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Abstract This chapter proposes a novel hierarchical classification system
based on the K-Nearest Neighbors (K-NN) model and its application to non-
melanoma skin lesion classification. Color and texture features are extracted
from skin lesion images. The hierarchical structure decomposes the classifica-
tion task into a set of simpler problems, one at each node of the classification.
Feature selection is embedded in the hierarchical framework that chooses the
most relevant feature subsets at each node of the hierarchy. The accuracy of
the proposed hierarchical scheme is higher than 93% in discriminating cancer
and potential at risk lesions from benign lesions, and it reaches an overall
classification accuracy of 74% over five common classes of skin lesions, in-
cluding two non-melanoma cancer types. This is the most extensive known
result on non-melanoma skin cancer classification using color and texture
information from images acquired by a standard camera (non-dermoscopy).

1 Introduction

Skin cancers are the most common forms of human malignancies in fair
skinned populations [18]. Although malignant melanoma is the form of “skin
cancer” with the highest mortality, the “non-melanoma skin cancers” (basal
cell carcinomas and squamous cell carcinomas, etc.) are far more common.
The incidence of both melanoma and non-melanoma skin cancers is increas-
ing, with the number of cases being diagnosed doubling approximately every

L. Ballerini and R. B. Fisher
School of Informatics, University of Edinburgh, Edinburgh, UK,

e-mail: lucia.ballerini@ed.ac.uk, rbf@inf.ed.ac.uk

B. Aldridge and J. Rees
Department of Dermatology, University of Edinburgh, Edinburgh, UK,

e-mail: ben.aldridge@ed.ac.uk, jonathan.rees@ed.ac.uk

1



2 Lucia Ballerini, Robert B. Fisher, Ben Aldridge, Jonathan Rees

15 years [35]. It is widely accepted that early detection is fundamental to
reducing the diseases’ morbidity and mortality. Automatic detection systems
may offer benefit for this key diagnostic task.

There are a considerable number of published studies on classification
methods relating to the diagnosis of cutaneous malignancies. The first pub-
lished work presenting an automatic classification of melanoma could be
found in 1987 [11]. A paper describing the first complete system appeared a
few years later [29]. The number of published papers has increased every year
and the significant progress that has occurred in this field is demonstrated
by the recent journal special issue that summarizes the state of the art in
computerized analysis of skin cancer images and provides future directions
for this exciting subfield of medical image analysis [16].

Different techniques for enhancement, segmentation, feature extraction
and classification have been reported by several authors. Enhancement in-
cludes color calibration and normalization [32, 54].

Concerning segmentation, Celebi et al. [14] presented a systematic overview
of main border detection methods: clustering followed by active contours are
the most popular. Improvements in lesion border detection are described in
recent papers [39, 54, 26, 61, 66].

Numerous features have been extracted from skin images, including shape,
color, texture and border properties [56, 37, 63, 43, 52, 57, 19]. It is common
to use features related to the ABCD mnemonic rule [49]. However, our ex-
periments suggested that the use of the ABCD rule in the development of
automatic classifiers can be arguably discouraged [64].

Classification methods range from discriminant analysis to neural networks
and support vector machines [55, 41, 15]. See Maglogiannis et al. [40] for
a review of the state of the art of computer vision system for skin lesion
characterization.

These methods have been mainly developed for images acquired by epilu-
minescence microscopy (ELM or dermoscopy). However, newer technologies,
including digital dermoscopy, infrared imaging, multispectral imaging, and
confocal microscopy, have recently come to the forefront in providing greater
diagnostic accuracy [16].

Moreover published studies mainly focus on differentiating melanocytic
naevi (moles) from melanoma. Whilst this is undeniably important (as ma-
lignant melanoma is the form of skin cancer with the highest mortality), in the
“real-world” the majority of lesions presenting to dermatologists for assess-
ment are not covered by this narrow domain, and such systems ignore other
benign lesions and crucially the two most common skin cancers (Squamous
Cell Carcinomas and Basal Cell Carcinomas) [27, 10, 60].

The proposed work uses only high resolution color images acquired us-
ing standard cameras. To our knowledge only two melanoma pre-screening
systems are based on standard camera images [1, 12].

In the current study, color and texture features are used for the classifica-
tion. We focus on 5 common classes of skin lesions: Actinic Keratosis (AK),
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Basal Cell Carcinoma (BCC), Melanocytic Nevus / Mole (ML), Squamous
Cell Carcinoma (SCC), Seborrhoeic Keratosis (SK). As far as we can tell
there is no research on automatic classification of these lesion types (other
than moles) outside our group [39].

Moreover, this paper introduces a new hierarchical framework for skin
lesion classification. This framework is comprised of a modified version of the
K-Nearest Neighbors (K-NN) classifier, the Hierarchical K-Nearest Neighbors
(HKNN) classifier, and a new similarity measure, based on color and texture
features, that uses different feature sets for comparing similarity at each node
of the hierarchy.

