is

like an extension of the two-wire control scheme we presented earlier, except that there is a

whole range of angles (or speeds) instead of just left and right. Consider a robot approaching

an extended obstacle like a fence. With the vector field approach, the robot would choose on

side of the fence to go around and try to keep the trajectory of the robot close to this heading.

In contrast, with theta-space the collision avoidance subsystem is allowed to have a secondary

choice of direction which is not necessarily adjacent to its primary choice (see figure 6-6). Even

around a particular choice the desirability distribution does not have to be symmetric: for

instance, we can tell the robot that it is better to overshoot the corner of the fence than to

undershoot it. As Arbib and House show, this preference pattern can be pointwise added to a

similar preference pattern encoding the direction to the goal(s). The maximum of the resulting

pattern then tells the creature which way to go.

It can be also shown that the vector summation approach is a special case of theta-space

summation. Let us represent each vector to be added as cosine distribution with the maximum

centered on the desired direction and with an amplitude proportional to its magnitude. The

preference pattern D (0) for a vector at angle c and with magnitude in is:

D(0) = in cos(0 - ct)

As shown in figure 6-7 this is a broad, symmetric distribution. We now add together the

distributions representing the two different vectors. Assuming the answer is also a cosine we

find:
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background reference. Since doors are places where the robot has the choice of following

several different walls, we might further bias the learning by only registering turns in which

there are obstacles on both sides. This is a case where we rely on other behaviors, namely wall

following, to bootstrap the learning of a new behavior.

The transfer functions used by modules could also be learned. Take, for instance, the cartesian

trajectories required by our arm controller. In most cases it does not matter if the hand moves

precisely up or precisely out. When the hand hits a table we only care that it has some upward

velocity component. To simplify matters, one might allow the robot to use only a small set of

stereotyped motions. As an extreme example, consider those trajectories in which only one

joint angle changes and does this at a constant rate. The idea then is to classify the cartesian

effect of such motions over the various portions of the workspace. Then, when it comes time

to lift the hand, we choose that trajectory which goes closest to straight up. Suppose we start

by hard-wiring in a particular single joint trajectory for each direction of motion called for. This

set will typically only work for a small portion of the robot's workspace. We then start altering

the direction to trajectory mapping for different regions. If a particular motion causes the finger

tip switches to come on, we know the motion has a definite downward component, at least

locally. This gives us the sign of the change; we can also clarify the relative magnitude of the

vertical component by examining other sensors. For instance, if we want to go purely upward

we would reject those motions which cause the crossed IR proximity sensors to come on. In

this way, the necessary classification of motions can happen by simply watching the incoming

kinesthetic and sensory patterns as the robot goes about its task.

In other cases the relevant adjustments needed are between competing behaviors. Consider

calibrating the trade-off between obstacle avoidance and wall attraction. Again, this was

determined by trial and error and then built into the robot. Here the appropriate error signal

might be derived by watching the motion of the base itself. To properly follow a wall the robot

should never have to stop because it is angled to far inward and might collide otherwise, or

because it is angled too far outward and might leave the wall behind. We would start by

priming the sensitivity range of each module with the minimum acceptable area. VEER should

always respond to obstacles in the front quadrant and THIGMO should never let the front half

space become vacant. Anytime the robot stops, the currently active module should consider

incrementally extending its range while the inactive one should contract its zone of influence.

One could imagine a variation of this algorithm in which the two sides of the robot were treated

independently to allow asymmetric ranges to be established.
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6.5 Learning

One issue studiously avoided in our current robot is learning. The robot is simply designed

knowing certain fixed number of things and its performance never improves with time. There

are, however, several places where adjusting parameters or remembering situations could be

advantageous. For instance, the body IR sensors are notoriously unreliable. It would,

therefore, be useful to include some compensatory plasticity in any module which depended on

this information. Ideally, each module could discover the relevant patterns itself and adapt to

any changes over time.

Yet in most cases the robot will not have someone who will lead it through a carefully chosen

set of examples. The robot must be its own teacher. One interesting way to achieve this is to

use the hardwired lower level routines to guide the robot's attention. For instance, another

group has a robot which explores its space tactilely in an attempt to build up object models

[Stansfield 881. The interesting part of this research is that there are a variety of simple reflexes

that drive the arm based on patterns of contacts. If the robot senses a flat patch, it wobbles

around on the surface to determine its extent. If the finger then finds an edge, the robot

carefully follows along the perceived ridge. When this linear feature ends, the robot maintains

contact with the object by experimentally altering its orientation in an attempt to find another

edge leading away from this corner. Most of the exploration is done by this stimulus-response

system, the high level recognition routine just sits in the background and watches how the

robot moves. One might consider visual routines [Ullman 831 to be in the same class. If an

edge fragment is found the spotlight of attention follows along it. If a blob is detected, the

system examines its boundary. If a symmetric region is found the computer inspects either end

of it. These shifts can be used as the links in a graph and, when coupled with a set of local

shape predicates, can be used to form symbolic data structure describing the object seen (e.g.

[Connell 85; Burt 881 ).

We can use the same technique to help our robot learn what it needs to survive. Take, for

instance, the robot's recognition of doors. Right now this is a hard-wired ability. We manually

drove the robot around to empirically determine the appropriate sensor pattern, then instilled

this concept directly in the robot's control system. This door concept is primarily iconic, the

only free parameter is the actual width of the door. Yet to learn anything, one must know when

an instance of the goal concept, or its converse, is being presented. In this case, the robot

might start wandering around and notice anytime that it makes a sharp turn. These would be

positive instances of the door concept, whereas normal straight line travel would provide a
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