The motivation for using a K-NN classifier can be seen in Fig. 4. It is clear
that the clusters overlap greatly, but are distinguishable. No hard boundary
could separate them (e.g. as usable by a support vector machine or Bayesian
classifier).

Below we describe how the lesion classes can be organized in a hierarchical
scheme (Sect. 2) that suggests the use of the hierarchical classifier (Sect. 3).
Then we introduce the feature pool (Sect. 4). Therefore we make 2 claims:

1. The use of a hierarchical K-NN classifier improves classification accuracy
from 70% to 74% over a non-hierarchical K-NN, and from 67% and 69%
over a flat and a hierarchical Bayes classifier, respectively,

2. This is the most extensive paper to present lesion classification results
for non-melanoma skin cancer using color imagery acquired by a stan-
dard camera, unlike the dermoscopy method, which requires a specialised
sensor.

While 74% is low compared to the 90+% rates achieved by melanoma
classification, we argue that 74% is worth publication: a) the melanoma re-
sults are from only the 2 class problem of melanoma vs melanocytic naevi
(moles), and b) it has taken more than 20 years of research specifically on
that problem to reach the 90+% levels, whereas this is the first research on
image-based classification of AK, BCC, SCC and SK. We accept that whilst
classification rates of this magnitude seem low in the sphere of informatics
research, these rates are significantly above what is currently being achieved
in non-specialist medical practice [21, 51, 44, 27, 10, 60].

2 Skin class hierarchy

Some images of the five classes are shown in Fig. 1. The hierarchy is fixed a
priori by grouping our image classes into two main groups. The first group,
hence called Group1, contains lesion classes: Actinic Keratosis (AK), Basal
Cell Carcinoma (BCC) and Squamous Cell Carcinoma (SCC). The second
group, hence called Group2, contains lesion classes: Melanocytic Nevus/ Mole
(ML) and Seborrhoeic Keratosis (SK). We note that AK, BCC, SCC, ML
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(a) AK (b) BCC (c) SCC (d) ML (e) SK

Fig. 1 Examples of skin lesion images from the different classes used in this work

and SK are diagnostic classes defined by dermatologists. The two groups
were constructed by clustering classes containing images which were visually
similar at the first split. However we can give some meaning to two groups
observing that the first group comprises BCC and SCC that are the two most
common types of skin cancer and AK which is considered a pre-malignant
condition that can give rise to SCCs and sometimes can be visually similar
to early superficial BCCs. In the second group ML and SK are both benign
forms of skin lesions having a similar appearance. The class grouping leads
to the hierarchical structure shown in Fig. 2. This structure makes a coarse
separation among classes at the upper level while finer decisions are made at
a lower level. As a result, this scheme decomposes the original problem into
3 sub-problems.

DATABASE

GROUP 1 GROUP 2

AK BCC SCC ML SK

Fig. 2 Block diagram of the hierarchical organization of skin lesion classes

3 Hierarchical K-NN classifier

A large number of classifier combinations have been proposed in the litera-
ture [33]. They may have different feature sets, different training sets, different
classification methods or different training sessions, all resulting in a set of
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classifiers whose output may be combined, with the hope of improving the
overall classification accuracy. The schemes for combining multiple classifiers
can be grouped into three main categories according to their architecture:
1) parallel, 2) cascading and 3) hierarchical. In the hierarchical architecture,
individual classifiers are combined into a structure which is similar to a de-
cision tree classifier. The advantage of this architecture is the high efficiency
and flexibility in exploiting the discriminant power of different types of fea-
tures [33]. A large number of studies have shown that classifier combination
can improve recognition accuracy [33]. It has been shown that in many do-
mains an ensemble of classifiers outperforms any of its single components [42].
The approach used in our research falls within the hierarchical model.

Our approach divides the classification task into a set of smaller classi-
fication problems corresponding to the splits in the classification hierarchy
(see Figure 2). Each of these subtasks is significantly simpler than the origi-
nal task, since the classifier at a node in the hierarchy need only distinguish
between a smaller number of classes. Therefore, it may be possible to sepa-
rate the smaller number of classes with higher accuracy. Moreover, it may be
possible to make this determination based on a smaller set of features.

The proposed approach addresses also the feature selection problem. The
reduction in the feature space avoids many problems related to high dimen-
sional feature spaces, such as the “curse of dimensionality” problem [33],
where the indexing structures degrade and the significance of each feature
decreases, making the process of storing, indexing and classifying extremely
time consuming. Moreover, in several situations, many features are corre-
lated, meaning that they bring redundant information about the images that
can deteriorate the ability of the system to correctly distinguish them. Di-
mensionality reduction or feature selection has been an active research area
in pattern recognition, statistics and data mining communities. The main
idea of feature selection is to choose a subset of input features by eliminating
features with little or no predictive information.

It is important to note that the key here is not merely the use of feature
selection, but its integration with the hierarchical structure. In practice we
build different classifiers using different sets of training images (according
to the set of classifications made at the higher levels of the hierarchy). So
each classifier uses a different set of features optimized for those images. This
forces the individual classifiers to use potentially independent information.

Hierarchical classifiers are well known [45, 28, 58] and commonly used for
document and text classification [20, 23, 50, 13], including a hierarchical K-
NN classifier [24]. While we found papers describing applications of hierarchi-
cal systems to medical image classification and annotation tasks [47, 59, 22],
to the best of our knowledge only a hierarchical neural network model has
been applied to skin lesions [53]. They claim over 90% accuracy on 58 im-
ages including 4 melanomas. Unfortunately many technical details are not de-
scribed in the paper. On the other hand, only poor performance was reported
relative to the classification of melanoma using the K-NN method [7, 31].
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Some promising results have been presented very recently by using a K-NN
followed by a Decision Tree classifier [12].

3.1 K-NN classifier

K-NN is a well-known classifier. K-NN was first introduced by Fix and
Hodges [25] in 1951. It is well explored in the literature and has been shown
to have good classification performance on a wide range of real world data
sets [17]. Many lazy learning algorithms are derivatives of the K-NN. A re-
view of them is presented in the paper of Wetterschereck et al. [62]. A recent
application of one of these similarity-based learning algorithms, namely the
lazyCL procedure, to melanoma is described by Armengol [5].

To classify an unknown example T , the K-NN classifier finds the K nearest
neighbors among the training data and uses the categories of the K neighbors
to weight the category candidates. Then majority voting among the categories
of data in the neighborhood is used to decide the class label of T . Given
M classes C1, C2, · · · , CM and N training samples I1, I2, · · · , IN , and the
classification for Ii with respect to category Cj(i = 1, · · · , N ; j = 1, · · · ,M):

y(Ii, Cj) =
{

1 Ii ∈ Cj
0 Ii 6∈ Cj

(1)

the decision rule in K-NN can be written as:

assign T to Cj if score(T,Cj) = arg
M

max
j=1

K∑
i=1

y(Ii, Cj) (2)

where the training examples Ii are ranked according to their similarity to the
test example T .

The K-NN classifier has only one free parameter K which can be optimized
by a leave-one-out cross-validation procedure, given the distance function
Dist (see eq. 13) which is used to determine the ‘nearest’ neighbors. Choosing
the properties to be used in each classifier is a core issue, and is addressed
next. The actual distance metrics are presented in Sect. 4.

3.2 Learning phase

Our Hierarchical K-NN classifier (HKNN) is composed of three distinct K-
NN classifier systems, one at the top level, and two at the bottom level. The
top level classifier is fed with all the images in the training set. It classifies
them into one of the two groups. The other two classifiers are trained using
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only the images of the corresponding group (i.e. AK/BCC/SCC or ML/SK)
that have been correctly (when in the training stage) classified by the top
classifier, and classifies them into one of the 2 or 3 diagnostic classes.

The learning phase consists of the feature selection process for the three
distinct K-NN classifiers. A sequential forward selection algorithm [34] (SFS)
is used for feature selection. The goal for choosing features is the maximiza-
tion of the classification accuracy. We used a weighted classification accuracy
due to the uneven class distribution of our data set. This is the rate with
which the system is able to correctly identify each class. Then we take an
average of these rates with respect to the number of classes. Therefore our
overall classification accuracy is defined as:

Overall accuracy =
1
M

M∑
j=1

correctly classified(Cj)
number of test images(Cj)

(3)

where M is the number of classes.
A leave-one-out cross-validation method is used during feature selection.

Each image is used as a test image, all the remaining images in the training
set are ranked according to their similarity index to the test image. Finally
the test image is classified to the class which is most frequent among the K
samples nearest to it using eq. 2. The features that maximize the classification
accuracy over all the images in the training set are selected among all the
extracted features.

At the end, there will be three sets of features for the three classification
tasks, one selected for the top classifier and two selected for the subclassifiers.
The feature sets for the two subsystems are also selected using SFS, but only
using images from the appropriate classes (i.e. AK/BCC/SCC or ML/SK).
Note that, since every subnode in the hierarchy has only a subset of the
total classes, and the subnodes each have fewer images, the additional cost
of feature selection is not substantially more than that of a flat classification
scheme.

3.3 Classification phase

In the classification phase all the test images are classified through the hi-
erarchical structure. Each image is first classified into one of the two groups
by the top level classifier that uses the first set of features. Then one of the
classifiers of the second level is invoked according to the output group of the
top classifier and therefore the image is classified in one of the 5 diagnostic
classes using one of the two other subsets of features.

A drawback of the proposed method is that errors on the first classification
level can not be corrected in the second level. If an example is incorrectly
classified at the top level and assigned to a group that does not contain the
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true class, then the classifiers at lower levels have no chance of achieving a
correct classification. This is known as the “blocking” problem [58]. An at-
tempt to solve this problem could be to use classifiers on the second level
which classify to more than the two or three classes for which they are opti-
mized. Our attempts in this direction show us that not only these classifiers
gave much worse results, but also incur additional problems due to the very
small number of images wrongly classified in the first level, that makes the
classes more unbalanced.

4 Feature description

Here, skin lesions are characterized by their color and texture. In this section
we will describe a set of features that can capture such properties.

4.1 Color features

Color features are represented by the mean colors µ = (µR, µG, µB) of the
lesion and their covariance matrices Σ. Let

µX =
1
N

N∑
i=1

Xi and CXY =
1
N

[
N∑
i=1

XiYi

]
− µXµY (4)

where: N is the number of pixels in the lesion, Xi the color component of
channel X (X,Y ∈ {R,G,B}) of pixel i. In the RGB (Red, Green, Blue)
color space, the covariance matrix is:

Σ =

CRR CRG CRB
CGR CGG CGB
CBR CBG CBB

 (5)

In this work, RGB, HSV (Hue, Saturation, Value) and CIE Lab, CIE Lch
(Munsell color coordinate system [48]) and Otha [46] color spaces were consid-
ered. Four normalization techniques were investigated to reduce the impact
of lighting, which were applied before extracting color features. In the end,
we normalized each color component by dividing each color component by
the average of the same component of the healthy skin of the same patient,
because it had best performance compared to the other normalization tech-
niques. After experimenting with the 5 different color spaces, we choose the
normalized RGB, because it gave slightly better results than the other color
spaces (see Sect. 5.4.2)
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4.2 Texture features

Texture features are extracted from generalized co-occurrence matrices (GCM).
Assume an image I having Nx columns, Ny rows and Ng gray levels. Let
Lx = {1, 2, · · · , Nx} be the columns, Ly = {1, 2, · · · , Ny} be the rows, and
Gx = {0, 1, · · · , Ng−1} be the set of quantized gray levels. The co-occurrence
matrix Pδ is a matrix of dimension Ng ×Ng, where [30]:

Pδ(i, j) = #{((k, l), (m,n)) ∈ (Ly ×Lx)× (Ly ×Lx)|I(k, l) = i, I(m,n) = j}
(6)

i.e. the number of co-occurrences of the pair of gray levels i and j which are
a distance δ = (d, θ) apart. In our work, the pixel pairs (k, l) and (m,n) have
distance d = 5, 10, 15, 20, 25, 30 and orientation θ = 0◦, 45◦, 90◦, 135◦, i.e.
(m = k + d, n = l), (m = k + d/

√
2, n = l + d/

√
2), (m = k, n = l + d), (m =

k − d/
√

2, n = l + d/
√

2).
Generalized co-occurrence matrices are the extension of the co-occurrence

matrix to multispectral images, i.e. images coded on n color channels [6]. Let
u and v be two color channels. The generalized co-occurrence matrices are:

P
(u,v)
δ (i, j) = #{((k, l), (m,n)) ∈ (Ly×Lx)×(Ly×Lx)|Iu(k, l) = i, Iv(m,n) = j}

(7)
For example, in case of color images, coded on three channels (RGB), we

have six cooccurrence matrices: (RR),(GG),(BB) that are the same as gray
level co-occurrence matrices computed on one channel and (RG), (RB), (GB)
that take into account the correlations between the channels.

In order to have orientation invariance for our set of GCMs, we averaged
the matrices with respect to θ. Quantization levels NG = 64, 128, 256 are
used for the three color spaces: RGB, HSV and CIE Lab.

From each GCM we extracted 12 texture features: energy, contrast, corre-
lation, entropy, homogeneity, inverse difference moment, cluster shade, cluster
prominence, max probability, autocorrelation, dissimilarity and variance as
defined in [30], for a total of 3888 texture features (12 features × 6 inter-pixel
distances × 6 color pairs × 3 color spaces × 3 gray level quantisations). Two
sets of texture features are extracted from GCMs calculated over the lesion
area of the image, as well as over a patch of healthy skin of the same image.
Differences and ratios of each of the lesion and normal skin values are also
calculated, giving 2 more sets of features:

featurel−s = featurelesion − featurehealthy skin (8)

featurel/s = featurelesion/featurehealthy skin (9)

Altogether, for a given feature family we use {featurelesion, featurehealthy skin,
featurel−s, featurel/s}. This gives a total of 4 × 3888 = 15552 possible
texture features, from which we extracted a good subset. All features are
z-normalized over all training data.
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4.3 Ad hoc color ratio features

Color ratio features are designed ad hoc for skin lesions, by observing color
variations inside the lesion area. Mean colors µA and µB are extracted over
the areas A and B shown in Figure 3, and their ratios calculated as:

ratio =
µA
µB

(10)

9/10
A A

B
B

1/3

Fig. 3 Areas of lesions where ratio features where calculated.

Two different area sizes are considered. In the first case, the thickness of the
border area is 10% of the area of the lesion. In the second case, the diameter
of the inner area is 1/3 of the diameter of the whole lesion. Since lesions are
not circular, the morphological erosion operator is applied iteratively inward
from the border until the desired percentages of lesion area pixels are reached.
These features seem particularly useful for BCCs, which present pearly edges.

Ad hoc color ratio features are calculated for the three color spaces: RGB,
HSV and CIE Lab, and all feature set are z-normalized. These properties
are included in the texture feature set.

4.4 Distance measure

The color and texture features are combined to construct a distance measure
between each test image T and a database image I.

For color covariance-based features, the Bhattacharyya distance metric:

BDCF (T, I) =
1
8

(µT − µI)T
[

(ΣT +ΣI)
2

]−1

(µT − µI) +
1
2

ln

∣∣∣ (ΣT +ΣI)
2

∣∣∣√
|ΣT ||ΣI |

(11)
is used, where µT and µI are the average (over all pixels in the lesion) color
feature vectors, ΣT and ΣI are the covariance matrices of the lesion of T and
I respectively, and | · | denotes the matrix determinant.

The Euclidean distance:
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EDTF (T, I) = ‖fTsubset − f Isubset‖ =

√√√√ S∑
i=1

(fTi − f Ii )2 (12)

is used for distances between a subset of S texture features fsubset, selected
as described later. Other metric distances (mahalanobis, cityblock) have been
considered, but gave worse results.

We aggregated the two distances into a distance matching function as:

Dist(T, I) = w ·BDCF (T, I) + (1− w) · EDTF (T, I) (13)

where w is a weighting factor that has been selected experimentally, after
trying all the values: {0.1, 0.2, · · · , 0.9}. In our case, w = 0.7 gave the best
results. A low value of Dist indicates a high similarity.

5 Methods

The features described in previous sections were extracted from the lesions
in our image database. In this section we will describe in detail the image
analysis and the choices of the model parameters.

5.1 Acquisition and preprocessing

Our image database comprises 960 lesions, belonging to 5 classes (45 AK, 239
BCC, 331 ML, 88 SCC, 257 SK). The ground truth used for the experiments
is based on the agreed classifications by 2 dermatologists and a pathologist.

Images are acquired using a Canon EOS 350D SLR camera. Lighting was
controlled using a ring flash and all images were captured at the same dis-
tance (∼50 cm) resulting in a pixel resolution of about 0.03 mm. Lesions are
segmented using the region-based active contour approach described in [39].
The segmentation method uses a statistical model based the level-set frame-
work. Morphological opening has been applied to the segmented lesions to
be sure to have patches containing only lesions and healthy skin where the
features are extracted.

5.2 Highlight removal

Specular highlights appear as small and bright regions in various parts of
our skin images. The highlights created by specular reflections are a major
obstacle for proper color and texture feature extraction.
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Specular highlights are often characterized by local coincidence of intense
brightness (I) and low color saturation (S). Intensity and saturation are
defined as follow:

I =
R+G+B

3
(14)

S = 1− min(R,G,B)
I

(15)

and candidate specular reflection regions can be identified using appropriate
threshold values (motivated by [38]):

I > Ithr · Imax (16)

S < Sthr · Smax (17)

where Imax are Smax the maximum intensity and saturation in the image
respectively.

The most appropriate threshold values experimentally chosen (Ithr = 0.8)
and (Sthr = 0.5) differ from the values proposed in [38] probably due to the
different nature of the images.

We did not apply any subsequent filling procedure on the detected regions,
as this may destroy the original texture and therefore have a negative impact
of the subsequent feature extraction. Areas identified as “highlight” were
simply excluded from the region where the feature extraction process takes
place.

5.3 Feature normalization

The features described in previous sections have very different value ranges.
To account for this, an objective rescaling of the features is achieved by
normalizing to z-scores of each feature set, which is defined as

zij =
xij − µj
σj

(18)

where: xij represents the ith sample measure of feature j, µj the mean value
of all samples for feature j and σj is the standard deviation of the samples
for feature j.

In addition, feature values outside the values at 5-95 percentiles have been
truncated to the 5th or 95th percentile value, and the normalising µ and σ
calculated from the truncated set. The normalising parameters were constant
over all experiments.
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5.4 Evaluation

To assess performance, training and test sets were created by randomly split-
ting the data set into 3 equal subsets. The only constraint on otherwise
random partitioning was that a class was represented equally in each subset.
A 3-fold cross-validation method was used, i.e. 3 sets composed of two-thirds
of the data were created and used as training sets for feature selection and
the remaining one-third of the data as the test set using the selected fea-
tures for classification. Thus no training example used for feature selection
was used as a test example in the same experiment. Three experiments were
conducted independently and performance reported as mean and standard
deviation over the three experiments.

In the hierarchical classifiers mentioned in previous sections, the most
commonly used performance measures are the classic information retrieval
notions of precision and recall, or a combination of the two measures [58].
As we are dealing with a classification task and not a retrieval task, we use
the classification accuracy derived from the confusion matrix. In the training
stage, confusion matrices are obtained by a leave-one-out scheme, where each
image is used as a test image and classified according the known classification
of the remaining images in the training set. On the other hand, in the clas-
sification stage, confusion matrices are obtained in a slightly different way:
each image of the test set is classified according to the known classifications
of the K nearest neighbors in the training set.

5.4.1 Influence of the K parameter

Classification results when varying the value of K of the K-NN classifiers
have been evaluated. In some experiments we noticed a little improvement
by using a smaller value of K for feature selection and a bigger one for
classification. Table 1 shows our evaluation. The numbers (mean ± standard
deviation of the accuracy over the three sets) in the first column are obtained
in the feature selection stage, i.e. using the value of K written on their left.
The highest classification accuracy over the test sets for each value of K used
during the feature selection are highlighted in boldface.

We chose values of K: 1) to be odd numbers, 2) to be smaller than the
training class sizes and 3) to span what seemed like a sensible range. Since
performance does not vary too much for the K=11 or K=15 test cases, any
value of K in this range is probably approximately equally effective. In the
following, the presented results are obtained using the combination of K
that gave the best classification accuracy (underlined in the table) on the
test set for each subclassifier (top level classifier: train K=15, test K=15;
AK/BCC/SCC classifier: train K=15, test K=11; ML/SK classifier: train
K=11, test K=15). Recalling that K is the number of nearest samples used to
classify the image under examination, it is technically correct to use different
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Table 1 Accuracy of the three subclassifiers varying the value of K. Each row shows the

value of K used in training, columns show the K used in testing.

(a) Top level

Training Set Test Set

K=7 K=11 K=15

K=7 95.80 ± 0.53 91.67 ± 0.93 92.09 ± 1.59 91.88 ± 1.23
K=11 95.68 ± 0.18 93.33 ± 0.67 92.71 ± 1.17 92.61 ± 0.74

K=15 95.73 ± 0.63 93.23 ± 1.42 93.33 ± 0.95 93.86 ± 0.72

(b) Group1 (AK,BCC,SCC)

Training Set Test Set
K=7 K=11 K=15

K=7 79.40 ± 0.75 69.48 ± 0.98 71.50 ± 1.28 70.95 ± 2.31

K=11 79.96 ± 3.40 69.07 ± 3.38 70.04 ± 0.88 70.86 ± 1.14
K=15 81.87 ± 3.62 70.87 ± 0.91 72.64 ± 2.41 71.79 ± 2.06

(c) Group2 (ML,SK)

Training Set Test Set

K=7 K=11 K=15

K=7 91.97 ± 0.42 85.82 ± 0.88 86.01 ± 0.86 85.82 ± 0.39

K=11 91.88 ± 0.54 85.64 ± 0.58 86.00 ± 0.70 86.19 ± 0.59
K=15 90.80 ± 1.20 84.55 ± 0.86 85.84 ± 0.81 85.67 ± 1.43

values at the classification stage, than those used during the feature selection
stage.

5.4.2 Influence of color features

A comparison of the accuracy (mean ± standard deviation over the three
sets) of the three subclassifiers using only color features is reported in Table 2,
using the K values reported in the previous section. Note that values for RGB
are different from Table 1 because texture features are not used here.

The best results are obtained using RGB and Otha color spaces. Actually
all accuracies are nearly identical before normalization. After normalization,
RGB and Otha color spaces still give best results for the top classifier, while
RGB gives much better results for the other two subclassifiers. These data
also indicate that color features are more important at the top level of the
hierarchy, i.e. in discriminating cancerous vs non cancerous lesions.
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Table 2 Accuracy of the three subclassifiers over the three sets using different color spaces,

before and after normalization.

(a) Before color normalization

Top level Group1 Group2
RGB 87.82 ± 2.14 64.37 ± 3.80 55.03 ± 1.31

HSV 87.81 ± 2.21 62.61 ± 2.88 55.03 ± 1.31
Lab 87.20 ± 2.68 63.47 ± 2.73 55.95 ± 1.33

Lch 86.46 ± 2.52 63.48 ± 2.91 55.05 ± 0.62

Otha 87.82 ± 0.97 64.37 ± 3.80 55.85 ± 1.37

(b) After color normalization

Top level Group1 Group2
RGB 92.71 ± 0.66 74.38 ± 1.81 84.35 ± 1.19

HSV 89.80 ± 1.95 62.65 ± 4.16 54.45 ± 2.60
Lab 91.04 ± 1.45 62.93 ± 3.68 56.87 ± 1.94

Lch 87.71 ± 1.80 65.23 ± 3.57 53.54 ± 2.40

Otha 92.71 ± 0.66 62.31 ± 2.71 57.79 ± 3.40

5.4.3 Influence of texture features

The texture feature set that best discriminates between the groups at the first
level of the hierarchy is different from the feature sets that best discriminate
at the second level, and these two sets also differ between each other. Fig. 4
shows a scatter plot of the two top features for each classifier. The list of
selected features for each level of the hierarchy is reported in the Appendix
(see Table 8). Considering that a potentially very different set of features
is selected at each node of the hierarchy, we can say that the hierarchical
method, as a whole, actually uses a larger set of features in a more efficient
way, without ending up in problems like the “curse of dimensionality”. Hence,
there is a benefit from the hierarchical scheme.

We can observe that color information is important also in the texture
features because texture properties extracted using different color channels
are selected.

The plots of the accuracy vs the number of features (from 1 to 10 for each
level of the hierarchy) are shown in Fig. 5. We show only the plots for one
of the three subsets and for the best K combinations. Keeping in mind that
the color features are fixed and feature selection is applied only to texture
features, the nearly flat trend of the top level classifier (Fig. 5 top) confirms
that color features are more important in discriminating AK/BCC/SC from
ML/SK, and adding more texture features does not improve its performance
more than 2%. On the other hand, the trend of the AK/BCC/SCC and
ML/SK subclassifiers (Fig. 5 bottom) indicates the usefulness of using texture
features at this level of the hierarchy.
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Fig. 4 Scatter plots of the top 2 features for each of the three sets. Top graph shows

Group1 (AK/BCC/SCC) in red and Group2 (SK/ML) in green.

5.4.4 Influence of feature number and selection algorithm

Referring again to the plots shown in Fig. 5, we can see that is reasonable
to stop after adding 10 texture features to color features, as the accuracy on
the test set was not significantly improving anymore.
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Fig. 5 Plots of accuracy vs number of texure features for one of the 3 subsets, using color
feature + 1 to 10 texture features.

A slight overfitting problem evident in some plots suggested us to make
experiments using the three sets as train, validation, test sets respectively.
Results (mean ± standard deviation of the accuracy over the three subsets)



18 Lucia Ballerini, Robert B. Fisher, Ben Aldridge, Jonathan Rees

are reported in Table 3. We stopped selecting additional features when the
accuracy on the validation set decreased (once in the top table, twice in the
bottom one).

Table 3 Accuracy of the three subclassifiers over the three training sets, validation sets

and test sets.

(a) Stop when validation accuracy decrease once

Top level Group1 Group2
Training set 94.06 ± 1.37 71.63 ± 6.20 87.84 ± 1.01

Validation set 91.88 ± 0.81 69.16 ± 0.36 85.99 ± 0.39
Test set 91.56 ± 1.06 71.49 ± 1.91 86.01 ± .33

# Features 5,5,3 6,9,3 3,3,14

(b) Stop when validation accuracy decrease twice

Top level Group1 Group2
Training set 94.06 ± 1.90 70.77 ± 6.17 87.56 ± 1.45

Validation set 92.40 ± 0.77 69.69 ± 1.92 86.55 ± 0.70

Test set 90.83 ± 0.94 71.51 ± 2.70 85.32 ± 3.08
# Features 16,13,2 5,18,2 18,2,12

We did not notice any significant improvement. This is probably due to
the smaller training set size that further reduced the size of the smallest class.

The number of features selected for each of the three subsets is in the last
row of the tables. The high variation means the number of selected features is
not a crucial choice. Indeed, the three subsets are created by randomly split-
ting the data in such a way that the 5 lesion classes were equally represented
in each subset.

The SFS feature selection algorithm is claimed not to be the optimal algo-
rithm, however in our case the use of a sequential forward backward greedy
algorithm (see Table 4) did not show any significant improvement. Once again
we note a high variation in the number of selected features for the three sub-
sets.

Table 4 Accuracy of the three subclassifiers over the three training sets, validation sets
and test sets using a greedy forward backward algorithm

Top level Group1 Group2
Training set 95.35 ± 1.73 80.25 ± 5.09 91.35 ± 0.40

Validation set 91.67 ± 0.45 67.19 ± 1.67 85.45 ± 0.78
Test set 90.52 ± 0.97 72.08 ± 2.92 86.75 ± 2.55
# Features 5,20,10 10,20,4 20,4,20
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5.5 Comparison with other methods

In Table 5 we compare our results with the results obtained using a non
hierarchical approach, i.e. a flat K-NN classifier and a Bayes classifier that
use a single set of features for all the 5 classes. The flat classifiers were
trained using features selected using the same SFS algorithm. Results of a
hierarchical Bayes classifier, having the same hierarchy as the HKNN classifier
and whose subclassifiers were trained using the same features and the same
SFS algorithm, are also reported in the table. We see that the use of hierarchy
gives an improvement both over the training and test sets.

Table 5 Comparison of the overall percentage accuracy of the hierarchical and flat clas-
sifiers over the three training sets and test sets.

Flat KNN HKNN Flat Bayes Hierarc. Bayes
Training set 77.6 ± 1.4 83.4 ± 1.4 74.3 ± 2.2 81.9 ± 1.5

Test set 69.8 ± 1.6 74.3 ± 2.5 67.7 ± 2.3 69.6 ± 0.4

6 Overall results

The final results are reported in Table 6. The final accuracy of the top classi-
fier and the two subclassifiers at the bottom levels are also reported here. The
values are the mean ± standard deviation over the three training and test
sets. These results are obtained using best combination of K determined in
Sect. 5.4.1, the RGB color features and 10 texture features for each subclassi-
fier. We decided to use a fixed number of features as the train-validation-test
scheme did not enhance performance (see considerations in Sect. 5.4.4 about
set sizes and number of features). Similarly, the variety of results from the
different configurations and numbers of features all have about the same level,
given the estimated standard deviations, and so suggest that there is little
risk of overtraining.

Recall the top level classifier discriminates between cancer and pre-
malignant conditions (AK/BCC/SCC) and benign forms of skin lesions
(ML/SK). Therefore, its very high accuracy (above 93%) indicates the good
performance of our system in identifying cancer and potential at risk con-
ditions. Analysis of the wrongly classified images at the top level pointed
out that these were the lesions on which clinical diagnosis of experienced
dermatologists was most uncertain.
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Table 6 Accuracy of the three subclassifiers and combined classifier over the three training

sets and test sets. Note that the Group1/2 results are only over the lesions correctly
classified at the top level. On the other hand, the full classifier results report accuracy

based on both levels.

Top level Group1 Group2 Full classifier
Training set 95.7 ± 0.6 81.9 ± 3.6 91.9 ± 0.5 83.4 ± 1.4

Test set 93.9 ± 0.7 72.6 ± 2.4 86.2 ± 0.6 74.3 ± 2.5

The overall classification accuracy on the test set is 74.3± 2.5%, as shown
in the right column of Table 6. The overall result also includes the ∼6%
misclassified samples from the first level.

The overall performance (74%) is not yet at the 90% level (achieved after
20+ years of research) for differential diagnosis of moles versus melanoma,
however, our method addresses lesion classes that seem to have no previous
automated image analysis (outside of research from our group [39, 9, 8, 36,
65, 4, 2, 3]) and, as highlighted previously, our algorithms’ performance is
above the diagnostic accuracy currently being achieved by non-specialists.

Table 7 shows the confusion matrix of the whole HKNN system on the test
images. This matrix has been obtained by adding the three confusion matrices
from the three test sets, as they are disjoint. We note a good percentage of
correctly classified BCC, ML and SK. The number of correctly classified AK
and SCC at a first glance looks quite low. This is due to the small number of
images in each of these two classes. However most of the AKs are misclassified
as BCC and we should remember that AK is a pre-malignant lesion. Also
many SCC are classified as BCC which is another kind of cancer. Therefore
consequences of these mistakes are not as dramatic as if they were diagnosed
as benign. An additional split in the hierarchy may improve results.

Table 7 Classification results: confusion matrix on the test images. Rows are true classes,
columns are the selected classes.

AK BCC ML SCC SK

AK 7 27 1 9 1

BCC 2 210 6 14 7

ML 10 10 269 10 42

SCC 8 34 5 36 5

SK 9 8 33 8 199
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7 Conclusions

We have presented an algorithm based on a novel hierarchical K-NN classifier,
and its application as the first classification of 5 most common classes of non-
melanoma skin lesion from color images. Our approach uses a hierarchical
combination of three classifiers, utilizing feature selection to tailor the feature
set of each classifier to its task. The hierarchical K-NN structure improves
the performance of the system over the flat K-NN and a Bayes classifier.

As the accuracy is above 70%, this system could be used in the future as
a diagnostic aid for skin lesion images, particularly as the cancerous vs non
cancerous results are ∼94%.

These results were produced by optimizing classification accuracy. For
medical use future research should include the cost of decisions into the op-
timization process.

Further studies will include the extraction of other texture related features,
the evaluation of other feature selection methods and the use of a weighted
K-NN model, where neighbor images are weighted according their distance
to the test image. In the future, it would be interesting to extend the hier-
archical approach to more than two hierarchical levels, including self-learned
hierarchies.

8 Appendix

List of texture features selected for each level of the final tree.
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